LCOV - code coverage report
Current view: top level - adjmat - SMACMatrix.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 37 37 100.0 %
Date: 2020-11-18 11:20:57 Functions: 11 12 91.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2019 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "AlignedMatrixBase.h"
      23             : #include "core/ActionRegister.h"
      24             : #include "tools/KernelFunctions.h"
      25             : #include "tools/Torsion.h"
      26             : #include "tools/Matrix.h"
      27             : 
      28             : //+PLUMEDOC MATRIX SMAC_MATRIX
      29             : /*
      30             : Adjacency matrix in which two molecules are adjacent if they are within a certain cutoff and if the angle between them is within certain ranges.
      31             : 
      32             : In this case the elements of the adjacency matrix are calculated using:
      33             : 
      34             : \f[
      35             : A_{ij} = \sigma(r_{ij}) \sum_n K_n(\theta_{ij})
      36             : \f]
      37             : 
      38             : In this expression \f$r_{ij}\f$ is the distance between molecule \f$i\f$ and molecule \f$j\f$ and \f$\sigma(r_{ij}\f$ is a
      39             : \ref switchingfunction that acts on this distance.  The $K_n functions are \ref kernelfunctions that take the torsion angle, \f$\theta_{ij}\f$, between the
      40             : internal orientation vectors for molecules \f$i\f$ and \f$j\f$ as input.  These kernel functions should be set so that they are
      41             : equal to one when the relative orientation of the moleclues are as they are in the solid and equal to zero otherwise.
      42             : As the above matrix element is a product of functions it is only equal to one when the centers of mass of molecules \f$i\f$ and\f$j\f$
      43             : are with a certain distance of each other and when the molecules are aligned in some desirable way.
      44             : 
      45             : \par Examples
      46             : 
      47             : In the following example an adjacency matrix is constructed in which the \f$(i,j)\f$ element is equal to one if
      48             : molecules \f$i\f$ and \f$j\f$ are within 6 angstroms of each other and if the torsional angle between the orientations
      49             : of these molecules is close to 0 or \f$\pi\f$.  The various connected components of this matrix are determined using the
      50             : \ref DFSCLUSTERING algorithm and then the size of the largest cluster of connectes molecules is output to a colvar file
      51             : 
      52             : \plumedfile
      53             : UNITS LENGTH=A
      54             : 
      55             : MOLECULES ...
      56             : MOL1=1,2,1
      57             : MOL2=5,6,5
      58             : MOL3=9,10,9
      59             : MOL4=13,14,13
      60             : MOL5=17,18,17
      61             : LABEL=m1
      62             : ... MOLECULES
      63             : 
      64             : SMAC_MATRIX ...
      65             :    ATOMS=m1 SWITCH={RATIONAL D_0=5.99 R_0=0.1 D_MAX=6.0}
      66             :    KERNEL1={TRIANGULAR CENTER=0 SIGMA=1.0} KERNEL2={TRIANGULAR CENTER=pi SIGMA=0.6}
      67             :    LABEL=smacm
      68             : ... SMAC_MATRIX
      69             : 
      70             : dfs1: DFSCLUSTERING MATRIX=smacm
      71             : cc2: CLUSTER_NATOMS CLUSTERS=dfs1 CLUSTER=1
      72             : PRINT ARG=smac.*,cc1.*,cc2 FILE=colvar
      73             : \endplumedfile
      74             : 
      75             : */
      76             : //+ENDPLUMEDOC
      77             : 
      78             : namespace PLMD {
      79             : namespace adjmat {
      80             : 
      81           3 : class SMACMatrix : public AlignedMatrixBase {
      82             : private:
      83             :   Matrix<std::vector<KernelFunctions> > kernels;
      84             : public:
      85             :   ///
      86             :   static void registerKeywords( Keywords& keys );
      87             :   ///
      88             :   explicit SMACMatrix(const ActionOptions&);
      89             :   void readOrientationConnector( const unsigned& i, const unsigned& j, const std::vector<std::string>& desc );
      90             :   double computeVectorFunction( const unsigned& iv, const unsigned& jv,
      91             :                                 const Vector& conn, const std::vector<double>& vec1, const std::vector<double>& vec2,
      92             :                                 Vector& dconn, std::vector<double>& dvec1, std::vector<double>& dvec2 ) const ;
      93             : };
      94             : 
      95        6453 : PLUMED_REGISTER_ACTION(SMACMatrix,"SMAC_MATRIX")
      96             : 
      97           2 : void SMACMatrix::registerKeywords( Keywords& keys ) {
      98           2 :   AlignedMatrixBase::registerKeywords( keys );
      99           8 :   keys.add("numbered","KERNEL","The various kernels that are used to determine whether or not the molecules are aligned");
     100           2 : }
     101             : 
     102           1 : SMACMatrix::SMACMatrix( const ActionOptions& ao ):
     103             :   Action(ao),
     104           1 :   AlignedMatrixBase(ao)
     105             : {
     106           1 :   unsigned nrows, ncols, ig; retrieveTypeDimensions( nrows, ncols, ig );
     107           3 :   kernels.resize( nrows, ncols ); parseConnectionDescriptions("KERNEL",true,0);
     108           1 : }
     109             : 
     110           1 : void SMACMatrix::readOrientationConnector( const unsigned& iv, const unsigned& jv, const std::vector<std::string>& desc ) {
     111           8 :   for(int i=0; i<desc.size(); i++) {
     112           6 :     KernelFunctions mykernel( desc[i], false );
     113           2 :     kernels(iv,jv).push_back( mykernel );
     114           2 :     if( jv!=iv ) kernels(jv,iv).push_back( mykernel );
     115             :   }
     116           1 :   if( kernels(iv,jv).size()==0 ) error("no kernels defined");
     117           1 : }
     118             : 
     119        5806 : double SMACMatrix::computeVectorFunction( const unsigned& iv, const unsigned& jv,
     120             :     const Vector& conn, const std::vector<double>& vec1, const std::vector<double>& vec2,
     121             :     Vector& dconn, std::vector<double>& dvec1, std::vector<double>& dvec2 ) const {
     122             : 
     123        5806 :   unsigned nvectors = ( vec1.size() - 2 ) / 3; plumed_assert( (vec1.size()-2)%3==0 );
     124        5806 :   std::vector<Vector> dv1(nvectors), dv2(nvectors), tdconn(nvectors); Torsion t; std::vector<Vector> v1(nvectors), v2(nvectors);
     125       34836 :   std::vector<Value*> pos; for(unsigned i=0; i<nvectors; ++i) { pos.push_back( new Value() ); pos[i]->setDomain( "-pi", "pi" ); }
     126             : 
     127       17418 :   for(unsigned j=0; j<nvectors; ++j) {
     128       40642 :     for(unsigned k=0; k<3; ++k) {
     129       69672 :       v1[j][k]=vec1[2+3*j+k]; v2[j][k]=vec2[2+3*j+k];
     130             :     }
     131       11612 :     double angle = t.compute( v1[j], conn, v2[j], dv1[j], tdconn[j], dv2[j] );
     132        5806 :     pos[j]->set( angle );
     133             :   }
     134             : 
     135        5806 :   double ans=0; std::vector<double> deriv( nvectors ), df( nvectors, 0 );
     136       46448 :   for(unsigned i=0; i<kernels(iv,jv).size(); ++i) {
     137       11612 :     ans += kernels(iv,jv)[i].evaluate( pos, deriv );
     138       46448 :     for(unsigned j=0; j<nvectors; ++j) df[j] += deriv[j];
     139             :   }
     140       11612 :   dconn.zero(); for(unsigned j=0; j<nvectors; ++j) dconn += df[j]*tdconn[j];
     141       17418 :   for(unsigned j=0; j<nvectors; ++j) {
     142      127732 :     for(unsigned k=0; k<3; ++k) { dvec1[2+3*j+k]=df[j]*dv1[j][k]; dvec2[2+3*j+k]=df[j]*dv2[j][k]; }
     143       11612 :     delete pos[j];
     144             :   }
     145        5806 :   return ans;
     146             : }
     147             : 
     148             : }
     149        4839 : }
     150             : 
     151             : 
     152             : 

Generated by: LCOV version 1.13