LCOV - code coverage report
Current view: top level - mapping - PCAVars.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 119 136 87.5 %
Date: 2020-11-18 11:20:57 Functions: 14 17 82.4 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2014-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "core/ActionWithValue.h"
      23             : #include "core/ActionAtomistic.h"
      24             : #include "core/ActionWithArguments.h"
      25             : #include "reference/MultiReferenceBase.h"
      26             : #include "reference/MetricRegister.h"
      27             : #include "core/ActionRegister.h"
      28             : #include "core/PlumedMain.h"
      29             : #include "reference/Direction.h"
      30             : #include "tools/Pbc.h"
      31             : 
      32             : //+PLUMEDOC COLVAR PCAVARS
      33             : /*
      34             : Projection on principal component eigenvectors or other high dimensional linear subspace
      35             : 
      36             : The collective variables described in \ref dists allow one to calculate the distance between the
      37             : instaneous structure adopted by the system and some high-dimensional, reference configuration.  The
      38             : problem with doing this is that, as one gets further and further from the reference configuration, the
      39             : distance from it becomes a progressively poorer and poorer collective variable.  This happens because
      40             : the ``number" of structures at a distance \f$d\f$ from a reference configuration is proportional to \f$d^N\f$ in
      41             : an \f$N\f$ dimensional space.  Consequently, when \f$d\f$ is small the distance from the reference configuration
      42             : may well be a good collective variable.  However, when \f$d\f$ is large it is unlikely that the distance from the reference
      43             : structure is a good CV.  When the distance is large there will almost certainly be markedly different
      44             : configuration that have the same CV value and hence barriers in transverse degrees of
      45             : freedom.
      46             : 
      47             : For these reasons dimensionality reduction is often employed so a projection \f$\mathbf{s}\f$ of a high-dimensional configuration
      48             : \f$\mathbf{X}\f$ in a lower dimensionality space using a function:
      49             : 
      50             : \f[
      51             : \mathbf{s} = F(\mathbf{X}-\mathbf{X}^{ref})
      52             : \f]
      53             : 
      54             : where here we have introduced some high-dimensional reference configuration \f$\mathbf{X}^{ref}\f$.  By far the simplest way to
      55             : do this is to use some linear operator for \f$F\f$.  That is to say we find a low-dimensional projection
      56             : by rotating the basis vectors using some linear algebra:
      57             : 
      58             : \f[
      59             : \mathbf{s}_i = \sum_k A_{ik} ( X_{k} - X_{k}^{ref} )
      60             : \f]
      61             : 
      62             : Here \f$A\f$ is a \f$d\f$ by \f$D\f$ matrix where \f$D\f$ is the dimensionality of the high dimensional space and \f$d\f$ is
      63             : the dimensionality of the lower dimensional subspace.  In plumed when this kind of projection you can use the majority
      64             : of the metrics detailed on \ref dists to calculate the displacement, \f$\mathbf{X}-\mathbf{X}^{ref}\f$, from the reference configuration.
      65             : The matrix \f$A\f$ can be found by various means including principal component analysis and normal mode analysis.  In both these methods the
      66             : rows of \f$A\f$ would be the principle eigenvectors of a square matrix.  For PCA the covariance while for normal modes the Hessian.
      67             : 
      68             : \bug It is not possible to use the \ref DRMSD metric with this variable.  You can get around this by listing the set of distances you wish to calculate for your DRMSD in the plumed file explicitally and using the EUCLIDEAN metric.  MAHALONOBIS and NORM-EUCLIDEAN also do not work with this variable but using these options makes little sense when projecting on a linear subspace.
      69             : 
      70             : \par Examples
      71             : 
      72             : The following input calculates a projection on a linear subspace where the displacements
      73             : from the reference configuration are calculated using the OPTIMAL metric.  Consequently,
      74             : both translation of the center of mass of the atoms and rotation of the reference
      75             : frame are removed from these displacements.  The matrix \f$A\f$ and the reference
      76             : configuration \f$R^{ref}\f$ are specified in the pdb input file reference.pdb and the
      77             : value of all projections (and the residual) are output to a file called colvar2.
      78             : 
      79             : \plumedfile
      80             : PCAVARS REFERENCE=reference.pdb TYPE=OPTIMAL LABEL=pca2
      81             : PRINT ARG=pca2.* FILE=colvar2
      82             : \endplumedfile
      83             : 
      84             : The reference configurations can be specified using a pdb file.  The first configuration that you provide is the reference configuration,
      85             : which is refered to in the above as \f$X^{ref}\f$ subsequent configurations give the directions of row vectors that are contained in
      86             : the matrix \f$A\f$ above.  These directions can be specified by specifying a second configuration - in this case a vector will
      87             : be constructed by calculating the displacement of this second configuration from the reference configuration.  A pdb input prepared
      88             : in this way would look as follows:
      89             : 
      90             : \verbatim
      91             : ATOM      2  CH3 ACE     1      12.932 -14.718  -6.016  1.00  1.00
      92             : ATOM      5  C   ACE     1      21.312  -9.928  -5.946  1.00  1.00
      93             : ATOM      9  CA  ALA     2      19.462 -11.088  -8.986  1.00  1.00
      94             : ATOM     13  HB2 ALA     2      21.112 -10.688 -12.476  1.00  1.00
      95             : ATOM     15  C   ALA     2      19.422   7.978 -14.536  1.00  1.00
      96             : ATOM     20 HH31 NME     3      20.122  -9.928 -17.746  1.00  1.00
      97             : ATOM     21 HH32 NME     3      18.572 -13.148 -16.346  1.00  1.00
      98             : END
      99             : ATOM      2  CH3 ACE     1      13.932 -14.718  -6.016  1.00  1.00
     100             : ATOM      5  C   ACE     1      20.312  -9.928  -5.946  1.00  1.00
     101             : ATOM      9  CA  ALA     2      18.462 -11.088  -8.986  1.00  1.00
     102             : ATOM     13  HB2 ALA     2      20.112 -11.688 -12.476  1.00  1.00
     103             : ATOM     15  C   ALA     2      19.422   7.978 -12.536  1.00  1.00
     104             : ATOM     20 HH31 NME     3      20.122  -9.928 -17.746  1.00  1.00
     105             : ATOM     21 HH32 NME     3      18.572 -13.148 -16.346  1.00  1.00
     106             : END
     107             : \endverbatim
     108             : 
     109             : Alternatively, the second configuration can specify the components of \f$A\f$ explicitally.  In this case you need to include the
     110             : keyword TYPE=DIRECTION in the remarks to the pdb as shown below.
     111             : 
     112             : \verbatim
     113             : ATOM      2  CH3 ACE     1      12.932 -14.718  -6.016  1.00  1.00
     114             : ATOM      5  C   ACE     1      21.312  -9.928  -5.946  1.00  1.00
     115             : ATOM      9  CA  ALA     2      19.462 -11.088  -8.986  1.00  1.00
     116             : ATOM     13  HB2 ALA     2      21.112 -10.688 -12.476  1.00  1.00
     117             : ATOM     15  C   ALA     2      19.422   7.978 -14.536  1.00  1.00
     118             : ATOM     20 HH31 NME     3      20.122  -9.928 -17.746  1.00  1.00
     119             : ATOM     21 HH32 NME     3      18.572 -13.148 -16.346  1.00  1.00
     120             : END
     121             : REMARK TYPE=DIRECTION
     122             : ATOM      2  CH3 ACE     1      0.1414  0.3334 -0.0302  1.00  0.00
     123             : ATOM      5  C   ACE     1      0.0893 -0.1095 -0.1434  1.00  0.00
     124             : ATOM      9  CA  ALA     2      0.0207 -0.321   0.0321  1.00  0.00
     125             : ATOM     13  HB2 ALA     2      0.0317 -0.6085  0.0783  1.00  0.00
     126             : ATOM     15  C   ALA     2      0.1282 -0.4792  0.0797  1.00  0.00
     127             : ATOM     20 HH31 NME     3      0.0053 -0.465   0.0309  1.00  0.00
     128             : ATOM     21 HH32 NME     3     -0.1019 -0.4261 -0.0082  1.00  0.00
     129             : END
     130             : \endverbatim
     131             : 
     132             : If your metric involves arguments the labels of these arguments in your plumed input file should be specified in the REMARKS
     133             : for each of the frames of your path.  An input file in this case might look like this:
     134             : 
     135             : \verbatim
     136             : DESCRIPTION: a pca eigenvector specified using the start point and direction in the HD space.
     137             : REMARK WEIGHT=1.0
     138             : REMARK ARG=d1,d2
     139             : REMARK d1=1.0 d2=1.0
     140             : END
     141             : REMARK TYPE=DIRECTION
     142             : REMARK ARG=d1,d2
     143             : REMARK d1=0.1 d2=0.25
     144             : END
     145             : \endverbatim
     146             : 
     147             : Here we are working with the EUCLIDEAN metric and notice that we have specified the components of \f$A\f$ using DIRECTION.
     148             : Consequently, the values of d1 and d2 in the second frame above do not specify a particular coordinate in the high-dimensional
     149             : space as in they do in the first frame.  Instead these values are the coefficients that can be used to construct a linear combination of d1 and d2.
     150             : If we wanted to specify the direction in this metric using the start and end point of the vector we would write:
     151             : 
     152             : \verbatim
     153             : DESCRIPTION: a pca eigenvector specified using the start and end point of a vector in the HD space.
     154             : REMARK WEIGHT=1.0
     155             : REMARK ARG=d1,d2
     156             : REMARK d1=1.0 d2=1.0
     157             : END
     158             : REMARK ARG=d1,d2
     159             : REMARK d1=1.1 d2=1.25
     160             : END
     161             : \endverbatim
     162             : 
     163             : */
     164             : //+ENDPLUMEDOC
     165             : 
     166             : namespace PLMD {
     167             : namespace mapping {
     168             : 
     169             : class PCAVars :
     170             :   public ActionWithValue,
     171             :   public ActionAtomistic,
     172             :   public ActionWithArguments
     173             : {
     174             : private:
     175             : /// The holders for the derivatives
     176             :   MultiValue myvals;
     177             :   ReferenceValuePack mypack;
     178             : /// The position of the reference configuration (the one we align to)
     179             :   ReferenceConfiguration* myref;
     180             : /// The eigenvectors we are interested in
     181             :   std::vector<Direction> directions;
     182             : /// Stuff for applying forces
     183             :   std::vector<double> forces, forcesToApply;
     184             : public:
     185             :   static void registerKeywords( Keywords& keys );
     186             :   explicit PCAVars(const ActionOptions&);
     187             :   ~PCAVars();
     188             :   unsigned getNumberOfDerivatives();
     189             :   void lockRequests();
     190             :   void unlockRequests();
     191             :   void calculateNumericalDerivatives( ActionWithValue* a );
     192             :   void calculate();
     193             :   void apply();
     194             : };
     195             : 
     196        6456 : PLUMED_REGISTER_ACTION(PCAVars,"PCAVARS")
     197             : 
     198           5 : void PCAVars::registerKeywords( Keywords& keys ) {
     199           5 :   Action::registerKeywords( keys );
     200           5 :   ActionWithValue::registerKeywords( keys );
     201           5 :   ActionAtomistic::registerKeywords( keys );
     202           5 :   ActionWithArguments::registerKeywords( keys );
     203           5 :   componentsAreNotOptional(keys);
     204          20 :   keys.addOutputComponent("eig","default","the projections on each eigenvalue are stored on values labeled eig-1, eig-2, ...");
     205          20 :   keys.addOutputComponent("residual","default","the distance of the configuration from the linear subspace defined "
     206             :                           "by the vectors, \\f$e_i\\f$, that are contained in the rows of \\f$A\\f$.  In other words this is "
     207             :                           "\\f$\\sqrt( r^2 - \\sum_i [\\mathbf{r}.\\mathbf{e_i}]^2)\\f$ where "
     208             :                           "\\f$r\\f$ is the distance between the instantaneous position and the "
     209             :                           "reference point.");
     210          20 :   keys.add("compulsory","REFERENCE","a pdb file containing the reference configuration and configurations that define the directions for each eigenvector");
     211          25 :   keys.add("compulsory","TYPE","OPTIMAL","The method we are using for alignment to the reference structure");
     212           5 : }
     213             : 
     214           4 : PCAVars::PCAVars(const ActionOptions& ao):
     215             :   Action(ao),
     216             :   ActionWithValue(ao),
     217             :   ActionAtomistic(ao),
     218             :   ActionWithArguments(ao),
     219             :   myvals(1,0),
     220          12 :   mypack(0,0,myvals)
     221             : {
     222             : 
     223             :   // What type of distance are we calculating
     224           8 :   std::string mtype; parse("TYPE",mtype);
     225             : 
     226             :   // Open reference file
     227           8 :   std::string reference; parse("REFERENCE",reference);
     228           4 :   FILE* fp=fopen(reference.c_str(),"r");
     229           4 :   if(!fp) error("could not open reference file " + reference );
     230             : 
     231             :   // Read all reference configurations
     232          12 :   MultiReferenceBase myframes( "", false );
     233             :   bool do_read=true; unsigned nfram=0;
     234          16 :   while (do_read) {
     235          28 :     PDB mypdb;
     236             :     // Read the pdb file
     237          32 :     do_read=mypdb.readFromFilepointer(fp,plumed.getAtoms().usingNaturalUnits(),0.1/atoms.getUnits().getLength());
     238             :     // Fix argument names
     239          16 :     expandArgKeywordInPDB( mypdb );
     240          16 :     if(do_read) {
     241          12 :       if( nfram==0 ) {
     242           4 :         myref = metricRegister().create<ReferenceConfiguration>( mtype, mypdb );
     243           4 :         Direction* tdir = dynamic_cast<Direction*>( myref );
     244           4 :         if( tdir ) error("first frame should be reference configuration - not direction of vector");
     245           4 :         if( !myref->pcaIsEnabledForThisReference() ) error("can't do PCA with reference type " + mtype );
     246           8 :         std::vector<std::string> remarks( mypdb.getRemark() ); std::string rtype;
     247           8 :         bool found=Tools::parse( remarks, "TYPE", rtype );
     248          12 :         if(!found) { std::vector<std::string> newrem(1); newrem[0]="TYPE="+mtype; mypdb.addRemark(newrem); }
     249           4 :         myframes.readFrame( mypdb );
     250           8 :       } else myframes.readFrame( mypdb );
     251          12 :       nfram++;
     252             :     } else {
     253             :       break;
     254             :     }
     255             :   }
     256           4 :   fclose(fp);
     257             : 
     258           4 :   if( nfram<=1 ) error("no eigenvectors were specified");
     259           8 :   log.printf("  found %u eigenvectors in file %s \n",nfram-1,reference.c_str() );
     260             : 
     261             :   // Finish the setup of the mapping object
     262             :   // Get the arguments and atoms that are required
     263           4 :   std::vector<AtomNumber> atoms; std::vector<std::string> args;
     264           4 :   myframes.getAtomAndArgumentRequirements( atoms, args );
     265           4 :   requestAtoms( atoms ); std::vector<Value*> req_args;
     266           4 :   interpretArgumentList( args, req_args ); requestArguments( req_args );
     267             : 
     268             :   // Setup the derivative pack
     269           8 :   if( atoms.size()>0 ) myvals.resize( 1, args.size() + 3*atoms.size() + 9 );
     270           0 :   else myvals.resize( 1, args.size() );
     271           8 :   mypack.resize( args.size(), atoms.size() );
     272          92 :   for(unsigned i=0; i<atoms.size(); ++i) mypack.setAtomIndex( i, i );
     273             :   /// This sets up all the storage data required by PCA in the pack
     274           4 :   myframes.getFrame(0)->setupPCAStorage( mypack );
     275             : 
     276             :   // Retrieve the position of the first frame, as we use this for alignment
     277           4 :   myref->setNamesAndAtomNumbers( atoms, args );
     278             :   // Check there are no periodic arguments
     279           4 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) {
     280           0 :     if( getPntrToArgument(i)->isPeriodic() ) error("cannot use periodic variables in pca projections");
     281             :   }
     282             :   // Work out if the user wants to normalise the input vector
     283           4 :   checkRead();
     284             : 
     285             :   // Resize the matrices that will hold our eivenvectors
     286          20 :   for(unsigned i=1; i<nfram; ++i) {
     287          32 :     directions.push_back( Direction(ReferenceConfigurationOptions("DIRECTION")));
     288          16 :     directions[i-1].setNamesAndAtomNumbers( atoms, args );
     289             :   }
     290             : 
     291             :   // Create fake periodic boundary condition (these would only be used for DRMSD which is not allowed)
     292             :   // Now calculate the eigenvectors
     293          20 :   for(unsigned i=1; i<nfram; ++i) {
     294          24 :     myframes.getFrame(i)->extractDisplacementVector( myref->getReferencePositions(), getArguments(), myref->getReferenceArguments(), true, directions[i-1] );
     295             :     // Create a component to store the output
     296           8 :     std::string num; Tools::convert( i, num );
     297          24 :     addComponentWithDerivatives("eig-"+num); componentIsNotPeriodic("eig-"+num);
     298             :   }
     299          12 :   addComponentWithDerivatives("residual"); componentIsNotPeriodic("residual");
     300             : 
     301             :   // Get appropriate number of derivatives
     302             :   unsigned nder;
     303           4 :   if( getNumberOfAtoms()>0 ) {
     304           8 :     nder = 3*getNumberOfAtoms() + 9 + getNumberOfArguments();
     305             :   } else {
     306             :     nder = getNumberOfArguments();
     307             :   }
     308             : 
     309             :   // Resize all derivative arrays
     310           4 :   forces.resize( nder ); forcesToApply.resize( nder );
     311          28 :   for(unsigned i=0; i<getNumberOfComponents(); ++i) getPntrToComponent(i)->resizeDerivatives(nder);
     312           4 : }
     313             : 
     314          16 : PCAVars::~PCAVars() {
     315           4 :   delete myref;
     316           8 : }
     317             : 
     318          36 : unsigned PCAVars::getNumberOfDerivatives() {
     319          36 :   if( getNumberOfAtoms()>0 ) {
     320          36 :     return 3*getNumberOfAtoms() + 9 + getNumberOfArguments();
     321             :   }
     322           0 :   return getNumberOfArguments();
     323             : }
     324             : 
     325          44 : void PCAVars::lockRequests() {
     326             :   ActionWithArguments::lockRequests();
     327             :   ActionAtomistic::lockRequests();
     328          44 : }
     329             : 
     330          44 : void PCAVars::unlockRequests() {
     331             :   ActionWithArguments::unlockRequests();
     332             :   ActionAtomistic::unlockRequests();
     333          44 : }
     334             : 
     335          44 : void PCAVars::calculate() {
     336             :   // Clear the reference value pack
     337          44 :   mypack.clear();
     338             :   // Calculate distance between instaneous configuration and reference
     339          88 :   double dist = myref->calculate( getPositions(), getPbc(), getArguments(), mypack, true );
     340             : 
     341             :   // Start accumulating residual by adding derivatives of distance
     342          88 :   Value* resid=getPntrToComponent( getNumberOfComponents()-1 ); unsigned nargs=getNumberOfArguments();
     343          44 :   for(unsigned j=0; j<getNumberOfArguments(); ++j) resid->addDerivative( j, mypack.getArgumentDerivative(j) );
     344         704 :   for(unsigned j=0; j<getNumberOfAtoms(); ++j) {
     345         308 :     Vector ader=mypack.getAtomDerivative( j );
     346        2156 :     for(unsigned k=0; k<3; ++k) resid->addDerivative( nargs +3*j+k, ader[k] );
     347             :   }
     348             :   // Retrieve the values of all arguments
     349          44 :   std::vector<double> args( getNumberOfArguments() ); for(unsigned i=0; i<getNumberOfArguments(); ++i) args[i]=getArgument(i);
     350             : 
     351             :   // Now calculate projections on pca vectors
     352          44 :   Vector adif, ader; Tensor fvir, tvir;
     353         220 :   for(unsigned i=0; i<getNumberOfComponents()-1; ++i) { // One less component as we also have residual
     354         176 :     double proj=myref->projectDisplacementOnVector( directions[i], getArguments(), args, mypack );
     355             :     // And now accumulate derivatives
     356          88 :     Value* eid=getPntrToComponent(i);
     357          88 :     for(unsigned j=0; j<getNumberOfArguments(); ++j) eid->addDerivative( j, mypack.getArgumentDerivative(j) );
     358          88 :     if( getNumberOfAtoms()>0 ) {
     359          88 :       tvir.zero();
     360        1408 :       for(unsigned j=0; j<getNumberOfAtoms(); ++j) {
     361         616 :         Vector myader=mypack.getAtomDerivative(j);
     362        4312 :         for(unsigned k=0; k<3; ++k) {
     363        1848 :           eid->addDerivative( nargs + 3*j+k, myader[k] );
     364        1848 :           resid->addDerivative( nargs + 3*j+k, -2*proj*myader[k] );
     365             :         }
     366        1232 :         tvir += -1.0*Tensor( getPosition(j), myader );
     367             :       }
     368         616 :       for(unsigned j=0; j<3; ++j) {
     369        2640 :         for(unsigned k=0; k<3; ++k) eid->addDerivative( nargs + 3*getNumberOfAtoms() + 3*j + k, tvir(j,k) );
     370             :       }
     371             :     }
     372          88 :     dist -= proj*proj; // Subtract square from total squared distance to get residual squared
     373             :     // Derivatives of residual
     374          88 :     for(unsigned j=0; j<getNumberOfArguments(); ++j) resid->addDerivative( j, -2*proj*eid->getDerivative(j) );
     375             :     // for(unsigned j=0;j<getNumberOfArguments();++j) resid->addDerivative( j, -2*proj*arg_eigv(i,j) );
     376             :     // And set final value
     377          88 :     getPntrToComponent(i)->set( proj );
     378             :   }
     379          44 :   dist=sqrt(dist);
     380             :   resid->set( dist );
     381             : 
     382             :   // Take square root of residual derivatives
     383          44 :   double prefactor = 0.5 / dist;
     384          44 :   for(unsigned j=0; j<getNumberOfArguments(); ++j) resid->setDerivative( j, prefactor*resid->getDerivative(j) );
     385         660 :   for(unsigned j=0; j<getNumberOfAtoms(); ++j) {
     386        3080 :     for(unsigned k=0; k<3; ++k) resid->setDerivative( nargs + 3*j+k, prefactor*resid->getDerivative( nargs+3*j+k ) );
     387             :   }
     388             : 
     389             :   // And finally virial for residual
     390          44 :   if( getNumberOfAtoms()>0 ) {
     391          44 :     tvir.zero();
     392         660 :     for(unsigned j=0; j<getNumberOfAtoms(); ++j) {
     393        1232 :       Vector ader; for(unsigned k=0; k<3; ++k) ader[k]=resid->getDerivative( nargs + 3*j+k );
     394         616 :       tvir += -1.0*Tensor( getPosition(j), ader );
     395             :     }
     396         308 :     for(unsigned j=0; j<3; ++j) {
     397        1320 :       for(unsigned k=0; k<3; ++k) resid->addDerivative( nargs + 3*getNumberOfAtoms() + 3*j + k, tvir(j,k) );
     398             :     }
     399             :   }
     400             : 
     401          44 : }
     402             : 
     403           0 : void PCAVars::calculateNumericalDerivatives( ActionWithValue* a ) {
     404           0 :   if( getNumberOfArguments()>0 ) {
     405           0 :     ActionWithArguments::calculateNumericalDerivatives( a );
     406             :   }
     407           0 :   if( getNumberOfAtoms()>0 ) {
     408           0 :     Matrix<double> save_derivatives( getNumberOfComponents(), getNumberOfArguments() );
     409           0 :     for(unsigned j=0; j<getNumberOfComponents(); ++j) {
     410           0 :       for(unsigned i=0; i<getNumberOfArguments(); ++i) save_derivatives(j,i)=getPntrToComponent(j)->getDerivative(i);
     411             :     }
     412           0 :     calculateAtomicNumericalDerivatives( a, getNumberOfArguments() );
     413           0 :     for(unsigned j=0; j<getNumberOfComponents(); ++j) {
     414           0 :       for(unsigned i=0; i<getNumberOfArguments(); ++i) getPntrToComponent(j)->addDerivative( i, save_derivatives(j,i) );
     415             :     }
     416             :   }
     417           0 : }
     418             : 
     419          44 : void PCAVars::apply() {
     420             : 
     421          88 :   bool wasforced=false; forcesToApply.assign(forcesToApply.size(),0.0);
     422         308 :   for(unsigned i=0; i<getNumberOfComponents(); ++i) {
     423         132 :     if( getPntrToComponent(i)->applyForce( forces ) ) {
     424             :       wasforced=true;
     425           0 :       for(unsigned i=0; i<forces.size(); ++i) forcesToApply[i]+=forces[i];
     426             :     }
     427             :   }
     428          44 :   if( wasforced ) {
     429           0 :     addForcesOnArguments( forcesToApply );
     430           0 :     if( getNumberOfAtoms()>0 ) setForcesOnAtoms( forcesToApply, getNumberOfArguments() );
     431             :   }
     432             : 
     433          44 : }
     434             : 
     435             : }
     436        4839 : }

Generated by: LCOV version 1.13