LCOV - code coverage report
Current view: top level - ves - TargetDistribution.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 179 207 86.5 %
Date: 2020-11-18 11:20:57 Functions: 22 26 84.6 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2018 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : #include "TargetDistModifer.h"
      25             : 
      26             : #include "VesBias.h"
      27             : #include "GridIntegrationWeights.h"
      28             : #include "VesTools.h"
      29             : 
      30             : #include "core/Value.h"
      31             : #include "tools/Grid.h"
      32             : #include "tools/File.h"
      33             : #include "tools/Keywords.h"
      34             : 
      35             : #include "GridProjWeights.h"
      36             : 
      37             : namespace PLMD {
      38             : namespace ves {
      39             : 
      40         357 : void TargetDistribution::registerKeywords( Keywords& keys ) {
      41         357 :   Action::registerKeywords(keys);
      42        1428 :   keys.reserve("optional","WELLTEMPERED_FACTOR","Broaden the target distribution such that it is taken as [p(s)]^(1/\\f$\\gamma\\f$) where \\f$\\gamma\\f$ is the well tempered factor given here. If this option is active the distribution will be automatically normalized.");
      43        1071 :   keys.reserveFlag("SHIFT_TO_ZERO",false,"Shift the minimum value of the target distribution to zero. This can for example be used to avoid negative values in the target distribution. If this option is active the distribution will be automatically normalized.");
      44        1071 :   keys.reserveFlag("NORMALIZE",false,"Renormalized the target distribution over the intervals on which it is defined to make sure that it is properly normalized to 1. In most cases this should not be needed as the target distributions should be normalized. The code will issue a warning (but still run) if this is needed for some reason.");
      45         357 : }
      46             : 
      47             : 
      48         342 : TargetDistribution::TargetDistribution(const ActionOptions&ao):
      49             :   Action(ao),
      50             :   type_(static_targetdist),
      51             :   force_normalization_(false),
      52             :   check_normalization_(true),
      53             :   check_nonnegative_(true),
      54             :   check_nan_inf_(false),
      55             :   shift_targetdist_to_zero_(false),
      56             :   dimension_(0),
      57             :   grid_args_(0),
      58             :   targetdist_grid_pntr_(NULL),
      59             :   log_targetdist_grid_pntr_(NULL),
      60             :   targetdist_modifer_pntrs_(0),
      61             :   action_pntr_(NULL),
      62             :   vesbias_pntr_(NULL),
      63             :   needs_bias_grid_(false),
      64             :   needs_bias_withoutcutoff_grid_(false),
      65             :   needs_fes_grid_(false),
      66             :   bias_grid_pntr_(NULL),
      67             :   bias_withoutcutoff_grid_pntr_(NULL),
      68             :   fes_grid_pntr_(NULL),
      69             :   static_grid_calculated(false),
      70             :   allow_bias_cutoff_(true),
      71         342 :   bias_cutoff_active_(false)
      72             : {
      73             :   //
      74         684 :   if(keywords.exists("WELLTEMPERED_FACTOR")) {
      75         253 :     double welltempered_factor=0.0;
      76         506 :     parse("WELLTEMPERED_FACTOR",welltempered_factor);
      77             :     //
      78         253 :     if(welltempered_factor>0.0) {
      79          12 :       TargetDistModifer* pntr = new WellTemperedModifer(welltempered_factor);
      80           6 :       targetdist_modifer_pntrs_.push_back(pntr);
      81             :     }
      82         247 :     else if(welltempered_factor<0.0) {
      83           0 :       plumed_merror(getName()+": negative value in WELLTEMPERED_FACTOR does not make sense");
      84             :     }
      85             :   }
      86             :   //
      87         684 :   if(keywords.exists("SHIFT_TO_ZERO")) {
      88         482 :     parseFlag("SHIFT_TO_ZERO",shift_targetdist_to_zero_);
      89         241 :     if(shift_targetdist_to_zero_) {
      90           3 :       if(bias_cutoff_active_) {plumed_merror(getName()+": using SHIFT_TO_ZERO with bias cutoff is not allowed.");}
      91           3 :       check_nonnegative_=false;
      92             :     }
      93             :   }
      94             :   //
      95         684 :   if(keywords.exists("NORMALIZE")) {
      96         215 :     bool force_normalization=false;
      97         430 :     parseFlag("NORMALIZE",force_normalization);
      98         215 :     if(force_normalization) {
      99           3 :       if(shift_targetdist_to_zero_) {plumed_merror(getName()+" with label "+getLabel()+": using NORMALIZE with SHIFT_TO_ZERO is not needed, the target distribution will be automatically normalized.");}
     100             :       setForcedNormalization();
     101             :     }
     102             :   }
     103             : 
     104         342 : }
     105             : 
     106             : 
     107         684 : TargetDistribution::~TargetDistribution() {
     108         342 :   if(targetdist_grid_pntr_!=NULL) {
     109         342 :     delete targetdist_grid_pntr_;
     110             :   }
     111         342 :   if(log_targetdist_grid_pntr_!=NULL) {
     112         342 :     delete log_targetdist_grid_pntr_;
     113             :   }
     114         702 :   for(unsigned int i=0; i<targetdist_modifer_pntrs_.size(); i++) {
     115           6 :     delete targetdist_modifer_pntrs_[i];
     116             :   }
     117         342 : }
     118             : 
     119             : 
     120         352 : double TargetDistribution::getBeta() const {
     121         352 :   plumed_massert(vesbias_pntr_!=NULL,"The VesBias has to be linked to use TargetDistribution::getBeta()");
     122         352 :   return vesbias_pntr_->getBeta();
     123             : }
     124             : 
     125             : 
     126         355 : void TargetDistribution::setDimension(const unsigned int dimension) {
     127         355 :   plumed_massert(dimension_==0,"setDimension: the dimension of the target distribution has already been set");
     128         355 :   dimension_=dimension;
     129         355 : }
     130             : 
     131             : 
     132          44 : void TargetDistribution::linkVesBias(VesBias* vesbias_pntr_in) {
     133          44 :   vesbias_pntr_ = vesbias_pntr_in;
     134          44 :   action_pntr_ = static_cast<Action*>(vesbias_pntr_in);
     135          44 : }
     136             : 
     137             : 
     138           0 : void TargetDistribution::linkAction(Action* action_pntr_in) {
     139           0 :   action_pntr_ = action_pntr_in;
     140           0 : }
     141             : 
     142             : 
     143           0 : void TargetDistribution::linkBiasGrid(Grid* bias_grid_pntr_in) {
     144           0 :   bias_grid_pntr_ = bias_grid_pntr_in;
     145           0 : }
     146             : 
     147             : 
     148           3 : void TargetDistribution::linkBiasWithoutCutoffGrid(Grid* bias_withoutcutoff_grid_pntr_in) {
     149           3 :   bias_withoutcutoff_grid_pntr_ = bias_withoutcutoff_grid_pntr_in;
     150           3 : }
     151             : 
     152             : 
     153          35 : void TargetDistribution::linkFesGrid(Grid* fes_grid_pntr_in) {
     154          35 :   fes_grid_pntr_ = fes_grid_pntr_in;
     155          35 : }
     156             : 
     157             : 
     158           3 : void TargetDistribution::setupBiasCutoff() {
     159           3 :   if(!allow_bias_cutoff_) {
     160           0 :     plumed_merror(getName()+" with label "+getLabel()+": this target distribution does not support a bias cutoff");
     161             :   }
     162           3 :   if(targetdist_modifer_pntrs_.size()>0) {
     163           0 :     plumed_merror(getName()+" with label "+getLabel()+": using a bias cutoff with a target distribution modifer like WELLTEMPERED_FACTOR is not allowed");
     164             :   }
     165           3 :   bias_cutoff_active_=true;
     166             :   setBiasWithoutCutoffGridNeeded();
     167             :   setDynamic();
     168             :   // as the p(s) includes the derivative factor so normalization
     169             :   // check can be misleading
     170           3 :   check_normalization_=false;
     171           3 :   force_normalization_=false;
     172           3 : }
     173             : 
     174             : 
     175         342 : void TargetDistribution::setupGrids(const std::vector<Value*>& arguments, const std::vector<std::string>& min, const std::vector<std::string>& max, const std::vector<unsigned int>& nbins) {
     176         342 :   if(getDimension()==0) {
     177          73 :     setDimension(arguments.size());
     178             :   }
     179             :   unsigned int dimension = getDimension();
     180         342 :   plumed_massert(arguments.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     181         342 :   plumed_massert(min.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     182         342 :   plumed_massert(max.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     183         342 :   plumed_massert(nbins.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     184         342 :   grid_args_=arguments;
     185         684 :   targetdist_grid_pntr_ =     new Grid("targetdist",arguments,min,max,nbins,false,false);
     186         684 :   log_targetdist_grid_pntr_ = new Grid("log_targetdist",arguments,min,max,nbins,false,false);
     187         342 :   setupAdditionalGrids(arguments,min,max,nbins);
     188         342 : }
     189             : 
     190             : 
     191         308 : void TargetDistribution::calculateStaticDistributionGrid() {
     192         308 :   if(static_grid_calculated && !bias_cutoff_active_) {return;}
     193             :   // plumed_massert(isStatic(),"this should only be used for static distributions");
     194         288 :   plumed_massert(targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     195         288 :   plumed_massert(log_targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     196      899422 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     197             :   {
     198      449567 :     std::vector<double> argument = targetdist_grid_pntr_->getPoint(l);
     199      449567 :     double value = getValue(argument);
     200      449567 :     targetdist_grid_pntr_->setValue(l,value);
     201      449567 :     log_targetdist_grid_pntr_->setValue(l,-std::log(value));
     202             :   }
     203         288 :   log_targetdist_grid_pntr_->setMinToZero();
     204         288 :   static_grid_calculated = true;
     205             : }
     206             : 
     207             : 
     208         812 : double TargetDistribution::integrateGrid(const Grid* grid_pntr) {
     209        2436 :   std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(grid_pntr);
     210             :   double sum = 0.0;
     211     5053712 :   for(Grid::index_t l=0; l<grid_pntr->getSize(); l++) {
     212     2526450 :     sum += integration_weights[l]*grid_pntr->getValue(l);
     213             :   }
     214         812 :   return sum;
     215             : }
     216             : 
     217             : 
     218          78 : double TargetDistribution::normalizeGrid(Grid* grid_pntr) {
     219          78 :   double normalization = TargetDistribution::integrateGrid(grid_pntr);
     220          78 :   grid_pntr->scaleAllValuesAndDerivatives(1.0/normalization);
     221          78 :   return normalization;
     222             : }
     223             : 
     224             : 
     225          28 : Grid TargetDistribution::getMarginalDistributionGrid(Grid* grid_pntr, const std::vector<std::string>& args) {
     226          28 :   plumed_massert(grid_pntr->getDimension()>1,"doesn't make sense calculating the marginal distribution for a one-dimensional distribution");
     227          28 :   plumed_massert(args.size()<grid_pntr->getDimension(),"the number of arguments for the marginal distribution should be less than the dimension of the full distribution");
     228             :   //
     229          56 :   std::vector<std::string> argnames = grid_pntr->getArgNames();
     230          28 :   std::vector<unsigned int> args_index(0);
     231         168 :   for(unsigned int i=0; i<argnames.size(); i++) {
     232         280 :     for(unsigned int l=0; l<args.size(); l++) {
     233         112 :       if(argnames[i]==args[l]) {args_index.push_back(i);}
     234             :     }
     235             :   }
     236          28 :   plumed_massert(args.size()==args_index.size(),"getMarginalDistributionGrid: problem with the arguments of the marginal");
     237             :   //
     238          28 :   MarginalWeight* Pw = new MarginalWeight();
     239          28 :   Grid proj_grid = grid_pntr->project(args,Pw);
     240          28 :   delete Pw;
     241             :   //
     242             :   // scale with the bin volume used for the integral such that the
     243             :   // marginals are proberly normalized to 1.0
     244          28 :   double intVol = grid_pntr->getBinVolume();
     245         140 :   for(unsigned int l=0; l<args_index.size(); l++) {
     246          84 :     intVol/=grid_pntr->getDx()[args_index[l]];
     247             :   }
     248          28 :   proj_grid.scaleAllValuesAndDerivatives(intVol);
     249             :   //
     250          28 :   return proj_grid;
     251             : }
     252             : 
     253             : 
     254           8 : Grid TargetDistribution::getMarginal(const std::vector<std::string>& args) {
     255           8 :   return TargetDistribution::getMarginalDistributionGrid(targetdist_grid_pntr_,args);
     256             : }
     257             : 
     258             : 
     259         713 : void TargetDistribution::updateTargetDist() {
     260             :   //
     261         713 :   updateGrid();
     262             :   //
     263        1444 :   for(unsigned int i=0; i<targetdist_modifer_pntrs_.size(); i++) {
     264           6 :     applyTargetDistModiferToGrid(targetdist_modifer_pntrs_[i]);
     265             :   }
     266             :   //
     267         713 :   if(bias_cutoff_active_) {updateBiasCutoffForTargetDistGrid();}
     268             :   //
     269         713 :   if(shift_targetdist_to_zero_ && !(bias_cutoff_active_)) {setMinimumOfTargetDistGridToZero();}
     270         713 :   if(force_normalization_ && !(bias_cutoff_active_) ) {normalizeTargetDistGrid();}
     271             :   //
     272             :   // if(check_normalization_ && !force_normalization_ && !shift_targetdist_to_zero_){
     273         713 :   if(check_normalization_ && !(bias_cutoff_active_)) {
     274         614 :     double normalization = integrateGrid(targetdist_grid_pntr_);
     275             :     const double normalization_thrshold = 0.1;
     276         614 :     if(normalization < 1.0-normalization_thrshold || normalization > 1.0+normalization_thrshold) {
     277           3 :       std::string norm_str; Tools::convert(normalization,norm_str);
     278           6 :       std::string msg = "the target distribution grid is not proberly normalized, integrating over the grid gives: " + norm_str + " - You can avoid this problem by using the NORMALIZE keyword";
     279           3 :       warning(msg);
     280             :     }
     281             :   }
     282             :   //
     283         713 :   if(check_nonnegative_) {
     284             :     const double nonnegative_thrshold = -0.02;
     285         710 :     double grid_min_value = targetdist_grid_pntr_->getMinValue();
     286         710 :     if(grid_min_value<nonnegative_thrshold) {
     287           0 :       std::string grid_min_value_str; Tools::convert(grid_min_value,grid_min_value_str);
     288           0 :       std::string msg = "the target distribution grid has negative values, the lowest value is: " + grid_min_value_str + " - You can avoid this problem by using the SHIFT_TO_ZERO keyword";
     289           0 :       warning(msg);
     290             :     }
     291             :   }
     292             :   //
     293         713 :   if(check_nan_inf_) {checkNanAndInf();}
     294             :   //
     295         713 : }
     296             : 
     297             : 
     298          24 : void TargetDistribution::updateBiasCutoffForTargetDistGrid() {
     299          24 :   plumed_massert(vesbias_pntr_!=NULL,"The VesBias has to be linked to use updateBiasCutoffForTargetDistGrid()");
     300          24 :   plumed_massert(vesbias_pntr_->biasCutoffActive(),"updateBiasCutoffForTargetDistGrid() should only be used if the bias cutoff is active");
     301             :   // plumed_massert(targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     302             :   // plumed_massert(log_targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     303          24 :   plumed_massert(getBiasWithoutCutoffGridPntr()!=NULL,"the bias without cutoff grid has to be linked");
     304             :   //
     305          72 :   std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(targetdist_grid_pntr_);
     306             :   double norm = 0.0;
     307        5224 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     308             :   {
     309        2600 :     double value = targetdist_grid_pntr_->getValue(l);
     310        2600 :     double bias = getBiasWithoutCutoffGridPntr()->getValue(l);
     311        2600 :     double deriv_factor_swf = 0.0;
     312        2600 :     double swf = vesbias_pntr_->getBiasCutoffSwitchingFunction(bias,deriv_factor_swf);
     313             :     // this comes from the p(s)
     314        2600 :     value *= swf;
     315        2600 :     norm += integration_weights[l]*value;
     316             :     // this comes from the derivative of V(s)
     317        2600 :     value *= deriv_factor_swf;
     318        2600 :     targetdist_grid_pntr_->setValue(l,value);
     319             :     // double log_value = log_targetdist_grid_pntr_->getValue(l) - std::log(swf);
     320             :     // log_targetdist_grid_pntr_->setValue(l,log_value);
     321             :   }
     322          24 :   targetdist_grid_pntr_->scaleAllValuesAndDerivatives(1.0/norm);
     323             :   // log_targetdist_grid_pntr_->setMinToZero();
     324          24 : }
     325             : 
     326           6 : void TargetDistribution::applyTargetDistModiferToGrid(TargetDistModifer* modifer_pntr) {
     327             :   // plumed_massert(targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     328             :   // plumed_massert(log_targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     329             :   //
     330          18 :   std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(targetdist_grid_pntr_);
     331             :   double norm = 0.0;
     332       42418 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     333             :   {
     334       21206 :     double value = targetdist_grid_pntr_->getValue(l);
     335       21206 :     std::vector<double> cv_values = targetdist_grid_pntr_->getPoint(l);
     336       21206 :     value = modifer_pntr->getModifedTargetDistValue(value,cv_values);
     337       21206 :     norm += integration_weights[l]*value;
     338       21206 :     targetdist_grid_pntr_->setValue(l,value);
     339       21206 :     log_targetdist_grid_pntr_->setValue(l,-std::log(value));
     340             :   }
     341           6 :   targetdist_grid_pntr_->scaleAllValuesAndDerivatives(1.0/norm);
     342           6 :   log_targetdist_grid_pntr_->setMinToZero();
     343           6 : }
     344             : 
     345             : 
     346          11 : void TargetDistribution::updateLogTargetDistGrid() {
     347       22817 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     348             :   {
     349       11403 :     log_targetdist_grid_pntr_->setValue(l,-std::log(targetdist_grid_pntr_->getValue(l)));
     350             :   }
     351          11 :   log_targetdist_grid_pntr_->setMinToZero();
     352          11 : }
     353             : 
     354             : 
     355           3 : void TargetDistribution::setMinimumOfTargetDistGridToZero() {
     356           3 :   targetDistGrid().setMinToZero();
     357           3 :   normalizeTargetDistGrid();
     358           3 :   updateLogTargetDistGrid();
     359           3 : }
     360             : 
     361             : 
     362           8 : void TargetDistribution::readInRestartTargetDistGrid(const std::string& grid_fname) {
     363           8 :   plumed_massert(isDynamic(),"this should only be used for dynamically updated target distributions!");
     364          16 :   IFile gridfile;
     365           8 :   if(!gridfile.FileExist(grid_fname)) {
     366           0 :     plumed_merror(getName()+": problem with reading previous target distribution when restarting, cannot find file " + grid_fname);
     367             :   }
     368           8 :   gridfile.open(grid_fname);
     369          16 :   Grid* restart_grid = Grid::create("targetdist",grid_args_,gridfile,false,false,false);
     370           8 :   if(restart_grid->getSize()!=targetdist_grid_pntr_->getSize()) {
     371           0 :     plumed_merror(getName()+": problem with reading previous target distribution when restarting, the grid is not of the correct size!");
     372             :   }
     373           8 :   VesTools::copyGridValues(restart_grid,targetdist_grid_pntr_);
     374           8 :   updateLogTargetDistGrid();
     375           8 :   delete restart_grid;
     376           8 : }
     377             : 
     378           1 : void TargetDistribution::clearLogTargetDistGrid() {
     379           1 :   log_targetdist_grid_pntr_->clear();
     380           1 : }
     381             : 
     382             : 
     383           0 : void TargetDistribution::checkNanAndInf() {
     384           0 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     385             :   {
     386           0 :     double value = targetdist_grid_pntr_->getValue(l);
     387           0 :     if(std::isnan(value) || std::isinf(value)) {
     388           0 :       std::string vs; Tools::convert(value,vs);
     389           0 :       std::vector<double> p = targetdist_grid_pntr_->getPoint(l);
     390           0 :       std::string ps; Tools::convert(p[0],ps);
     391           0 :       ps = "(" + ps;
     392           0 :       for(unsigned int k=1; k<p.size(); k++) {
     393           0 :         std::string t1; Tools::convert(p[k],t1);
     394           0 :         ps = ps + "," + t1;
     395             :       }
     396           0 :       ps = ps + ")";
     397           0 :       plumed_merror(getName()+": problem with target distribution, the value at " + ps + " is " + vs);
     398             :     }
     399             :   }
     400           0 : }
     401             : 
     402             : }
     403             : }

Generated by: LCOV version 1.13