This is part of the multicolvar module |
Calculate the distances between one or many pairs of atoms. You can then calculate functions of the distribution of distances such as the minimum, the number less than a certain quantity and so on.
The following input tells plumed to calculate the distances between atoms 3 and 5 and between atoms 1 and 2 and to print the minimum for these two distances.
d1: DISTANCESATOMS1=3,5the atoms involved in each of the distances you wish to calculate.ATOMS2=1,2the atoms involved in each of the distances you wish to calculate.MIN={BETA=0.1} PRINTcalculate the minimum value.ARG=d1.minthe input for this action is the scalar output from one or more other actions.
(See also PRINT).
The following input tells plumed to calculate the distances between atoms 3 and 5 and between atoms 1 and 2 and then to calculate the number of these distances that are less than 0.1 nm. The number of distances less than 0.1nm is then printed to a file.
d1: DISTANCESATOMS1=3,5the atoms involved in each of the distances you wish to calculate.ATOMS2=1,2the atoms involved in each of the distances you wish to calculate.LESS_THAN={RATIONAL R_0=0.1} PRINTcalculate the number of variables less than a certain target value.ARG=d1.lessthanthe input for this action is the scalar output from one or more other actions.
(See also PRINT switchingfunction).
The following input tells plumed to calculate all the distances between atoms 1, 2 and 3 (i.e. the distances between atoms 1 and 2, atoms 1 and 3 and atoms 2 and 3). The average of these distances is then calculated.
d1: DISTANCESGROUP=1-3Calculate the distance between each distinct pair of atoms in the groupMEANPRINTtake the mean of these variables.ARG=d1.meanthe input for this action is the scalar output from one or more other actions.
(See also PRINT)
The following input tells plumed to calculate all the distances between the atoms in GROUPA and the atoms in GROUPB. In other words the distances between atoms 1 and 2 and the distance between atoms 1 and 3. The number of distances more than 0.1 is then printed to a file.
d1: DISTANCESGROUPA=1Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB.GROUPB=2,3Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB.MORE_THAN={RATIONAL R_0=0.1} PRINTcalculate the number of variables more than a certain target value.ARG=d1.morethanthe input for this action is the scalar output from one or more other actions.
(See also PRINT switchingfunction)
To calculate and print the minimum distance between two groups of atoms you use the following commands
d1: DISTANCESGROUPA=1-10Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB.GROUPB=11-20Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB.MIN={BETA=500.} PRINTcalculate the minimum value.ARG=d1.minthe input for this action is the scalar output from one or more other actions.FILE=colvarthe name of the file on which to output these quantitiesSTRIDE=10compulsory keyword ( default=1 ) the frequency with which the quantities of interest should be output
In order to ensure that the minimum value has continuous derivatives we use the following function:
\[ s = \frac{\beta}{ \log \sum_i \exp\left( \frac{\beta}{s_i} \right) } \]
where \(\beta\) is a user specified parameter.
This input is used rather than a separate MINDIST colvar so that the same routine and the same input style can be used to calculate minimum coordination numbers (see COORDINATIONNUMBER), minimum angles (see ANGLES) and many other variables.
This new way of calculating mindist is part of plumed 2's multicolvar functionality. These special actions allow you to calculate multiple functions of a distribution of simple collective variables. As an example you can calculate the number of distances less than 1.0, the minimum distance, the number of distances more than 2.0 and the number of distances between 1.0 and 2.0 by using the following command:
d1: DISTANCES ...GROUPA=1-10Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB.GROUPB=11-20Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB.LESS_THAN={RATIONAL R_0=1.0}calculate the number of variables less than a certain target value.MORE_THAN={RATIONAL R_0=2.0}calculate the number of variables more than a certain target value.BETWEEN={GAUSSIAN LOWER=1.0 UPPER=2.0}calculate the number of values that are within a certain range.MIN={BETA=500.} ... PRINTcalculate the minimum value.ARG=d1.lessthan,d1.morethan,d1.between,d1.minthe input for this action is the scalar output from one or more other actions.FILE=colvarthe name of the file on which to output these quantitiesSTRIDE=10compulsory keyword ( default=1 ) the frequency with which the quantities of interest should be output
A calculation performed this way is fast because the expensive part of the calculation - the calculation of all the distances - is only done once per step. Furthermore, it can be made faster by using the TOL keyword to discard those distance that make only a small contributions to the final values together with the NL_STRIDE keyword, which ensures that the distances that make only a small contribution to the final values aren't calculated at every step.
When the label of this action is used as the input for a second you are not referring to a scalar quantity as you are in regular collective variables. The label is used to reference the full set of quantities calculated by the action. This is usual when using MultiColvar functions. Generally when doing this the previously calculated multicolvar will be referenced using the DATA keyword rather than ARG.
This Action can be used to calculate the following scalar quantities directly. These quantities are calculated by employing the keywords listed below. These quantities can then be referenced elsewhere in the input file by using this Action's label followed by a dot and the name of the quantity. Some of them can be calculated multiple times with different parameters. In this case the quantities calculated can be referenced elsewhere in the input by using the name of the quantity followed by a numerical identifier e.g. label.lessthan-1, label.lessthan-2 etc. When doing this and, for clarity we have made it so that the user can set a particular label for each of the components. As such by using the LABEL keyword in the description of the keyword input you can customize the component name
Quantity | Keyword | Description |
altmin | ALT_MIN | the minimum value. This is calculated using the formula described in the description of the keyword so as to make it continuous. |
between | BETWEEN | the number/fraction of values within a certain range. This is calculated using one of the formula described in the description of the keyword so as to make it continuous. You can calculate this quantity multiple times using different parameters. |
highest | HIGHEST | the highest of the quantities calculated by this action |
lessthan | LESS_THAN | the number of values less than a target value. This is calculated using one of the formula described in the description of the keyword so as to make it continuous. You can calculate this quantity multiple times using different parameters. |
lowest | LOWEST | the lowest of the quantities calculated by this action |
max | MAX | the maximum value. This is calculated using the formula described in the description of the keyword so as to make it continuous. |
mean | MEAN | the mean value. The output component can be referred to elsewhere in the input file by using the label.mean |
min | MIN | the minimum value. This is calculated using the formula described in the description of the keyword so as to make it continuous. |
moment | MOMENTS | the central moments of the distribution of values. The second moment would be referenced elsewhere in the input file using label.moment-2, the third as label.moment-3, etc. |
morethan | MORE_THAN | the number of values more than a target value. This is calculated using one of the formula described in the description of the keyword so as to make it continuous. You can calculate this quantity multiple times using different parameters. |
ATOMS | the atoms involved in each of the distances you wish to calculate. Keywords like ATOMS1, ATOMS2, ATOMS3,... should be listed and one distance will be calculated for each ATOM keyword you specify (all ATOM keywords should specify the indices of two atoms). The eventual number of quantities calculated by this action will depend on what functions of the distribution you choose to calculate. You can use multiple instances of this keyword i.e. ATOMS1, ATOMS2, ATOMS3... |
GROUP | Calculate the distance between each distinct pair of atoms in the group |
GROUPA | Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB. This must be used in conjunction with GROUPB. |
GROUPB | Calculate the distances between all the atoms in GROUPA and all the atoms in GROUPB. This must be used in conjunction with GROUPA. |
NUMERICAL_DERIVATIVES | ( default=off ) calculate the derivatives for these quantities numerically |
NOPBC | ( default=off ) ignore the periodic boundary conditions when calculating distances |
SERIAL | ( default=off ) do the calculation in serial. Do not use MPI |
LOWMEM | ( default=off ) lower the memory requirements |
TIMINGS | ( default=off ) output information on the timings of the various parts of the calculation |
ALT_MIN | calculate the minimum value. To make this quantity continuous the minimum is calculated using \( \textrm{min} = -\frac{1}{\beta} \log \sum_i \exp\left( -\beta s_i \right) \) The value of \(\beta\) in this function is specified using (BETA= \(\beta\)). The final value can be referenced using label.altmin. You can use multiple instances of this keyword i.e. ALT_MIN1, ALT_MIN2, ALT_MIN3... The corresponding values are then referenced using label.altmin-1, label.altmin-2, label.altmin-3... |
LOWEST | this flag allows you to recover the lowest of these variables. The final value can be referenced using label.lowest |
HIGHEST | this flag allows you to recover the highest of these variables. The final value can be referenced using label.highest |
MEAN | take the mean of these variables. The final value can be referenced using label.mean. You can use multiple instances of this keyword i.e. MEAN1, MEAN2, MEAN3... The corresponding values are then referenced using label.mean-1, label.mean-2, label.mean-3... |
MIN | calculate the minimum value. To make this quantity continuous the minimum is calculated using \( \textrm{min} = \frac{\beta}{ \log \sum_i \exp\left( \frac{\beta}{s_i} \right) } \) The value of \(\beta\) in this function is specified using (BETA= \(\beta\)) The final value can be referenced using label.min. You can use multiple instances of this keyword i.e. MIN1, MIN2, MIN3... The corresponding values are then referenced using label.min-1, label.min-2, label.min-3... |
MAX | calculate the maximum value. To make this quantity continuous the maximum is calculated using \( \textrm{max} = \beta \log \sum_i \exp\left( \frac{s_i}{\beta}\right) \) The value of \(\beta\) in this function is specified using (BETA= \(\beta\)) The final value can be referenced using label.max. You can use multiple instances of this keyword i.e. MAX1, MAX2, MAX3... The corresponding values are then referenced using label.max-1, label.max-2, label.max-3... |
LESS_THAN | calculate the number of variables less than a certain target value. This quantity is calculated using \(\sum_i \sigma(s_i)\), where \(\sigma(s)\) is a switchingfunction. The final value can be referenced using label.lessthan. You can use multiple instances of this keyword i.e. LESS_THAN1, LESS_THAN2, LESS_THAN3... The corresponding values are then referenced using label.lessthan-1, label.lessthan-2, label.lessthan-3... |
MORE_THAN | calculate the number of variables more than a certain target value. This quantity is calculated using \(\sum_i 1.0 - \sigma(s_i)\), where \(\sigma(s)\) is a switchingfunction. The final value can be referenced using label.morethan. You can use multiple instances of this keyword i.e. MORE_THAN1, MORE_THAN2, MORE_THAN3... The corresponding values are then referenced using label.morethan-1, label.morethan-2, label.morethan-3... |
BETWEEN | calculate the number of values that are within a certain range. These quantities are calculated using kernel density estimation as described on histogrambead. The final value can be referenced using label.between. You can use multiple instances of this keyword i.e. BETWEEN1, BETWEEN2, BETWEEN3... The corresponding values are then referenced using label.between-1, label.between-2, label.between-3... |
HISTOGRAM | calculate how many of the values fall in each of the bins of a histogram. This shortcut allows you to calculates NBIN quantities like BETWEEN. The final value can be referenced using label.histogram. You can use multiple instances of this keyword i.e. HISTOGRAM1, HISTOGRAM2, HISTOGRAM3... The corresponding values are then referenced using label.histogram-1, label.histogram-2, label.histogram-3... |
MOMENTS | calculate the moments of the distribution of collective variables. The mth moment of a distribution is calculated using \(\frac{1}{N} \sum_{i=1}^N ( s_i - \overline{s} )^m \), where \(\overline{s}\) is the average for the distribution. The moments keyword takes a lists of integers as input or a range. Each integer is a value of \(m\). The final calculated values can be referenced using moment- \(m\). You can use the COMPONENT keyword in this action but the syntax is slightly different. If you would like the second and third moments of the third component you would use MOMENTS={COMPONENT=3 MOMENTS=2-3}. The moments would then be referred to using the labels moment-3-2 and moment-3-3. This syntax is also required if you are using numbered MOMENT keywords i.e. MOMENTS1, MOMENTS2... |