LCOV - code coverage report
Current view: top level - ves - TD_Gaussian.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 74 82 90.2 %
Date: 2020-11-18 11:20:57 Functions: 12 12 100.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2018 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : 
      25             : #include "core/ActionRegister.h"
      26             : 
      27             : 
      28             : namespace PLMD {
      29             : namespace ves {
      30             : 
      31             : //+PLUMEDOC VES_TARGETDIST TD_GAUSSIAN
      32             : /*
      33             : Target distribution given by a sum of Gaussians (static).
      34             : 
      35             : Employ a target distribution that is given by a sum of multivariate Gaussian (or normal)
      36             : distributions, defined as
      37             : \f[
      38             : p(\mathbf{s}) = \sum_{i} \, w_{i} \, N(\mathbf{s};\mathbf{\mu}_{i},\mathbf{\Sigma}_{i})
      39             : \f]
      40             : where \f$\mathbf{\mu}_{i}=(\mu_{1,i},\mu_{2,i},\ldots,\mu_{d,i})\f$
      41             : and \f$\mathbf{\Sigma}_{i}\f$ are
      42             : the center and the covariance matrix for the \f$i\f$-th Gaussian.
      43             : The weights \f$w_{i}\f$ are normalized to 1, \f$\sum_{i}w_{i}=1\f$.
      44             : 
      45             : By default the Gaussian distributions are considered as separable into
      46             : independent one-dimensional Gaussian distributions. In other words,
      47             : the covariance matrix is taken as diagonal
      48             : \f$\mathbf{\Sigma}_{i}=(\sigma^2_{1,i},\sigma^2_{2,i},\ldots,\sigma^{2}_{d,i})\f$.
      49             : The Gaussian distribution is then written as
      50             : \f[
      51             : N(\mathbf{s};\mathbf{\mu}_{i},\mathbf{\sigma}_{i}) =
      52             : \prod^{d}_{k} \, \frac{1}{\sqrt{2\pi\sigma^2_{d,i}}} \,
      53             : \exp\left(
      54             : -\frac{(s_{d}-\mu_{d,i})^2}{2\sigma^2_{d,i}}
      55             : \right)
      56             : \f]
      57             : where
      58             : \f$\mathbf{\sigma}_{i}=(\sigma_{1,i},\sigma_{2,i},\ldots,\sigma_{d,i})\f$
      59             : is the standard deviation.
      60             : In this case you need to specify the centers \f$\mathbf{\mu}_{i}\f$ using the
      61             : numbered CENTER keywords and the standard deviations \f$\mathbf{\sigma}_{i}\f$
      62             : using the numbered SIGMA keywords.
      63             : 
      64             : For two arguments it is possible to employ
      65             : [bivariate Gaussians](https://en.wikipedia.org/wiki/Multivariate_normal_distribution)
      66             : with correlation between arguments, defined as
      67             : \f[
      68             : N(\mathbf{s};\mathbf{\mu}_{i},\mathbf{\sigma}_{i},\rho_i) =
      69             : \frac{1}{2 \pi \sigma_{1,i} \sigma_{2,i} \sqrt{1-\rho_i^2}}
      70             : \,
      71             : \exp\left(
      72             : -\frac{1}{2(1-\rho_i^2)}
      73             : \left[
      74             : \frac{(s_{1}-\mu_{1,i})^2}{\sigma_{1,i}^2}+
      75             : \frac{(s_{2}-\mu_{2,i})^2}{\sigma_{2,i}^2}-
      76             : \frac{2 \rho_i (s_{1}-\mu_{1,i})(s_{2}-\mu_{2,i})}{\sigma_{1,i}\sigma_{2,i}}
      77             : \right]
      78             : \right)
      79             : \f]
      80             : where \f$\rho_i\f$ is the correlation between \f$s_{1}\f$ and \f$s_{2}\f$
      81             : that goes from -1 to 1. In this case the covariance matrix is given as
      82             : \f[
      83             : \mathbf{\Sigma}=
      84             : \left[
      85             : \begin{array}{cc}
      86             : \sigma^2_{1,i} & \rho_i \sigma_{1,i} \sigma_{2,i} \\
      87             : \rho_i \sigma_{1,i} \sigma_{2,i} & \sigma^2_{2,i}
      88             : \end{array}
      89             : \right]
      90             : \f]
      91             : The correlation \f$\rho\f$ is given using
      92             : the numbered CORRELATION keywords. A value of \f$\rho=0\f$ means
      93             : that the arguments are considered as
      94             : un-correlated, which is the default behavior.
      95             : 
      96             : The Gaussian distributions are always defined with the conventional
      97             : normalization factor such that they are normalized to 1 over an unbounded
      98             : region. However, in calculation within VES we normally consider bounded
      99             : region on which the target distribution is defined. Thus, if the center of
     100             : a Gaussian is close to the boundary of the region it can happen that the
     101             : tails go outside the region. In that case it might be needed to use the
     102             : NORMALIZE keyword to make sure that the target distribution is properly
     103             : normalized to 1 over the bounded region. The code will issue a warning
     104             : if that is needed.
     105             : 
     106             : For periodic CVs it is generally better to use \ref TD_VONMISES "Von Mises"
     107             : distributions instead of Gaussians as these distributions properly
     108             : account for the periodicity of the CVs.
     109             : 
     110             : 
     111             : \par Examples
     112             : 
     113             : One single Gaussians in one-dimension.
     114             : \plumedfile
     115             : td: TD_GAUSSIAN CENTER1=-1.5 SIGMA1=0.8
     116             : \endplumedfile
     117             : 
     118             : Sum of three Gaussians in two-dimensions with equal weights as
     119             : no weights are given.
     120             : \plumedfile
     121             : TD_GAUSSIAN ...
     122             :  CENTER1=-1.5,+1.5 SIGMA1=0.8,0.3
     123             :  CENTER2=+1.5,-1.5 SIGMA2=0.3,0.8
     124             :  CENTER3=+1.5,+1.5 SIGMA3=0.4,0.4
     125             :  LABEL=td
     126             : ... TD_GAUSSIAN
     127             : \endplumedfile
     128             : 
     129             : Sum of three Gaussians in two-dimensions which
     130             : are weighted unequally. Note that weights are automatically
     131             : normalized to 1 so that WEIGHTS=1.0,2.0,1.0 is equal to
     132             : specifying WEIGHTS=0.25,0.50,0.25.
     133             : \plumedfile
     134             : TD_GAUSSIAN ...
     135             :  CENTER1=-1.5,+1.5 SIGMA1=0.8,0.3
     136             :  CENTER2=+1.5,-1.5 SIGMA2=0.3,0.8
     137             :  CENTER3=+1.5,+1.5 SIGMA3=0.4,0.4
     138             :  WEIGHTS=1.0,2.0,1.0
     139             :  LABEL=td
     140             : ... TD_GAUSSIAN
     141             : \endplumedfile
     142             : 
     143             : Sum of two bivariate Gaussians where there is correlation of
     144             : \f$\rho_{2}=0.75\f$ between the two arguments for the second Gaussian.
     145             : \plumedfile
     146             : TD_GAUSSIAN ...
     147             :  CENTER1=-1.5,+1.5 SIGMA1=0.8,0.3
     148             :  CENTER2=+1.5,-1.5 SIGMA2=0.3,0.8 CORRELATION2=0.75
     149             :  LABEL=td
     150             : ... TD_GAUSSIAN
     151             : \endplumedfile
     152             : 
     153             : 
     154             : 
     155             : 
     156             : 
     157             : */
     158             : //+ENDPLUMEDOC
     159             : 
     160         429 : class TD_Gaussian: public TargetDistribution {
     161             :   std::vector< std::vector<double> > centers_;
     162             :   std::vector< std::vector<double> > sigmas_;
     163             :   std::vector< std::vector<double> > correlation_;
     164             :   std::vector<double> weights_;
     165             :   bool diagonal_;
     166             :   unsigned int ncenters_;
     167             :   double GaussianDiagonal(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&, const bool normalize=true) const;
     168             :   double Gaussian2D(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&, const std::vector<double>&, const bool normalize=true) const;
     169             : public:
     170             :   static void registerKeywords(Keywords&);
     171             :   explicit TD_Gaussian(const ActionOptions& ao);
     172             :   double getValue(const std::vector<double>&) const;
     173             : };
     174             : 
     175             : 
     176        6595 : PLUMED_REGISTER_ACTION(TD_Gaussian,"TD_GAUSSIAN")
     177             : 
     178             : 
     179         144 : void TD_Gaussian::registerKeywords(Keywords& keys) {
     180         144 :   TargetDistribution::registerKeywords(keys);
     181         576 :   keys.add("numbered","CENTER","The centers of the Gaussian distributions.");
     182         576 :   keys.add("numbered","SIGMA","The standard deviations of the Gaussian distributions.");
     183         576 :   keys.add("numbered","CORRELATION","The correlation for two-dimensional bivariate Gaussian distributions. Only works for two arguments. The value should be between -1 and 1. If no value is given the Gaussians is considered as un-correlated (i.e. value of 0.0).");
     184         576 :   keys.add("optional","WEIGHTS","The weights of the Gaussian distributions. Have to be as many as the number of centers given with the numbered CENTER keywords. If no weights are given the distributions are weighted equally. The weights are automatically normalized to 1.");
     185         288 :   keys.use("WELLTEMPERED_FACTOR");
     186         288 :   keys.use("SHIFT_TO_ZERO");
     187         288 :   keys.use("NORMALIZE");
     188         144 : }
     189             : 
     190             : 
     191         143 : TD_Gaussian::TD_Gaussian(const ActionOptions& ao):
     192             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     193             :   centers_(0),
     194             :   sigmas_(0),
     195             :   correlation_(0),
     196             :   weights_(0),
     197             :   diagonal_(true),
     198         143 :   ncenters_(0)
     199             : {
     200         163 :   for(unsigned int i=1;; i++) {
     201             :     std::vector<double> tmp_center;
     202         612 :     if(!parseNumberedVector("CENTER",i,tmp_center) ) {break;}
     203         163 :     centers_.push_back(tmp_center);
     204         163 :   }
     205         163 :   for(unsigned int i=1;; i++) {
     206             :     std::vector<double> tmp_sigma;
     207         612 :     if(!parseNumberedVector("SIGMA",i,tmp_sigma) ) {break;}
     208         163 :     sigmas_.push_back(tmp_sigma);
     209         163 :   }
     210             : 
     211         143 :   if(centers_.size()==0) {
     212           0 :     plumed_merror(getName()+": CENTER keywords seem to be missing. Note that numbered keywords start at CENTER1.");
     213             :   }
     214             :   //
     215         143 :   if(centers_.size()!=sigmas_.size()) {
     216           0 :     plumed_merror(getName()+": there has to be an equal amount of CENTER and SIGMA keywords");
     217             :   }
     218             :   //
     219         143 :   setDimension(centers_[0].size());
     220         143 :   ncenters_ = centers_.size();
     221             :   // check centers and sigmas
     222         469 :   for(unsigned int i=0; i<ncenters_; i++) {
     223         326 :     if(centers_[i].size()!=getDimension()) {
     224           0 :       plumed_merror(getName()+": one of the CENTER keyword does not match the given dimension");
     225             :     }
     226         163 :     if(sigmas_[i].size()!=getDimension()) {
     227           0 :       plumed_merror(getName()+": one of the SIGMA keyword does not match the given dimension");
     228             :     }
     229             :   }
     230             :   //
     231         143 :   correlation_.resize(ncenters_);
     232             : 
     233         469 :   for(unsigned int i=0; i<ncenters_; i++) {
     234             :     std::vector<double> corr;
     235         326 :     parseNumberedVector("CORRELATION",(i+1),corr);
     236         163 :     if(corr.size()>0) {
     237           3 :       diagonal_ = false;
     238             :     }
     239             :     else {
     240         320 :       corr.assign(1,0.0);
     241             :     }
     242         326 :     correlation_[i] = corr;
     243             :   }
     244             : 
     245         145 :   if(!diagonal_ && getDimension()!=2) {
     246           0 :     plumed_merror(getName()+": CORRELATION is only defined for two-dimensional Gaussians for now.");
     247             :   }
     248         775 :   for(unsigned int i=0; i<correlation_.size(); i++) {
     249         163 :     if(correlation_[i].size()!=1) {
     250           0 :       plumed_merror(getName()+": only one value should be given in CORRELATION");
     251             :     }
     252         489 :     for(unsigned int k=0; k<correlation_[i].size(); k++) {
     253         163 :       if(correlation_[i][k] <= -1.0 ||  correlation_[i][k] >= 1.0) {
     254           0 :         plumed_merror(getName()+": values given in CORRELATION should be between -1.0 and 1.0" );
     255             :       }
     256             :     }
     257             :   }
     258             :   //
     259         286 :   parseVector("WEIGHTS",weights_);
     260         283 :   if(weights_.size()==0) {weights_.assign(centers_.size(),1.0);}
     261         143 :   if(centers_.size()!=weights_.size()) {
     262           0 :     plumed_merror(getName()+": there has to be as many weights given in WEIGHTS as numbered CENTER keywords");
     263             :   }
     264             :   //
     265             :   double sum_weights=0.0;
     266         469 :   for(unsigned int i=0; i<weights_.size(); i++) {sum_weights+=weights_[i];}
     267         775 :   for(unsigned int i=0; i<weights_.size(); i++) {weights_[i]/=sum_weights;}
     268             :   //
     269         143 :   checkRead();
     270         143 : }
     271             : 
     272             : 
     273      215307 : double TD_Gaussian::getValue(const std::vector<double>& argument) const {
     274             :   double value=0.0;
     275      215307 :   if(diagonal_) {
     276      750545 :     for(unsigned int i=0; i<ncenters_; i++) {
     277      833460 :       value+=weights_[i]*GaussianDiagonal(argument, centers_[i], sigmas_[i]);
     278             :     }
     279             :   }
     280       20402 :   else if(!diagonal_ && getDimension()==2) {
     281      102010 :     for(unsigned int i=0; i<ncenters_; i++) {
     282      122412 :       value+=weights_[i]*Gaussian2D(argument, centers_[i], sigmas_[i],correlation_[i]);
     283             :     }
     284             :   }
     285      215307 :   return value;
     286             : }
     287             : 
     288             : 
     289      277820 : double TD_Gaussian::GaussianDiagonal(const std::vector<double>& argument, const std::vector<double>& center, const std::vector<double>& sigma, bool normalize) const {
     290             :   double value = 1.0;
     291     2120557 :   for(unsigned int k=0; k<argument.size(); k++) {
     292     1564917 :     double arg=(argument[k]-center[k])/sigma[k];
     293      521639 :     double tmp_exp = exp(-0.5*arg*arg);
     294     1043278 :     if(normalize) {tmp_exp/=(sigma[k]*sqrt(2.0*pi));}
     295      521639 :     value*=tmp_exp;
     296             :   }
     297      277820 :   return value;
     298             : }
     299             : 
     300             : 
     301       40804 : double TD_Gaussian::Gaussian2D(const std::vector<double>& argument, const std::vector<double>& center, const std::vector<double>& sigma, const std::vector<double>& correlation, bool normalize) const {
     302      122412 :   double arg1 = (argument[0]-center[0])/sigma[0];
     303       40804 :   double arg2 = (argument[1]-center[1])/sigma[1];
     304       40804 :   double corr = correlation[0];
     305       40804 :   double value = (arg1*arg1 + arg2*arg2 - 2.0*corr*arg1*arg2);
     306       40804 :   value *= -1.0 / ( 2.0*(1.0-corr*corr) );
     307       40804 :   value = exp(value);
     308       40804 :   if(normalize) {
     309       40804 :     value /=  2*pi*sigma[0]*sigma[1]*sqrt(1.0-corr*corr);
     310             :   }
     311       40804 :   return value;
     312             : }
     313             : 
     314             : }
     315        4839 : }

Generated by: LCOV version 1.13