LCOV - code coverage report
Current view: top level - gridtools - FourierTransform.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 7 90 7.8 %
Date: 2020-11-18 11:20:57 Functions: 5 13 38.5 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include <iostream>
      23             : #include <complex>
      24             : #include "ActionWithInputGrid.h"
      25             : #include "core/ActionRegister.h"
      26             : #ifdef __PLUMED_HAS_FFTW
      27             : #include <fftw3.h> // FFTW interface
      28             : #endif
      29             : 
      30             : namespace PLMD {
      31             : namespace gridtools {
      32             : 
      33             : //+PLUMEDOC GRIDANALYSIS FOURIER_TRANSFORM
      34             : /*
      35             : Compute the Discrete Fourier Transform (DFT) by means of FFTW of data stored on a 2D grid.
      36             : 
      37             : This action can operate on any other action that outputs scalar data on a two-dimensional grid.
      38             : 
      39             : Up to now, even if the input data are purely real the action uses a complex DFT.
      40             : 
      41             : Just as a quick reference, given a 1D array \f$\mathbf{X}\f$ of size \f$n\f$, this action computes the vector \f$\mathbf{Y}\f$ given by
      42             : 
      43             : \f[
      44             : Y_k = \sum_{j=0}^{n-1} X_j e^{2\pi\, j k \sqrt{-1}/n}.
      45             : \f]
      46             : 
      47             : This can be easily extended to more than one dimension. All the other details can be found at http://www.fftw.org/doc/What-FFTW-Really-Computes.html#What-FFTW-Really-Computes.
      48             : 
      49             : The keyword "FOURIER_PARAMETERS" deserves just a note on the usage. This keyword specifies how the Fourier transform will be normalized. The keyword takes two numerical parameters (\f$a,\,b\f$) that define the normalization according to the following expression
      50             : 
      51             : \f[
      52             : \frac{1}{n^{(1-a)/2}} \sum_{j=0}^{n-1} X_j e^{2\pi b\, j k \sqrt{-1}/n}
      53             : \f]
      54             : 
      55             : The default values of these parameters are: \f$a=1\f$ and \f$b=1\f$.
      56             : 
      57             : \par Examples
      58             : 
      59             : The following example tells Plumed to compute the complex 2D 'backward' Discrete Fourier Transform by taking the data saved on a grid called 'density', and normalizing the output by \f$ \frac{1}{\sqrt{N_x\, N_y}}\f$, where \f$N_x\f$ and \f$N_y\f$ are the number of data on the grid (it can be the case that \f$N_x \neq N_y\f$):
      60             : 
      61             : \plumedfile
      62             : FOURIER_TRANSFORM STRIDE=1 GRID=density FT_TYPE=complex FOURIER_PARAMETERS=0,-1 FILE=fourier.dat
      63             : \endplumedfile
      64             : 
      65             : */
      66             : //+ENDPLUMEDOC
      67             : 
      68             : 
      69           0 : class FourierTransform : public ActionWithInputGrid {
      70             : private:
      71             :   std::string output_type;
      72             :   bool real_output, store_norm;
      73             :   std::vector<unsigned> gdirs;
      74             :   std::vector<int> fourier_params;
      75             : public:
      76             :   static void registerKeywords( Keywords& keys );
      77             :   explicit FourierTransform(const ActionOptions&ao);
      78             : #ifndef __PLUMED_HAS_FFTW
      79             :   void performOperations( const bool& from_update ) {}
      80             : #else
      81             :   void performOperations( const bool& from_update );
      82             : #endif
      83           0 :   void compute( const unsigned&, MultiValue& ) const {}
      84           0 :   bool isPeriodic() { return false; }
      85             : };
      86             : 
      87        6452 : PLUMED_REGISTER_ACTION(FourierTransform,"FOURIER_TRANSFORM")
      88             : 
      89           1 : void FourierTransform::registerKeywords( Keywords& keys ) {
      90           3 :   ActionWithInputGrid::registerKeywords( keys ); keys.remove("BANDWIDTH"); keys.remove("KERNEL");
      91           4 :   keys.add("optional","FT_TYPE","choose what kind of data you want as output on the grid. Possible values are: ABS = compute the complex modulus of Fourier coefficients (DEFAULT); NORM = compute the norm (i.e. ABS^2) of Fourier coefficients; COMPLEX = store the FFTW complex output on the grid (as a vector).");
      92           5 :   keys.add("compulsory","FOURIER_PARAMETERS","default","what kind of normalization is applied to the output and if the Fourier transform in FORWARD or BACKWARD. This keyword takes the form FOURIER_PARAMETERS=A,B, where A and B can be 0, 1 or -1. The default values are A=1 (no normalization at all) and B=1 (forward FFT). Other possible choices for A are: "
      93             :            "A=-1: normalize by the number of data, "
      94             :            "A=0: normalize by the square root of the number of data (one forward and followed by backward FFT recover the original data). ");
      95           1 : }
      96             : 
      97           0 : FourierTransform::FourierTransform(const ActionOptions&ao):
      98             :   Action(ao),
      99             :   ActionWithInputGrid(ao),
     100             :   real_output(true),
     101             :   store_norm(false),
     102           0 :   fourier_params(2)
     103             : {
     104             : #ifndef __PLUMED_HAS_FFTW
     105             :   error("this feature is only available if you compile PLUMED with FFTW");
     106             : #else
     107           0 :   if( ingrid->getDimension()!=2 ) error("fourier transform currently only works with two dimensional grids");
     108             : 
     109             :   // Get the type of FT
     110           0 :   parse("FT_TYPE",output_type);
     111           0 :   if (output_type.length()==0) {
     112           0 :     log<<"  keyword FT_TYPE unset. By default output grid will contain REAL Fourier coefficients\n";
     113           0 :   } else if ( output_type=="ABS" || output_type=="abs") {
     114           0 :     log << "  keyword FT_TYPE is '"<< output_type << "' : will compute the MODULUS of Fourier coefficients\n";
     115           0 :   } else if ( output_type=="NORM" || output_type=="norm") {
     116           0 :     log << "  keyword FT_TYPE is '"<< output_type << "' : will compute the NORM of Fourier coefficients\n";
     117           0 :     store_norm=true;
     118           0 :   } else if ( output_type=="COMPLEX" || output_type=="complex" ) {
     119           0 :     log<<"  keyword FT_TYPE is '"<< output_type <<"' : output grid will contain the COMPLEX Fourier coefficients\n";
     120           0 :     real_output=false;
     121           0 :   } else error("keyword FT_TYPE unrecognized!");
     122             : 
     123             :   // Normalize output?
     124           0 :   std::string params_str; parse("FOURIER_PARAMETERS",params_str);
     125           0 :   if (params_str=="default") {
     126           0 :     fourier_params.assign( fourier_params.size(), 1 );
     127           0 :     log.printf("  default values of Fourier parameters A=%i, B=%i : the output will NOT be normalized and BACKWARD Fourier transform is computed \n", fourier_params[0],fourier_params[1]);
     128             :   } else {
     129           0 :     std::vector<std::string> fourier_str = Tools::getWords(params_str, "\t\n ,");
     130           0 :     if (fourier_str.size()>2) error("FOURIER_PARAMETERS can take just two values");
     131           0 :     for (unsigned i=0; i<fourier_str.size(); ++i) {
     132           0 :       Tools::convert(fourier_str[i],fourier_params[i]);
     133           0 :       if (fourier_params[i]>1 || fourier_params[i]<-1) error("values accepted for FOURIER_PARAMETERS are only -1, 1 or 0");
     134             :     }
     135           0 :     log.printf("  Fourier parameters are A=%i, B=%i \n", fourier_params[0],fourier_params[1]);
     136             :   }
     137             : 
     138             : 
     139             :   // Create the input from the old string
     140             :   std::string vstring;
     141           0 :   unsigned n=0; gdirs.resize( ingrid->getDimension() );
     142           0 :   for(unsigned i=0; i<ingrid->getDimension(); ++i) {
     143           0 :     gdirs[n]=i; n++;
     144             :   }
     145             : 
     146           0 :   plumed_assert( n==ingrid->getDimension() );
     147             : 
     148           0 :   if (real_output) {
     149           0 :     if (!store_norm) vstring="COMPONENTS=" + getLabel() + "_abs";
     150           0 :     else vstring="COMPONENTS=" + getLabel() + "_norm";
     151           0 :   } else vstring="COMPONENTS=" + getLabel() + "_real," + getLabel() + "_imag";
     152             : 
     153             :   // Set COORDINATES keyword
     154           0 :   vstring += " COORDINATES=" + ingrid->getComponentName( gdirs[0] );
     155           0 :   for(unsigned i=1; i<gdirs.size(); ++i) vstring += "," + ingrid->getComponentName( gdirs[i] );
     156             : 
     157             :   // Set PBC keyword
     158             :   vstring += " PBC=";
     159           0 :   if( ingrid->isPeriodic(gdirs[0]) ) vstring+="T"; else vstring+="F";
     160           0 :   for(unsigned i=1; i<gdirs.size(); ++i) {
     161           0 :     if( ingrid->isPeriodic(gdirs[i]) ) vstring+=",T"; else vstring+=",F";
     162             :   }
     163             : 
     164             : 
     165             :   // Create a grid on which to store the fourier transform of the input grid
     166           0 :   createGrid( "grid", vstring );
     167           0 :   if( ingrid->noDerivatives() ) mygrid->setNoDerivatives();
     168           0 :   setAveragingAction( mygrid, false );
     169             : 
     170           0 :   checkRead();
     171             : #endif
     172           0 : }
     173             : 
     174             : #ifdef __PLUMED_HAS_FFTW
     175           0 : void FourierTransform::performOperations( const bool& from_update ) {
     176             : 
     177             :   // Spacing of the real grid
     178           0 :   std::vector<double> g_spacing ( ingrid->getGridSpacing() );
     179             :   // Spacing of the k-grid
     180             :   std::vector<double> ft_spacing;
     181             :   // Extents of the k-grid
     182           0 :   std::vector<std::string> ft_min( ingrid->getMin() ), ft_max( ingrid->getMax() );
     183             :   // Number of bins in the k-grid (equal to the number of bins in the real grid)
     184           0 :   std::vector<unsigned> ft_bins ( ingrid->getNbin() );
     185             : 
     186           0 :   for (unsigned i=0; i<ingrid->getDimension(); ++i) {
     187             :     // Check PBC in current grid dimension
     188           0 :     if( !ingrid->isPeriodic(i) ) ft_bins[i]++;
     189             :     // Compute k-grid extents
     190             :     double dmin, dmax;
     191           0 :     Tools::convert(ft_min[i],dmin); Tools::convert(ft_max[i],dmax);
     192             :     // We want to have the min of k-grid at point (0,0)
     193           0 :     dmin=0.0;
     194           0 :     dmax=2.0*pi*ft_bins[i]/( ingrid->getGridExtent(i) );
     195           0 :     Tools::convert(dmin,ft_min[i]); Tools::convert(dmax,ft_max[i]);
     196             :   }
     197             : 
     198             :   // This is the actual setup of the k-grid
     199           0 :   mygrid->setBounds( ft_min, ft_max, ft_bins, ft_spacing); resizeFunctions();
     200             : 
     201             :   // *** CHECK CORRECT k-GRID BOUNDARIES ***
     202             :   //log<<"Real grid boundaries: \n"
     203             :   //    <<"  min_x: "<<mygrid->getMin()[0]<<"  min_y: "<<mygrid->getMin()[1]<<"\n"
     204             :   //    <<"  max_x: "<<mygrid->getMax()[0]<<"  max_y: "<<mygrid->getMax()[1]<<"\n"
     205             :   //    <<"K-grid boundaries:"<<"\n"
     206             :   //    <<"  min_x: "<<ft_min[0]<<"  min_y: "<<ft_min[1]<<"\n"
     207             :   //    <<"  max_x: "<<ft_max[0]<<"  max_y: "<<ft_max[1]<<"\n";
     208             : 
     209             : 
     210             : 
     211             :   // Get the size of the input data arrays (to allocate FFT data)
     212           0 :   std::vector<unsigned> N_input_data( ingrid->getNbin() );
     213           0 :   size_t fft_dimension=1; for(unsigned i=0; i<N_input_data.size(); ++i) fft_dimension*=static_cast<size_t>( N_input_data[i] );
     214             : 
     215             :   // FFT arrays
     216           0 :   std::vector<std::complex<double> > input_data(fft_dimension), fft_data(fft_dimension);
     217             : 
     218             : 
     219             :   // Fill real input with the data on the grid
     220           0 :   std::vector<unsigned> ind( ingrid->getDimension() );
     221           0 :   for (unsigned i=0; i<ingrid->getNumberOfPoints(); ++i) {
     222             :     // Get point indices
     223           0 :     ingrid->getIndices(i, ind);
     224             :     // Fill input data in row-major order
     225           0 :     input_data[ind[0]*N_input_data[0]+ind[1]].real( getFunctionValue( i ) );
     226           0 :     input_data[ind[0]*N_input_data[0]+ind[1]].imag( 0.0 );
     227             :   }
     228             : 
     229             :   // *** HERE is the only clear limitation: I'm computing explicitly a 2D FT. It should not happen to deal with other than two-dimensional grid ...
     230           0 :   fftw_plan plan_complex = fftw_plan_dft_2d(N_input_data[0], N_input_data[1], reinterpret_cast<fftw_complex*>(&input_data[0]), reinterpret_cast<fftw_complex*>(&fft_data[0]), fourier_params[1], FFTW_ESTIMATE);
     231             : 
     232             :   // Compute FT
     233           0 :   fftw_execute( plan_complex );
     234             : 
     235             :   // Compute the normalization constant
     236             :   double norm=1.0;
     237           0 :   for (unsigned i=0; i<N_input_data.size(); ++i) {
     238           0 :     norm *= pow( N_input_data[i], (1-fourier_params[0])/2 );
     239             :   }
     240             : 
     241             :   // Save FT data to output grid
     242           0 :   std::vector<unsigned> N_out_data ( mygrid->getNbin() );
     243           0 :   std::vector<unsigned> out_ind ( mygrid->getDimension() );
     244           0 :   for(unsigned i=0; i<mygrid->getNumberOfPoints(); ++i) {
     245           0 :     mygrid->getIndices( i, out_ind );
     246           0 :     if (real_output) {
     247             :       double ft_value;
     248             :       // Compute abs/norm and fix normalization
     249           0 :       if (!store_norm) ft_value=std::abs( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
     250           0 :       else ft_value=std::norm( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
     251             :       // Set the value
     252           0 :       mygrid->setGridElement( i, 0, ft_value );
     253             :     } else {
     254             :       double ft_value_real, ft_value_imag;
     255           0 :       ft_value_real=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].real() / norm;
     256           0 :       ft_value_imag=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].imag() / norm;
     257             :       // Set values
     258           0 :       mygrid->setGridElement( i, 0, ft_value_real);
     259           0 :       mygrid->setGridElement( i, 1, ft_value_imag);
     260             :     }
     261             :   }
     262             : 
     263             :   // Free FFTW stuff
     264           0 :   fftw_destroy_plan(plan_complex);
     265             : 
     266           0 : }
     267             : #endif
     268             : 
     269             : } // end namespace 'gridtools'
     270        4839 : } // end namespace 'PLMD'

Generated by: LCOV version 1.13