Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 : Copyright (c) 2016-2018 The VES code team
3 : (see the PEOPLE-VES file at the root of this folder for a list of names)
4 :
5 : See http://www.ves-code.org for more information.
6 :
7 : This file is part of VES code module.
8 :
9 : The VES code module is free software: you can redistribute it and/or modify
10 : it under the terms of the GNU Lesser General Public License as published by
11 : the Free Software Foundation, either version 3 of the License, or
12 : (at your option) any later version.
13 :
14 : The VES code module is distributed in the hope that it will be useful,
15 : but WITHOUT ANY WARRANTY; without even the implied warranty of
16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 : GNU Lesser General Public License for more details.
18 :
19 : You should have received a copy of the GNU Lesser General Public License
20 : along with the VES code module. If not, see <http://www.gnu.org/licenses/>.
21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
22 :
23 : #include "Optimizer.h"
24 : #include "CoeffsVector.h"
25 : #include "CoeffsMatrix.h"
26 :
27 : #include "core/ActionRegister.h"
28 : #include "core/PlumedMain.h"
29 :
30 :
31 :
32 : namespace PLMD {
33 : namespace ves {
34 :
35 : //+PLUMEDOC VES_OPTIMIZER OPT_AVERAGED_SGD
36 : /*
37 : Averaged stochastic gradient decent with fixed step size.
38 :
39 : \par Algorithim
40 :
41 : This optimizer updates the coefficients according to the averaged stochastic gradient decent algorithm described in ref \cite Bach-NIPS-2013. This algorithm considers two sets of coefficients, the so-called instantaneous coefficients that are updated according to the recursion formula given by
42 : \f[
43 : \boldsymbol{\alpha}^{(n+1)} = \boldsymbol{\alpha}^{(n)} -
44 : \mu \left[
45 : \nabla \Omega(\bar{\boldsymbol{\alpha}}^{(n)}) +
46 : \mathbf{H}(\bar{\boldsymbol{\alpha}}^{(n)})
47 : [\boldsymbol{\alpha}^{(n)}-\bar{\boldsymbol{\alpha}}^{(n)}]
48 : \right],
49 : \f]
50 : where \f$\mu\f$ is a fixed step size and the gradient \f$ \nabla\Omega(\bar{\boldsymbol{\alpha}}^{(n)})\f$ and the Hessian \f$\mathbf{H}(\bar{\boldsymbol{\alpha}}^{(n)})\f$ depend on the averaged coefficients defined as
51 : \f[
52 : \bar{\boldsymbol{\alpha}}^{(n)} = \frac{1}{n+1} \sum_{k=0}^{n} \boldsymbol{\alpha}^{(k)}.
53 : \f]
54 : This means that the bias acting on the system depends on the averaged coefficients \f$\bar{\boldsymbol{\alpha}}^{(n)}\f$ which leads to a smooth convergence of the bias and the estimated free energy surface. Furthermore, this allows for a rather short sampling time for each iteration, for classical MD simulations typical sampling times are on the order of few ps (around 1000-4000 MD steps).
55 :
56 : Currently it is only supported to employ the diagonal part of the Hessian which is generally sufficient. Support for employing the full Hessian will be added later on.
57 :
58 : The VES bias that is to be optimized should be specified using the
59 : BIAS keyword.
60 : The fixed step size \f$\mu\f$ is given using the STEPSIZE keyword.
61 : The frequency of updating the coefficients is given using the
62 : STRIDE keyword where the value is given in the number of MD steps.
63 : For example, if the MD time step is 0.02 ps and STRIDE=2000 will the
64 : coefficients be updated every 4 ps.
65 : The coefficients will be outputted to the file given by the
66 : COEFFS_FILE keyword. How often the coefficients are written
67 : to this file is controlled by the COEFFS_OUTPUT keyword.
68 :
69 : If the VES bias employes a dynamic target distribution that needes to be
70 : iteratively updated (e.g. \ref TD_WELLTEMPERED) \cite Valsson-JCTC-2015, you will need to specify
71 : the stride for updating the target distribution by using
72 : the TARGETDIST_STRIDE keyword where the stride
73 : is given in terms coefficent iterations. For example if the
74 : MD time step is 0.02 ps and STRIDE=1000, such that the coefficients
75 : are updated every 2 ps, will TARGETDIST_STRIDE=500 mean that the
76 : target distribution will be updated every 1000 ps.
77 :
78 : The output of FESs and biases is controlled by the FES_OUTPUT and the BIAS_OUTPUT
79 : keywords. It is also possible to output one-dimensional projections of the FESs
80 : by using the FES_PROJ_OUTPUT keyword but for that to work you will need to select
81 : for which argument to do the projections by using the numbered PROJ_ARG keyword in
82 : the VES bias that is optimized.
83 : You can also output dynamic target distributions by using the
84 : TARGETDIST_OUTPUT and TARGETDIST_PROJ_OUTPUT keywords.
85 :
86 : It is possible to start the optimization from some initial set of
87 : coefficients that have been previously obtained by using the INITIAL_COEFFS
88 : keyword.
89 :
90 : When restarting simulations it should be sufficent to put the \ref RESTART action
91 : in the beginning of the input files (or some MD codes the PLUMED should automatically
92 : detect if it is a restart run) and keep the same input as before The restarting of
93 : the optimization should be automatic as the optimizer will then read in the
94 : coefficients from the file given in COEFFS_FILE. For dynamic target
95 : distribution the code will also read in the final target distribution from the
96 : previous run (which is always outputted even if the TARGETDIST_OUTPUT keyword
97 : is not used).
98 :
99 : This optimizer supports the usage of multiple walkers where different copies of the system share the same bias potential (i.e. coefficients) and cooperatively sample the averages needed for the gradient and Hessian. This can significantly help with convergence in difficult cases. It is of course best to start the different copies from different positions in CV space. To activate this option you just need to add the MULTIPLE_WALKERS flag. Note that this is only supported if the MD code support running multiple replicas connected via MPI.
100 :
101 : The optimizer supports the usage of a so-called mask file that can be used to employ different step sizes for different coefficents and/or deactive the optimization of certain coefficients (by putting values of 0.0). The mask file is read in by using the MASK_FILE keyword and should be in the same format as the coefficent file. It is possible to generate a template mask file by using the OUTPUT_MASK_FILE keyword.
102 :
103 : \par Examples
104 :
105 : In the following input we emloy an averaged stochastic gradient decent with a
106 : fixed step size of 1.0 and update the coefficent every 1000 MD steps
107 : (e.g. every 2 ps if the MD time step is 0.02 ps). The coefficent are outputted
108 : to the coeffs.data every 50 iterations while the FES and bias is outputted
109 : to files every 500 iterations (e.g. every 1000 ps).
110 : \plumedfile
111 : phi: TORSION ATOMS=5,7,9,15
112 :
113 : bf1: BF_FOURIER ORDER=5 MINIMUM=-pi MAXIMUM=pi
114 :
115 : VES_LINEAR_EXPANSION ...
116 : ARG=phi
117 : BASIS_FUNCTIONS=bf1
118 : LABEL=ves1
119 : TEMP=300.0
120 : GRID_BINS=100
121 : ... VES_LINEAR_EXPANSION
122 :
123 : OPT_AVERAGED_SGD ...
124 : BIAS=ves1
125 : STRIDE=1000
126 : LABEL=o1
127 : STEPSIZE=1.0
128 : COEFFS_FILE=coeffs.data
129 : COEFFS_OUTPUT=50
130 : FES_OUTPUT=500
131 : BIAS_OUTPUT=500
132 : ... OPT_AVERAGED_SGD
133 : \endplumedfile
134 :
135 :
136 : In the following example we employ a well-tempered target distribution that
137 : is updated every 500 iterations (e.g. every 1000 ps). The target distribution is
138 : also output to a file every 2000 iterations (the TARGETDIST_OUTPUT keyword).
139 : Here we also employ MULTIPLE_WALKERS flag to enable the usage of
140 : multiple walkers.
141 : \plumedfile
142 : phi: TORSION ATOMS=5,7,9,15
143 : psi: TORSION ATOMS=7,9,15,17
144 :
145 : bf1: BF_FOURIER ORDER=5 MINIMUM=-pi MAXIMUM=pi
146 : bf2: BF_FOURIER ORDER=4 MINIMUM=-pi MAXIMUM=pi
147 :
148 : td1: TD_WELLTEMPERED BIASFACTOR=10
149 :
150 : VES_LINEAR_EXPANSION ...
151 : ARG=phi,psi
152 : BASIS_FUNCTIONS=bf1,bf2
153 : LABEL=ves1
154 : TEMP=300.0
155 : GRID_BINS=100,100
156 : TARGET_DISTRIBUTION=td1
157 : PROJ_ARG1=phi
158 : PROJ_ARG2=psi
159 : ... VES_LINEAR_EXPANSION
160 :
161 : OPT_AVERAGED_SGD ...
162 : BIAS=ves1
163 : STRIDE=1000
164 : LABEL=o1
165 : STEPSIZE=1.0
166 : MULTIPLE_WALKERS
167 : COEFFS_FILE=coeffs.data
168 : COEFFS_OUTPUT=50
169 : FES_OUTPUT=500
170 : FES_PROJ_OUTPUT=500
171 : BIAS_OUTPUT=500
172 : TARGETDIST_STRIDE=500
173 : TARGETDIST_OUTPUT=2000
174 : ... OPT_AVERAGED_SGD
175 : \endplumedfile
176 :
177 :
178 :
179 : */
180 : //+ENDPLUMEDOC
181 :
182 : class Opt_BachAveragedSGD : public Optimizer {
183 : private:
184 : std::vector<CoeffsVector*> combinedgradient_pntrs_;
185 : unsigned int combinedgradient_wstride_;
186 : std::vector<OFile*> combinedgradientOFiles_;
187 : double decaying_aver_tau_;
188 : private:
189 120 : CoeffsVector& CombinedGradient(const unsigned int c_id) const {return *combinedgradient_pntrs_[c_id];}
190 : double getAverDecay() const;
191 : public:
192 : static void registerKeywords(Keywords&);
193 : explicit Opt_BachAveragedSGD(const ActionOptions&);
194 : ~Opt_BachAveragedSGD();
195 : void coeffsUpdate(const unsigned int c_id = 0);
196 : };
197 :
198 :
199 6522 : PLUMED_REGISTER_ACTION(Opt_BachAveragedSGD,"OPT_AVERAGED_SGD")
200 :
201 :
202 71 : void Opt_BachAveragedSGD::registerKeywords(Keywords& keys) {
203 71 : Optimizer::registerKeywords(keys);
204 71 : Optimizer::useFixedStepSizeKeywords(keys);
205 71 : Optimizer::useMultipleWalkersKeywords(keys);
206 71 : Optimizer::useHessianKeywords(keys);
207 71 : Optimizer::useMaskKeywords(keys);
208 71 : Optimizer::useRestartKeywords(keys);
209 71 : Optimizer::useMonitorAverageGradientKeywords(keys);
210 71 : Optimizer::useDynamicTargetDistributionKeywords(keys);
211 284 : keys.add("hidden","COMBINED_GRADIENT_FILE","the name of output file for the combined gradient (gradient + Hessian term)");
212 284 : keys.add("hidden","COMBINED_GRADIENT_OUTPUT","how often the combined gradient should be written to file. This parameter is given as the number of bias iterations. It is by default 100 if COMBINED_GRADIENT_FILE is specficed");
213 284 : keys.add("hidden","COMBINED_GRADIENT_FMT","specify format for combined gradient file(s) (useful for decrease the number of digits in regtests)");
214 284 : keys.add("optional","EXP_DECAYING_AVER","calculate the averaged coefficients using exponentially decaying averaging using the decaying constant given here in the number of iterations");
215 71 : }
216 :
217 :
218 210 : Opt_BachAveragedSGD::~Opt_BachAveragedSGD() {
219 158 : for(unsigned int i=0; i<combinedgradient_pntrs_.size(); i++) {
220 6 : delete combinedgradient_pntrs_[i];
221 : }
222 158 : for(unsigned int i=0; i<combinedgradientOFiles_.size(); i++) {
223 6 : combinedgradientOFiles_[i]->close();
224 6 : delete combinedgradientOFiles_[i];
225 : }
226 140 : }
227 :
228 :
229 70 : Opt_BachAveragedSGD::Opt_BachAveragedSGD(const ActionOptions&ao):
230 : PLUMED_VES_OPTIMIZER_INIT(ao),
231 : combinedgradient_pntrs_(0),
232 : combinedgradient_wstride_(100),
233 : combinedgradientOFiles_(0),
234 70 : decaying_aver_tau_(0.0)
235 : {
236 70 : log.printf(" Averaged stochastic gradient decent, see and cite ");
237 210 : log << plumed.cite("Bach and Moulines, NIPS 26, 773-781 (2013)");
238 70 : log.printf("\n");
239 70 : unsigned int decaying_aver_tau_int=0;
240 140 : parse("EXP_DECAYING_AVER",decaying_aver_tau_int);
241 70 : if(decaying_aver_tau_int>0) {
242 2 : decaying_aver_tau_ = static_cast<double>(decaying_aver_tau_int);
243 2 : log.printf(" Coefficients calculated using an exponentially decaying average with a decaying constant of %u iterations, see and cite ",decaying_aver_tau_int);
244 6 : log << plumed.cite("Invernizzi, Valsson, and Parrinello, Proc. Natl. Acad. Sci. USA 114, 3370-3374 (2017)");
245 2 : log.printf("\n");
246 : }
247 : //
248 70 : std::vector<std::string> combinedgradient_fnames;
249 140 : parseFilenames("COMBINED_GRADIENT_FILE",combinedgradient_fnames);
250 140 : parse("COMBINED_GRADIENT_OUTPUT",combinedgradient_wstride_);
251 70 : setupOFiles(combinedgradient_fnames,combinedgradientOFiles_,useMultipleWalkers());
252 70 : std::string combinedgradient_fmt="";
253 140 : parse("COMBINED_GRADIENT_FMT",combinedgradient_fmt);
254 70 : if(combinedgradient_fnames.size()>0) {
255 18 : for(unsigned int i=0; i<numberOfCoeffsSets(); i++) {
256 18 : CoeffsVector* combinedgradient_tmp = new CoeffsVector(*getGradientPntrs()[i]);
257 12 : std::string label = getGradientPntrs()[i]->getLabel();
258 6 : if(label.find("gradient")!=std::string::npos) {
259 18 : label.replace(label.find("gradient"), std::string("gradient").length(), "combined_gradient");
260 : }
261 : else {
262 : label += "_combined";
263 : }
264 6 : combinedgradient_tmp->setLabels(label);
265 6 : if(combinedgradient_fmt.size()>0) {
266 6 : combinedgradient_tmp->setOutputFmt(combinedgradient_fmt);
267 : }
268 6 : combinedgradient_pntrs_.push_back(combinedgradient_tmp);
269 : }
270 : //
271 6 : if(numberOfCoeffsSets()==1) {
272 24 : log.printf(" Combined gradient (gradient + Hessian term) will be written out to file %s every %u iterations\n",combinedgradientOFiles_[0]->getPath().c_str(),combinedgradient_wstride_);
273 : }
274 : else {
275 0 : log.printf(" Combined gradient (gradient + Hessian term) will be written out to the following files every %u iterations:\n",combinedgradient_wstride_);
276 0 : for(unsigned int i=0; i<combinedgradientOFiles_.size(); i++) {
277 0 : log.printf(" coefficient set %u: %s\n",i,combinedgradientOFiles_[i]->getPath().c_str());
278 : }
279 : }
280 : }
281 : //
282 :
283 70 : turnOnHessian();
284 70 : checkRead();
285 70 : }
286 :
287 :
288 670 : void Opt_BachAveragedSGD::coeffsUpdate(const unsigned int c_id) {
289 : //
290 730 : if(combinedgradientOFiles_.size()>0 && (getIterationCounter()+1)%combinedgradient_wstride_==0) {
291 120 : CombinedGradient(c_id).setValues( ( Gradient(c_id) + Hessian(c_id)*(AuxCoeffs(c_id)-Coeffs(c_id)) ) );
292 120 : combinedgradient_pntrs_[c_id]->setIterationCounterAndTime(getIterationCounter()+1,getTime());
293 120 : combinedgradient_pntrs_[c_id]->writeToFile(*combinedgradientOFiles_[c_id]);
294 : }
295 : //
296 : double aver_decay = getAverDecay();
297 2680 : AuxCoeffs(c_id) += - StepSize(c_id)*CoeffsMask(c_id) * ( Gradient(c_id) + Hessian(c_id)*(AuxCoeffs(c_id)-Coeffs(c_id)) );
298 : //AuxCoeffs() = AuxCoeffs() - StepSize() * ( Gradient() + Hessian()*(AuxCoeffs()-Coeffs()) );
299 1340 : Coeffs(c_id) += aver_decay * ( AuxCoeffs(c_id)-Coeffs(c_id) );
300 670 : }
301 :
302 :
303 : inline
304 : double Opt_BachAveragedSGD::getAverDecay() const {
305 670 : double aver_decay = 1.0 / ( getIterationCounterDbl() + 1.0 );
306 670 : if(decaying_aver_tau_ > 0.0 && (getIterationCounterDbl() + 1.0) > decaying_aver_tau_) {
307 14 : aver_decay = 1.0 / decaying_aver_tau_;
308 : }
309 : return aver_decay;
310 : }
311 :
312 :
313 : }
314 4839 : }
|