Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 : Copyright (c) 2014-2019 The plumed team
3 : (see the PEOPLE file at the root of the distribution for a list of names)
4 :
5 : See http://www.plumed.org for more information.
6 :
7 : This file is part of plumed, version 2.
8 :
9 : plumed is free software: you can redistribute it and/or modify
10 : it under the terms of the GNU Lesser General Public License as published by
11 : the Free Software Foundation, either version 3 of the License, or
12 : (at your option) any later version.
13 :
14 : plumed is distributed in the hope that it will be useful,
15 : but WITHOUT ANY WARRANTY; without even the implied warranty of
16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 : GNU Lesser General Public License for more details.
18 :
19 : You should have received a copy of the GNU Lesser General Public License
20 : along with plumed. If not, see <http://www.gnu.org/licenses/>.
21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
22 : #include "core/ActionRegister.h"
23 : #include "tools/SwitchingFunction.h"
24 : #include "MultiColvarFilter.h"
25 :
26 : //+PLUMEDOC MTRANSFORMS MTRANSFORM_LESS
27 : /*
28 : This action can be useed to transform the colvar values calculated by a multicolvar using a \ref switchingfunction
29 :
30 : In this action each colvar, \f$s_i\f$, calculated by multicolvar is transformed by a \ref switchingfunction function that
31 : is equal to one if the colvar is less than a certain target value and which is equal to zero otherwise.
32 : It is important to understand the distinction between what is done here and what is done by \ref MFILTER_LESS.
33 : In \ref MFILTER_LESS a weight, \f$w_i\f$ for the colvar is calculated using the \ref switchingfunction. If one calculates the
34 : MEAN for \ref MFILTER_LESS one is thus calculating:
35 :
36 : \f[
37 : \mu = \frac{ \sum_i \sigma(s_i) s_i }{\sum_i \simga(s_i) }
38 : \f]
39 :
40 : where \f$\sigma\f$ is the \ref switchingfunction. In this action by contrast the colvar is being transformed by
41 : the \ref switchingfunction. If one thus calculates a MEAN for thia action one computes:
42 :
43 : \f[
44 : \mu = \frac{ \sum_{i=1}^N \simga(s_i) }{ N }
45 : \f]
46 :
47 : In other words, you are calculating the mean for the transformed colvar.
48 :
49 : \par Examples
50 :
51 : The following input gives an example of how a MTRANSFORM_LESS action can be used to duplicate
52 : functionality that is elsehwere in PLUMED.
53 :
54 : \plumedfile
55 : DISTANCES ...
56 : GROUPA=1-10 GROUPB=11-20
57 : LABEL=d1
58 : ... DISTANCES
59 : MTRANSFORM_LESS DATA=d1 SWITCH={GAUSSIAN D_0=1.5 R_0=0.00001}
60 : \endplumedfile
61 :
62 : In this case you can achieve the same result by using:
63 :
64 : \plumedfile
65 : DISTANCES ...
66 : GROUPA=1-10 GROUPB=11-20
67 : LESS_THAN={GAUSSIAN D_0=1.5 R_0=0.00001}
68 : ... DISTANCES
69 : \endplumedfile
70 : (see \ref DISTANCES)
71 :
72 : The advantage of MTRANSFORM_LESS comes, however, if you want to use transformed colvars as input
73 : for \ref MULTICOLVARDENS
74 :
75 : */
76 : //+ENDPLUMEDOC
77 :
78 : //+PLUMEDOC MFILTERS MFILTER_LESS
79 : /*
80 : This action can be used to filter the distribution of colvar values in a multicolvar
81 : so that one can compute the mean and so on for only those multicolvars less than a tolerance.
82 :
83 : This action can be used to create a dynamic group of atom based on the value of a multicolvar.
84 : In this action a multicolvar is within the dynamic group if its value is less than a target.
85 : In practise a weight, \f$w_i\f$ is ascribed to each colvar, \f$s_i\f$ calculated by a multicolvar
86 : and this weight measures the degree to which a colvar is a member of the group. This weight is a number
87 : between 0 and 1 that is calculated using a \ref switchingfunction , \f$\sigma\f$.
88 : If one calculates a function of the set of multicolvars
89 : these weights are included in the calculation. As such if one calculates the MEAN, \f$\mu\f$ of a filtered
90 : multicolvar what is computed is the following:
91 :
92 : \f[
93 : \mu = \frac{ \sum_i w_i s_i }{ \sum_i w_i}
94 : \f]
95 :
96 : One is thus calculating the mean for those colvars that are less than the target.
97 :
98 : \par Examples
99 :
100 : The example shown below calculates the mean for those distances that less than 1.5 nm in length
101 :
102 : \plumedfile
103 : DISTANCES GROUPA=1 GROUPB=2-50 MEAN LABEL=d1
104 : MFILTER_LESS DATA=d1 SWITCH={GAUSSIAN D_0=1.5 R_0=0.00001} MEAN LABEL=d4
105 : \endplumedfile
106 :
107 : */
108 : //+ENDPLUMEDOC
109 :
110 : namespace PLMD {
111 : namespace multicolvar {
112 :
113 8 : class FilterLess : public MultiColvarFilter {
114 : private:
115 : SwitchingFunction sf;
116 : public:
117 : static void registerKeywords( Keywords& keys );
118 : explicit FilterLess(const ActionOptions& ao);
119 : double applyFilter( const double& val, double& df ) const ;
120 : };
121 :
122 6456 : PLUMED_REGISTER_ACTION(FilterLess,"MFILTER_LESS")
123 6452 : PLUMED_REGISTER_ACTION(FilterLess,"MTRANSFORM_LESS")
124 :
125 6 : void FilterLess::registerKeywords( Keywords& keys ) {
126 6 : MultiColvarFilter::registerKeywords( keys );
127 30 : keys.add("compulsory","NN","6","The n parameter of the switching function ");
128 30 : keys.add("compulsory","MM","0","The m parameter of the switching function ");
129 30 : keys.add("compulsory","D_0","0.0","The d_0 parameter of the switching function");
130 24 : keys.add("compulsory","R_0","The r_0 parameter of the switching function");
131 24 : keys.add("optional","SWITCH","This keyword is used if you want to employ an alternative to the continuous swiching function defined above. "
132 : "The following provides information on the \\ref switchingfunction that are available. "
133 : "When this keyword is present you no longer need the NN, MM, D_0 and R_0 keywords.");
134 6 : }
135 :
136 4 : FilterLess::FilterLess(const ActionOptions& ao):
137 : Action(ao),
138 4 : MultiColvarFilter(ao)
139 : {
140 : // Read in the switching function
141 8 : std::string sw, errors; parse("SWITCH",sw);
142 4 : if(sw.length()>0) {
143 4 : sf.set(sw,errors);
144 4 : if( errors.length()!=0 ) error("problem reading SWITCH keyword : " + errors );
145 : } else {
146 0 : double r_0=-1.0, d_0; int nn, mm;
147 0 : parse("NN",nn); parse("MM",mm);
148 0 : parse("R_0",r_0); parse("D_0",d_0);
149 0 : if( r_0<0.0 ) error("you must set a value for R_0");
150 0 : sf.set(nn,mm,r_0,d_0);
151 : }
152 12 : log.printf(" filtering colvar values and focussing only on those less than %s\n",( sf.description() ).c_str() );
153 :
154 4 : checkRead();
155 4 : }
156 :
157 2486 : double FilterLess::applyFilter( const double& val, double& df ) const {
158 2486 : double f = sf.calculate( val, df ); df*=val;
159 2486 : return f;
160 : }
161 :
162 : }
163 4839 : }
|