Q1
This is part of the symfunc module
It is only available if you configure PLUMED with ./configure –enable-modules=symfunc . Furthermore, this feature is still being developed so take care when using it and report any problems on the mailing list.

Calculate 1st order Steinhardt parameters

Examples
Glossary of keywords and components
Description of components
Quantity Description
.#!value the norms of the vectors of spherical harmonic coefficients

In addition the following quantities can be calculated by employing the keywords listed below

Quantity Keyword Description
lessthan LESS_THAN the number of colvars that have a value less than a threshold
morethan MORE_THAN the number of colvars that have a value more than a threshold
altmin ALT_MIN the minimum value of the cv
min MIN the minimum colvar
max MAX the maximum colvar
between BETWEEN the number of colvars that have a value that lies in a particular interval
highest HIGHEST the largest of the colvars
lowest LOWEST the smallest of the colvars
sum SUM the sum of the colvars
mean MEAN the mean of the colvars
_vmean VMEAN the norm of the mean vector
_vsum VSUM the norm of the mean vector
The atoms involved can be specified using
SPECIES this keyword is used for colvars such as coordination number. In that context it specifies that plumed should calculate one coordination number for each of the atoms specified. Each of these coordination numbers specifies how many of the other specified atoms are within a certain cutoff of the central atom. You can specify the atoms here as another multicolvar action or using a MultiColvarFilter or ActionVolume action. When you do so the quantity is calculated for those atoms specified in the previous multicolvar. This is useful if you would like to calculate the Steinhardt parameter for those atoms that have a coordination number more than four for example
Or alternatively by using
SPECIESA this keyword is used for colvars such as the coordination number. In that context it species that plumed should calculate one coordination number for each of the atoms specified in SPECIESA. Each of these cooordination numbers specifies how many of the atoms specifies using SPECIESB is within the specified cutoff. As with the species keyword the input can also be specified using the label of another multicolvar
SPECIESB this keyword is used for colvars such as the coordination number. It must appear with SPECIESA. For a full explanation see the documentation for that keyword
Compulsory keywords
NN ( default=6 ) The n parameter of the switching function
MM ( default=0 ) The m parameter of the switching function; 0 implies 2*NN
D_0 ( default=0.0 ) The d_0 parameter of the switching function
R_0 The r_0 parameter of the switching function
Options
HIGHEST ( default=off ) this flag allows you to recover the highest of these variables.
LOWEST ( default=off ) this flag allows you to recover the lowest of these variables.
SUM ( default=off ) calculate the sum of all the quantities.
MEAN ( default=off ) calculate the mean of all the quantities.
LOWMEM ( default=off ) this flag does nothing and is present only to ensure back-compatibility
VMEAN ( default=off ) calculate the norm of the mean vector.
VSUM

( default=off ) calculate the norm of the sum of all the vectors

SWITCH the switching function that it used in the construction of the contact matrix
LESS_THAN calculate the number of variables that are less than a certain target value. This quantity is calculated using \(\sum_i \sigma(s_i)\), where \(\sigma(s)\) is a switchingfunction.. You can use multiple instances of this keyword i.e. LESS_THAN1, LESS_THAN2, LESS_THAN3...
MORE_THAN calculate the number of variables that are more than a certain target value. This quantity is calculated using \(\sum_i 1 - \sigma(s_i)\), where \(\sigma(s)\) is a switchingfunction.. You can use multiple instances of this keyword i.e. MORE_THAN1, MORE_THAN2, MORE_THAN3...
ALT_MIN calculate the minimum value. To make this quantity continuous the minimum is calculated using \( \textrm{min} = -\frac{1}{\beta} \log \sum_i \exp\left( -\beta s_i \right) \) The value of \(\beta\) in this function is specified using (BETA= \(\beta\)).
MIN calculate the minimum value. To make this quantity continuous the minimum is calculated using \( \textrm{min} = \frac{\beta}{ \log \sum_i \exp\left( \frac{\beta}{s_i} \right) } \) The value of \(\beta\) in this function is specified using (BETA= \(\beta\))
MAX calculate the maximum value. To make this quantity continuous the maximum is calculated using \( \textrm{max} = \beta \log \sum_i \exp\left( \frac{s_i}{\beta}\right) \) The value of \(\beta\) in this function is specified using (BETA= \(\beta\))
BETWEEN calculate the number of values that are within a certain range. These quantities are calculated using kernel density estimation as described on histogrambead.. You can use multiple instances of this keyword i.e. BETWEEN1, BETWEEN2, BETWEEN3...
HISTOGRAM calculate a discretized histogram of the distribution of values. This shortcut allows you to calculates NBIN quantites like BETWEEN.