LCOV - code coverage report
Current view: top level - ves - VesBias.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 330 432 76.4 %
Date: 2024-10-11 08:09:47 Functions: 27 45 60.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "VesBias.h"
      24             : #include "BasisFunctions.h"
      25             : #include "CoeffsVector.h"
      26             : #include "CoeffsMatrix.h"
      27             : #include "Optimizer.h"
      28             : #include "FermiSwitchingFunction.h"
      29             : #include "VesTools.h"
      30             : #include "TargetDistribution.h"
      31             : 
      32             : #include "tools/Communicator.h"
      33             : #include "core/ActionSet.h"
      34             : #include "core/PlumedMain.h"
      35             : #include "core/Atoms.h"
      36             : #include "tools/File.h"
      37             : 
      38             : 
      39             : namespace PLMD {
      40             : namespace ves {
      41             : 
      42          90 : VesBias::VesBias(const ActionOptions&ao):
      43             :   Action(ao),
      44             :   Bias(ao),
      45          90 :   ncoeffssets_(0),
      46          90 :   sampled_averages(0),
      47          90 :   sampled_cross_averages(0),
      48          90 :   use_multiple_coeffssets_(false),
      49          90 :   coeffs_fnames(0),
      50          90 :   ncoeffs_total_(0),
      51          90 :   optimizer_pntr_(NULL),
      52          90 :   optimize_coeffs_(false),
      53          90 :   compute_hessian_(false),
      54          90 :   diagonal_hessian_(true),
      55          90 :   aver_counters(0),
      56          90 :   kbt_(0.0),
      57          90 :   targetdist_pntrs_(0),
      58          90 :   dynamic_targetdist_(false),
      59          90 :   grid_bins_(0),
      60          90 :   grid_min_(0),
      61          90 :   grid_max_(0),
      62          90 :   bias_filename_(""),
      63          90 :   fes_filename_(""),
      64          90 :   targetdist_filename_(""),
      65          90 :   coeffs_id_prefix_("c-"),
      66          90 :   bias_file_fmt_("14.9f"),
      67          90 :   fes_file_fmt_("14.9f"),
      68          90 :   targetdist_file_fmt_("14.9f"),
      69          90 :   targetdist_restart_file_fmt_("30.16e"),
      70          90 :   filenames_have_iteration_number_(false),
      71          90 :   bias_fileoutput_active_(false),
      72          90 :   fes_fileoutput_active_(false),
      73          90 :   fesproj_fileoutput_active_(false),
      74          90 :   dynamic_targetdist_fileoutput_active_(false),
      75          90 :   static_targetdist_fileoutput_active_(true),
      76          90 :   bias_cutoff_active_(false),
      77          90 :   bias_cutoff_value_(0.0),
      78          90 :   bias_current_max_value(0.0),
      79          90 :   calc_reweightfactor_(false),
      80         180 :   optimization_threshold_(0.0)
      81             : {
      82          90 :   log.printf("  VES bias, please read and cite ");
      83         180 :   log << plumed.cite("Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)");
      84          90 :   log.printf("\n");
      85             : 
      86          90 :   double temp=0.0;
      87          90 :   parse("TEMP",temp);
      88          90 :   if(temp>0.0) {
      89          90 :     kbt_=plumed.getAtoms().getKBoltzmann()*temp;
      90             :   }
      91             :   else {
      92           0 :     kbt_=plumed.getAtoms().getKbT();
      93             :   }
      94          90 :   if(kbt_>0.0) {
      95          90 :     log.printf("  KbT: %f\n",kbt_);
      96             :   }
      97             :   // NOTE: the check for that the temperature is given is done when linking the optimizer later on.
      98             : 
      99         180 :   if(keywords.exists("COEFFS")) {
     100         180 :     parseVector("COEFFS",coeffs_fnames);
     101             :   }
     102             : 
     103         180 :   if(keywords.exists("GRID_BINS")) {
     104         180 :     parseMultipleValues<unsigned int>("GRID_BINS",grid_bins_,getNumberOfArguments(),100);
     105             :   }
     106             : 
     107          90 :   if(keywords.exists("GRID_MIN") && keywords.exists("GRID_MAX")) {
     108           0 :     parseMultipleValues("GRID_MIN",grid_min_,getNumberOfArguments());
     109           0 :     parseMultipleValues("GRID_MAX",grid_max_,getNumberOfArguments());
     110             :   }
     111             : 
     112             :   std::vector<std::string> targetdist_labels;
     113         180 :   if(keywords.exists("TARGET_DISTRIBUTION")) {
     114         180 :     parseVector("TARGET_DISTRIBUTION",targetdist_labels);
     115          90 :     if(targetdist_labels.size()>1) {
     116           0 :       plumed_merror(getName()+" with label "+getLabel()+": multiple target distribution labels not allowed");
     117             :     }
     118             :   }
     119           0 :   else if(keywords.exists("TARGET_DISTRIBUTIONS")) {
     120           0 :     parseVector("TARGET_DISTRIBUTIONS",targetdist_labels);
     121             :   }
     122             : 
     123          90 :   std::string error_msg = "";
     124         180 :   targetdist_pntrs_ = VesTools::getPointersFromLabels<TargetDistribution*>(targetdist_labels,plumed.getActionSet(),error_msg);
     125          90 :   if(error_msg.size()>0) {plumed_merror("Problem with target distribution in "+getName()+": "+error_msg);}
     126             : 
     127         135 :   for(unsigned int i=0; i<targetdist_pntrs_.size(); i++) {
     128          45 :     targetdist_pntrs_[i]->linkVesBias(this);
     129             :   }
     130             : 
     131             : 
     132          90 :   if(getNumberOfArguments()>2) {
     133             :     disableStaticTargetDistFileOutput();
     134             :   }
     135             : 
     136             : 
     137         180 :   if(keywords.exists("BIAS_FILE")) {
     138         180 :     parse("BIAS_FILE",bias_filename_);
     139          90 :     if(bias_filename_.size()==0) {
     140         180 :       bias_filename_ = "bias." + getLabel() + ".data";
     141             :     }
     142             :   }
     143         180 :   if(keywords.exists("FES_FILE")) {
     144         180 :     parse("FES_FILE",fes_filename_);
     145          90 :     if(fes_filename_.size()==0) {
     146         180 :       fes_filename_ = "fes." + getLabel() + ".data";
     147             :     }
     148             :   }
     149         180 :   if(keywords.exists("TARGETDIST_FILE")) {
     150         180 :     parse("TARGETDIST_FILE",targetdist_filename_);
     151          90 :     if(targetdist_filename_.size()==0) {
     152         180 :       targetdist_filename_ = "targetdist." + getLabel() + ".data";
     153             :     }
     154             :   }
     155             :   //
     156         180 :   if(keywords.exists("BIAS_FILE_FMT")) {
     157           0 :     parse("BIAS_FILE_FMT",bias_file_fmt_);
     158             :   }
     159         180 :   if(keywords.exists("FES_FILE_FMT")) {
     160           0 :     parse("FES_FILE_FMT",fes_file_fmt_);
     161             :   }
     162         180 :   if(keywords.exists("TARGETDIST_FILE_FMT")) {
     163           0 :     parse("TARGETDIST_FILE_FMT",targetdist_file_fmt_);
     164             :   }
     165         180 :   if(keywords.exists("TARGETDIST_RESTART_FILE_FMT")) {
     166           0 :     parse("TARGETDIST_RESTART_FILE_FMT",targetdist_restart_file_fmt_);
     167             :   }
     168             : 
     169             :   //
     170         180 :   if(keywords.exists("BIAS_CUTOFF")) {
     171          90 :     double cutoff_value=0.0;
     172          90 :     parse("BIAS_CUTOFF",cutoff_value);
     173          90 :     if(cutoff_value<0.0) {
     174           0 :       plumed_merror("the value given in BIAS_CUTOFF doesn't make sense, it should be larger than 0.0");
     175             :     }
     176             :     //
     177          90 :     if(cutoff_value>0.0) {
     178           3 :       double fermi_lambda=10.0;
     179           3 :       parse("BIAS_CUTOFF_FERMI_LAMBDA",fermi_lambda);
     180           3 :       setupBiasCutoff(cutoff_value,fermi_lambda);
     181           3 :       log.printf("  Employing a bias cutoff of %f (the lambda value for the Fermi switching function is %f), see and cite ",cutoff_value,fermi_lambda);
     182           6 :       log << plumed.cite("McCarty, Valsson, Tiwary, and Parrinello, Phys. Rev. Lett. 115, 070601 (2015)");
     183           3 :       log.printf("\n");
     184             :     }
     185             :   }
     186             : 
     187             : 
     188         180 :   if(keywords.exists("PROJ_ARG")) {
     189             :     std::vector<std::string> proj_arg;
     190          90 :     for(int i=1;; i++) {
     191         212 :       if(!parseNumberedVector("PROJ_ARG",i,proj_arg)) {break;}
     192             :       // checks
     193          16 :       if(proj_arg.size() > (getNumberOfArguments()-1) ) {
     194           0 :         plumed_merror("PROJ_ARG must be a subset of ARG");
     195             :       }
     196             :       //
     197          32 :       for(unsigned int k=0; k<proj_arg.size(); k++) {
     198             :         bool found = false;
     199          24 :         for(unsigned int l=0; l<getNumberOfArguments(); l++) {
     200          24 :           if(proj_arg[k]==getPntrToArgument(l)->getName()) {
     201             :             found = true;
     202             :             break;
     203             :           }
     204             :         }
     205          16 :         if(!found) {
     206           0 :           std::string s1; Tools::convert(i,s1);
     207           0 :           std::string error = "PROJ_ARG" + s1 + ": label " + proj_arg[k] + " is not among the arguments given in ARG";
     208           0 :           plumed_merror(error);
     209             :         }
     210             :       }
     211             :       //
     212          16 :       projection_args_.push_back(proj_arg);
     213          16 :     }
     214          90 :   }
     215             : 
     216         180 :   if(keywords.exists("CALC_REWEIGHT_FACTOR")) {
     217           0 :     parseFlag("CALC_REWEIGHT_FACTOR",calc_reweightfactor_);
     218           0 :     if(calc_reweightfactor_) {
     219           0 :       addComponent("rct"); componentIsNotPeriodic("rct");
     220           0 :       updateReweightFactor();
     221             :     }
     222             :   }
     223             : 
     224         180 :   if(keywords.exists("OPTIMIZATION_THRESHOLD")) {
     225          90 :     parse("OPTIMIZATION_THRESHOLD",optimization_threshold_);
     226          90 :     if(optimization_threshold_ < 0.0) {
     227           0 :       plumed_merror("OPTIMIZATION_THRESHOLD should be a postive value");
     228             :     }
     229          90 :     if(optimization_threshold_!=0.0) {
     230           1 :       log.printf("  Employing a threshold value of %e for optimization of localized basis functions.\n",optimization_threshold_);
     231             :     }
     232             :   }
     233             : 
     234          90 : }
     235             : 
     236             : 
     237          90 : VesBias::~VesBias() {
     238         180 : }
     239             : 
     240             : 
     241          91 : void VesBias::registerKeywords( Keywords& keys ) {
     242          91 :   Bias::registerKeywords(keys);
     243         182 :   keys.add("optional","TEMP","the system temperature - this is needed if the MD code does not pass the temperature to PLUMED.");
     244             :   //
     245         182 :   keys.reserve("optional","COEFFS","read in the coefficients from files.");
     246             :   //
     247         273 :   keys.reserve("optional","TARGET_DISTRIBUTION","the label of the target distribution to be used.");
     248         273 :   keys.reserve("optional","TARGET_DISTRIBUTIONS","the label of the target distribution to be used. Here you are allows to use multiple labels.");
     249             :   //
     250         182 :   keys.reserve("optional","GRID_BINS","the number of bins used for the grid. The default value is 100 bins per dimension.");
     251         182 :   keys.reserve("optional","GRID_MIN","the lower bounds used for the grid.");
     252         182 :   keys.reserve("optional","GRID_MAX","the upper bounds used for the grid.");
     253             :   //
     254         182 :   keys.add("optional","BIAS_FILE","filename of the file on which the bias should be written out. By default it is bias.LABEL.data. Note that suffixes indicating the iteration number (iter-#) are added to the filename when optimizing coefficients.");
     255         182 :   keys.add("optional","FES_FILE","filename of the file on which the FES should be written out. By default it is fes.LABEL.data. Note that suffixes indicating the iteration number (iter-#) are added to the filename when optimizing coefficients.");
     256         182 :   keys.add("optional","TARGETDIST_FILE","filename of the file on which the target distribution should be written out. By default it is targetdist.LABEL.data. Note that suffixes indicating the iteration number (iter-#) are added to the filename when optimizing coefficients and the target distribution is dynamic.");
     257             :   //
     258             :   // keys.add("optional","BIAS_FILE_FMT","the format of the bias files, by default it is %14.9f.");
     259             :   // keys.add("optional","FES_FILE_FMT","the format of the FES files, by default it is %14.9f.");
     260             :   // keys.add("optional","TARGETDIST_FILE_FMT","the format of the target distribution files, by default it is %14.9f.");
     261             :   // keys.add("hidden","TARGETDIST_RESTART_FILE_FMT","the format of the target distribution files that are used for restarting, by default it is %30.16e.");
     262             :   //
     263         182 :   keys.reserve("optional","BIAS_CUTOFF","cutoff the bias such that it only fills the free energy surface up to certain level F_cutoff, here you should give the value of the F_cutoff.");
     264         273 :   keys.reserve("optional","BIAS_CUTOFF_FERMI_LAMBDA","the lambda value used in the Fermi switching function for the bias cutoff (BIAS_CUTOFF), the default value is 10.0.");
     265             :   //
     266         182 :   keys.reserve("numbered","PROJ_ARG","arguments for doing projections of the FES or the target distribution.");
     267             :   //
     268         182 :   keys.reserveFlag("CALC_REWEIGHT_FACTOR",false,"enable the calculation of the reweight factor c(t). You should also give a stride for updating the reweight factor in the optimizer by using the REWEIGHT_FACTOR_STRIDE keyword if the coefficients are updated.");
     269         273 :   keys.add("optional","OPTIMIZATION_THRESHOLD","Threshold value to turn off optimization of localized basis functions.");
     270             : 
     271          91 : }
     272             : 
     273             : 
     274          91 : void VesBias::useInitialCoeffsKeywords(Keywords& keys) {
     275          91 :   keys.use("COEFFS");
     276          91 : }
     277             : 
     278             : 
     279          91 : void VesBias::useTargetDistributionKeywords(Keywords& keys) {
     280         182 :   plumed_massert(!keys.exists("TARGET_DISTRIBUTIONS"),"you cannot use both useTargetDistributionKeywords and useMultipleTargetDistributionKeywords");
     281          91 :   keys.use("TARGET_DISTRIBUTION");
     282          91 : }
     283             : 
     284             : 
     285           0 : void VesBias::useMultipleTargetDistributionKeywords(Keywords& keys) {
     286           0 :   plumed_massert(!keys.exists("TARGET_DISTRIBUTION"),"you cannot use both useTargetDistributionKeywords and useMultipleTargetDistributionKeywords");
     287           0 :   keys.use("TARGET_DISTRIBUTIONS");
     288           0 : }
     289             : 
     290             : 
     291          91 : void VesBias::useGridBinKeywords(Keywords& keys) {
     292          91 :   keys.use("GRID_BINS");
     293          91 : }
     294             : 
     295             : 
     296           0 : void VesBias::useGridLimitsKeywords(Keywords& keys) {
     297           0 :   keys.use("GRID_MIN");
     298           0 :   keys.use("GRID_MAX");
     299           0 : }
     300             : 
     301             : 
     302          91 : void VesBias::useBiasCutoffKeywords(Keywords& keys) {
     303          91 :   keys.use("BIAS_CUTOFF");
     304          91 :   keys.use("BIAS_CUTOFF_FERMI_LAMBDA");
     305          91 : }
     306             : 
     307             : 
     308          91 : void VesBias::useProjectionArgKeywords(Keywords& keys) {
     309          91 :   keys.use("PROJ_ARG");
     310          91 : }
     311             : 
     312             : 
     313           0 : void VesBias::useReweightFactorKeywords(Keywords& keys) {
     314           0 :   keys.use("CALC_REWEIGHT_FACTOR");
     315           0 :   keys.addOutputComponent("rct","CALC_REWEIGHT_FACTOR","the reweight factor c(t).");
     316           0 : }
     317             : 
     318             : 
     319           0 : void VesBias::addCoeffsSet(const std::vector<std::string>& dimension_labels,const std::vector<unsigned int>& indices_shape) {
     320           0 :   auto coeffs_pntr_tmp = Tools::make_unique<CoeffsVector>("coeffs",dimension_labels,indices_shape,comm,true);
     321           0 :   initializeCoeffs(std::move(coeffs_pntr_tmp));
     322           0 : }
     323             : 
     324             : 
     325          90 : void VesBias::addCoeffsSet(std::vector<Value*>& args,std::vector<BasisFunctions*>& basisf) {
     326          90 :   auto coeffs_pntr_tmp = Tools::make_unique<CoeffsVector>("coeffs",args,basisf,comm,true);
     327          90 :   initializeCoeffs(std::move(coeffs_pntr_tmp));
     328          90 : }
     329             : 
     330             : 
     331           0 : void VesBias::addCoeffsSet(std::unique_ptr<CoeffsVector> coeffs_pntr_in) {
     332           0 :   initializeCoeffs(std::move(coeffs_pntr_in));
     333           0 : }
     334             : 
     335             : 
     336          90 : void VesBias::initializeCoeffs(std::unique_ptr<CoeffsVector> coeffs_pntr_in) {
     337             :   //
     338          90 :   coeffs_pntr_in->linkVesBias(this);
     339             :   //
     340             :   std::string label;
     341          90 :   if(!use_multiple_coeffssets_ && ncoeffssets_==1) {
     342           0 :     plumed_merror("you are not allowed to use multiple coefficient sets");
     343             :   }
     344             :   //
     345         180 :   label = getCoeffsSetLabelString("coeffs",ncoeffssets_);
     346          90 :   coeffs_pntr_in->setLabels(label);
     347             : 
     348          90 :   coeffs_pntrs_.emplace_back(std::move(coeffs_pntr_in));
     349          90 :   auto aver_ps_tmp = Tools::make_unique<CoeffsVector>(*coeffs_pntrs_.back());
     350         270 :   label = getCoeffsSetLabelString("targetdist_averages",ncoeffssets_);
     351          90 :   aver_ps_tmp->setLabels(label);
     352          90 :   aver_ps_tmp->setValues(0.0);
     353          90 :   targetdist_averages_pntrs_.emplace_back(std::move(aver_ps_tmp));
     354             :   //
     355          90 :   auto gradient_tmp = Tools::make_unique<CoeffsVector>(*coeffs_pntrs_.back());
     356         180 :   label = getCoeffsSetLabelString("gradient",ncoeffssets_);
     357          90 :   gradient_tmp->setLabels(label);
     358          90 :   gradient_pntrs_.emplace_back(std::move(gradient_tmp));
     359             :   //
     360         180 :   label = getCoeffsSetLabelString("hessian",ncoeffssets_);
     361          90 :   auto hessian_tmp = Tools::make_unique<CoeffsMatrix>(label,coeffs_pntrs_.back().get(),comm,diagonal_hessian_);
     362             : 
     363          90 :   hessian_pntrs_.emplace_back(std::move(hessian_tmp));
     364             :   //
     365             :   std::vector<double> aver_sampled_tmp;
     366          90 :   aver_sampled_tmp.assign(coeffs_pntrs_.back()->numberOfCoeffs(),0.0);
     367          90 :   sampled_averages.push_back(aver_sampled_tmp);
     368             :   //
     369             :   std::vector<double> cross_aver_sampled_tmp;
     370          90 :   cross_aver_sampled_tmp.assign(hessian_pntrs_.back()->getSize(),0.0);
     371          90 :   sampled_cross_averages.push_back(cross_aver_sampled_tmp);
     372             :   //
     373          90 :   aver_counters.push_back(0);
     374             :   //
     375          90 :   ncoeffssets_++;
     376         180 : }
     377             : 
     378             : 
     379          90 : bool VesBias::readCoeffsFromFiles() {
     380          90 :   plumed_assert(ncoeffssets_>0);
     381         180 :   plumed_massert(keywords.exists("COEFFS"),"you are not allowed to use this function as the COEFFS keyword is not enabled");
     382             :   bool read_coeffs = false;
     383          90 :   if(coeffs_fnames.size()>0) {
     384           4 :     plumed_massert(coeffs_fnames.size()==ncoeffssets_,"COEFFS keyword is of the wrong size");
     385           4 :     if(ncoeffssets_==1) {
     386           4 :       log.printf("  Read in coefficients from file ");
     387             :     }
     388             :     else {
     389           0 :       log.printf("  Read in coefficients from files:\n");
     390             :     }
     391           8 :     for(unsigned int i=0; i<ncoeffssets_; i++) {
     392           4 :       IFile ifile;
     393           4 :       ifile.link(*this);
     394           4 :       ifile.open(coeffs_fnames[i]);
     395           8 :       if(!ifile.FieldExist(coeffs_pntrs_[i]->getDataLabel())) {
     396           0 :         std::string error_msg = "Problem with reading coefficients from file " + ifile.getPath() + ": no field with name " + coeffs_pntrs_[i]->getDataLabel() + "\n";
     397           0 :         plumed_merror(error_msg);
     398             :       }
     399           4 :       size_t ncoeffs_read = coeffs_pntrs_[i]->readFromFile(ifile,false,false);
     400           4 :       coeffs_pntrs_[i]->setIterationCounterAndTime(0,getTime());
     401           4 :       if(ncoeffssets_==1) {
     402           8 :         log.printf("%s (read %zu of %zu values)\n", ifile.getPath().c_str(),ncoeffs_read,coeffs_pntrs_[i]->numberOfCoeffs());
     403             :       }
     404             :       else {
     405           0 :         log.printf("   coefficient %u: %s (read %zu of %zu values)\n",i,ifile.getPath().c_str(),ncoeffs_read,coeffs_pntrs_[i]->numberOfCoeffs());
     406             :       }
     407           4 :       ifile.close();
     408           4 :     }
     409             :     read_coeffs = true;
     410             :   }
     411          90 :   return read_coeffs;
     412             : }
     413             : 
     414             : 
     415       22810 : void VesBias::updateGradientAndHessian(const bool use_mwalkers_mpi) {
     416       45620 :   for(unsigned int k=0; k<ncoeffssets_; k++) {
     417             :     //
     418       22810 :     comm.Sum(sampled_averages[k]);
     419       22810 :     comm.Sum(sampled_cross_averages[k]);
     420       22810 :     if(use_mwalkers_mpi) {
     421             :       double walker_weight=1.0;
     422         120 :       if(aver_counters[k]==0) {walker_weight=0.0;}
     423         120 :       multiSimSumAverages(k,walker_weight);
     424             :     }
     425             :     // NOTE: this assumes that all walkers have the same TargetDist, might change later on!!
     426       22810 :     Gradient(k).setValues( TargetDistAverages(k) - sampled_averages[k] );
     427       22810 :     Hessian(k) = computeCovarianceFromAverages(k);
     428       22810 :     Hessian(k) *= getBeta();
     429             : 
     430       22810 :     if(optimization_threshold_ != 0.0) {
     431         390 :       for(size_t c_id=0; c_id < sampled_averages[k].size(); ++c_id) {
     432         380 :         if(fabs(sampled_averages[k][c_id]) < optimization_threshold_) {
     433         219 :           Gradient(k).setValue(c_id, 0.0);
     434         219 :           Hessian(k).setValue(c_id, c_id, 0.0);
     435             :         }
     436             :       }
     437             :     }
     438             :     //
     439             :     Gradient(k).activate();
     440             :     Hessian(k).activate();
     441             :     //
     442             :     // Check the total number of samples (from all walkers) and deactivate the Gradient and Hessian if it
     443             :     // is zero
     444       22810 :     unsigned int total_samples = aver_counters[k];
     445       22810 :     if(use_mwalkers_mpi) {
     446         120 :       if(comm.Get_rank()==0) {multi_sim_comm.Sum(total_samples);}
     447         120 :       comm.Bcast(total_samples,0);
     448             :     }
     449       22810 :     if(total_samples==0) {
     450             :       Gradient(k).deactivate();
     451          95 :       Gradient(k).clear();
     452             :       Hessian(k).deactivate();
     453          95 :       Hessian(k).clear();
     454             :     }
     455             :     //
     456             :     std::fill(sampled_averages[k].begin(), sampled_averages[k].end(), 0.0);
     457             :     std::fill(sampled_cross_averages[k].begin(), sampled_cross_averages[k].end(), 0.0);
     458       22810 :     aver_counters[k]=0;
     459             :   }
     460       22810 : }
     461             : 
     462             : 
     463         120 : void VesBias::multiSimSumAverages(const unsigned int c_id, const double walker_weight) {
     464         120 :   plumed_massert(walker_weight>=0.0,"the weight of the walker cannot be negative!");
     465         120 :   if(walker_weight!=1.0) {
     466        7860 :     for(size_t i=0; i<sampled_averages[c_id].size(); i++) {
     467        7800 :       sampled_averages[c_id][i] *= walker_weight;
     468             :     }
     469        7860 :     for(size_t i=0; i<sampled_cross_averages[c_id].size(); i++) {
     470        7800 :       sampled_cross_averages[c_id][i] *= walker_weight;
     471             :     }
     472             :   }
     473             :   //
     474         120 :   if(comm.Get_rank()==0) {
     475         120 :     multi_sim_comm.Sum(sampled_averages[c_id]);
     476         120 :     multi_sim_comm.Sum(sampled_cross_averages[c_id]);
     477         120 :     double norm_weights = walker_weight;
     478         120 :     multi_sim_comm.Sum(norm_weights);
     479         120 :     if(norm_weights>0.0) {norm_weights=1.0/norm_weights;}
     480        8580 :     for(size_t i=0; i<sampled_averages[c_id].size(); i++) {
     481        8460 :       sampled_averages[c_id][i] *= norm_weights;
     482             :     }
     483        8580 :     for(size_t i=0; i<sampled_cross_averages[c_id].size(); i++) {
     484        8460 :       sampled_cross_averages[c_id][i] *= norm_weights;
     485             :     }
     486             :   }
     487         120 :   comm.Bcast(sampled_averages[c_id],0);
     488         120 :   comm.Bcast(sampled_cross_averages[c_id],0);
     489         120 : }
     490             : 
     491             : 
     492       23556 : void VesBias::addToSampledAverages(const std::vector<double>& values, const unsigned int c_id) {
     493             :   /*
     494             :   use the following online equation to calculate the average and covariance
     495             :   (see https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Covariance)
     496             :       xm[n+1] = xm[n] + (x[n+1]-xm[n])/(n+1)
     497             :   */
     498       23556 :   double counter_dbl = static_cast<double>(aver_counters[c_id]);
     499             :   size_t ncoeffs = numberOfCoeffs(c_id);
     500       23556 :   std::vector<double> deltas(ncoeffs,0.0);
     501       23556 :   size_t stride = comm.Get_size();
     502       23556 :   size_t rank = comm.Get_rank();
     503             :   // update average and diagonal part of Hessian
     504     1830228 :   for(size_t i=rank; i<ncoeffs; i+=stride) {
     505             :     size_t midx = getHessianIndex(i,i,c_id);
     506     1806672 :     deltas[i] = (values[i]-sampled_averages[c_id][i])/(counter_dbl+1); // (x[n+1]-xm[n])/(n+1)
     507     1806672 :     sampled_averages[c_id][i] += deltas[i];
     508     1806672 :     sampled_cross_averages[c_id][midx] += (values[i]*values[i]-sampled_cross_averages[c_id][midx])/(counter_dbl+1);
     509             :   }
     510       23556 :   comm.Sum(deltas);
     511             :   // update off-diagonal part of the Hessian
     512       23556 :   if(!diagonal_hessian_) {
     513           0 :     for(size_t i=rank; i<ncoeffs; i+=stride) {
     514           0 :       for(size_t j=(i+1); j<ncoeffs; j++) {
     515             :         size_t midx = getHessianIndex(i,j,c_id);
     516           0 :         sampled_cross_averages[c_id][midx] += (values[i]*values[j]-sampled_cross_averages[c_id][midx])/(counter_dbl+1);
     517             :       }
     518             :     }
     519             :   }
     520             :   // NOTE: the MPI sum for sampled_averages and sampled_cross_averages is done later
     521       23556 :   aver_counters[c_id] += 1;
     522       23556 : }
     523             : 
     524             : 
     525           0 : void VesBias::setTargetDistAverages(const std::vector<double>& coeffderivs_aver_ps, const unsigned int coeffs_id) {
     526           0 :   TargetDistAverages(coeffs_id) = coeffderivs_aver_ps;
     527           0 :   TargetDistAverages(coeffs_id).setIterationCounterAndTime(this->getIterationCounter(),this->getTime());
     528           0 : }
     529             : 
     530             : 
     531         453 : void VesBias::setTargetDistAverages(const CoeffsVector& coeffderivs_aver_ps, const unsigned int coeffs_id) {
     532         453 :   TargetDistAverages(coeffs_id).setValues( coeffderivs_aver_ps );
     533         453 :   TargetDistAverages(coeffs_id).setIterationCounterAndTime(this->getIterationCounter(),this->getTime());
     534         453 : }
     535             : 
     536             : 
     537           0 : void VesBias::setTargetDistAveragesToZero(const unsigned int coeffs_id) {
     538           0 :   TargetDistAverages(coeffs_id).setAllValuesToZero();
     539           0 :   TargetDistAverages(coeffs_id).setIterationCounterAndTime(this->getIterationCounter(),this->getTime());
     540           0 : }
     541             : 
     542             : 
     543         175 : void VesBias::checkThatTemperatureIsGiven() {
     544         175 :   if(kbt_==0.0) {
     545           0 :     std::string err_msg = "VES bias " + getLabel() + " of type " + getName() + ": the temperature is needed so you need to give it using the TEMP keyword as the MD engine does not pass it to PLUMED.";
     546           0 :     plumed_merror(err_msg);
     547             :   }
     548         175 : }
     549             : 
     550             : 
     551        1005 : unsigned int VesBias::getIterationCounter() const {
     552             :   unsigned int iteration = 0;
     553        1005 :   if(optimizeCoeffs()) {
     554             :     iteration = getOptimizerPntr()->getIterationCounter();
     555             :   }
     556             :   else {
     557         226 :     iteration = getCoeffsPntrs()[0]->getIterationCounter();
     558             :   }
     559        1005 :   return iteration;
     560             : }
     561             : 
     562             : 
     563          85 : void VesBias::linkOptimizer(Optimizer* optimizer_pntr_in) {
     564             :   //
     565          85 :   if(optimizer_pntr_==NULL) {
     566          85 :     optimizer_pntr_ = optimizer_pntr_in;
     567             :   }
     568             :   else {
     569           0 :     std::string err_msg = "VES bias " + getLabel() + " of type " + getName() + " has already been linked with optimizer " + optimizer_pntr_->getLabel() + " of type " + optimizer_pntr_->getName() + ". You cannot link two optimizer to the same VES bias.";
     570           0 :     plumed_merror(err_msg);
     571             :   }
     572          85 :   checkThatTemperatureIsGiven();
     573          85 :   optimize_coeffs_ = true;
     574          85 :   filenames_have_iteration_number_ = true;
     575          85 : }
     576             : 
     577             : 
     578          82 : void VesBias::enableHessian(const bool diagonal_hessian) {
     579          82 :   compute_hessian_=true;
     580          82 :   diagonal_hessian_=diagonal_hessian;
     581          82 :   sampled_cross_averages.clear();
     582         164 :   for (unsigned int i=0; i<ncoeffssets_; i++) {
     583          82 :     std::string label = getCoeffsSetLabelString("hessian",i);
     584         164 :     hessian_pntrs_[i] = Tools::make_unique<CoeffsMatrix>(label,coeffs_pntrs_[i].get(),comm,diagonal_hessian_);
     585             :     //
     586             :     std::vector<double> cross_aver_sampled_tmp;
     587          82 :     cross_aver_sampled_tmp.assign(hessian_pntrs_[i]->getSize(),0.0);
     588          82 :     sampled_cross_averages.push_back(cross_aver_sampled_tmp);
     589             :   }
     590          82 : }
     591             : 
     592             : 
     593           0 : void VesBias::disableHessian() {
     594           0 :   compute_hessian_=false;
     595           0 :   diagonal_hessian_=true;
     596           0 :   sampled_cross_averages.clear();
     597           0 :   for (unsigned int i=0; i<ncoeffssets_; i++) {
     598           0 :     std::string label = getCoeffsSetLabelString("hessian",i);
     599           0 :     hessian_pntrs_[i] = Tools::make_unique<CoeffsMatrix>(label,coeffs_pntrs_[i].get(),comm,diagonal_hessian_);
     600             :     //
     601             :     std::vector<double> cross_aver_sampled_tmp;
     602           0 :     cross_aver_sampled_tmp.assign(hessian_pntrs_[i]->getSize(),0.0);
     603           0 :     sampled_cross_averages.push_back(cross_aver_sampled_tmp);
     604             :   }
     605           0 : }
     606             : 
     607             : 
     608         442 : std::string VesBias::getCoeffsSetLabelString(const std::string& type, const unsigned int coeffs_id) const {
     609         442 :   std::string label_prefix = getLabel() + ".";
     610         442 :   std::string label_postfix = "";
     611         442 :   if(use_multiple_coeffssets_) {
     612           0 :     Tools::convert(coeffs_id,label_postfix);
     613           0 :     label_postfix = "-" + label_postfix;
     614             :   }
     615        1326 :   return label_prefix+type+label_postfix;
     616             : }
     617             : 
     618             : 
     619         567 : std::unique_ptr<OFile> VesBias::getOFile(const std::string& filepath, const bool multi_sim_single_file, const bool enforce_backup) {
     620         567 :   auto ofile_pntr = Tools::make_unique<OFile>();
     621         567 :   std::string fp = filepath;
     622         567 :   ofile_pntr->link(*static_cast<Action*>(this));
     623         567 :   if(enforce_backup) {ofile_pntr->enforceBackup();}
     624         567 :   if(multi_sim_single_file) {
     625          56 :     unsigned int r=0;
     626          56 :     if(comm.Get_rank()==0) {r=multi_sim_comm.Get_rank();}
     627          56 :     comm.Bcast(r,0);
     628          56 :     if(r>0) {fp="/dev/null";}
     629         112 :     ofile_pntr->enforceSuffix("");
     630             :   }
     631         567 :   ofile_pntr->open(fp);
     632         567 :   return ofile_pntr;
     633           0 : }
     634             : 
     635             : 
     636           0 : void VesBias::setGridBins(const std::vector<unsigned int>& grid_bins_in) {
     637           0 :   plumed_massert(grid_bins_in.size()==getNumberOfArguments(),"the number of grid bins given doesn't match the number of arguments");
     638           0 :   grid_bins_=grid_bins_in;
     639           0 : }
     640             : 
     641             : 
     642           0 : void VesBias::setGridBins(const unsigned int nbins) {
     643           0 :   std::vector<unsigned int> grid_bins_in(getNumberOfArguments(),nbins);
     644           0 :   grid_bins_=grid_bins_in;
     645           0 : }
     646             : 
     647             : 
     648           0 : void VesBias::setGridMin(const std::vector<double>& grid_min_in) {
     649           0 :   plumed_massert(grid_min_in.size()==getNumberOfArguments(),"the number of lower bounds given for the grid doesn't match the number of arguments");
     650           0 :   grid_min_=grid_min_in;
     651           0 : }
     652             : 
     653             : 
     654           0 : void VesBias::setGridMax(const std::vector<double>& grid_max_in) {
     655           0 :   plumed_massert(grid_max_in.size()==getNumberOfArguments(),"the number of upper bounds given for the grid doesn't match the number of arguments");
     656           0 :   grid_max_=grid_max_in;
     657           0 : }
     658             : 
     659             : 
     660         383 : std::string VesBias::getCurrentOutputFilename(const std::string& base_filename, const std::string& suffix) const {
     661         383 :   std::string filename = base_filename;
     662         383 :   if(suffix.size()>0) {
     663          82 :     filename = FileBase::appendSuffix(filename,"."+suffix);
     664             :   }
     665         383 :   if(filenamesIncludeIterationNumber()) {
     666         756 :     filename = FileBase::appendSuffix(filename,"."+getIterationFilenameSuffix());
     667             :   }
     668         383 :   return filename;
     669             : }
     670             : 
     671             : 
     672         192 : std::string VesBias::getCurrentTargetDistOutputFilename(const std::string& suffix) const {
     673         192 :   std::string filename = targetdist_filename_;
     674         192 :   if(suffix.size()>0) {
     675         204 :     filename = FileBase::appendSuffix(filename,"."+suffix);
     676             :   }
     677         192 :   if(filenamesIncludeIterationNumber() && dynamicTargetDistribution()) {
     678         348 :     filename = FileBase::appendSuffix(filename,"."+getIterationFilenameSuffix());
     679             :   }
     680         192 :   return filename;
     681             : }
     682             : 
     683             : 
     684         552 : std::string VesBias::getIterationFilenameSuffix() const {
     685             :   std::string iter_str;
     686         552 :   Tools::convert(getIterationCounter(),iter_str);
     687         552 :   iter_str = "iter-" + iter_str;
     688         552 :   return iter_str;
     689             : }
     690             : 
     691             : 
     692           0 : std::string VesBias::getCoeffsSetFilenameSuffix(const unsigned int coeffs_id) const {
     693           0 :   std::string suffix = "";
     694           0 :   if(use_multiple_coeffssets_) {
     695           0 :     Tools::convert(coeffs_id,suffix);
     696           0 :     suffix = coeffs_id_prefix_ + suffix;
     697             :   }
     698           0 :   return suffix;
     699             : }
     700             : 
     701             : 
     702           3 : void VesBias::setupBiasCutoff(const double bias_cutoff_value, const double fermi_lambda) {
     703             :   //
     704             :   double fermi_exp_max = 100.0;
     705             :   //
     706             :   std::string str_bias_cutoff_value; VesTools::convertDbl2Str(bias_cutoff_value,str_bias_cutoff_value);
     707             :   std::string str_fermi_lambda; VesTools::convertDbl2Str(fermi_lambda,str_fermi_lambda);
     708             :   std::string str_fermi_exp_max; VesTools::convertDbl2Str(fermi_exp_max,str_fermi_exp_max);
     709           6 :   std::string swfunc_keywords = "FERMI R_0=" + str_bias_cutoff_value + " FERMI_LAMBDA=" + str_fermi_lambda + " FERMI_EXP_MAX=" + str_fermi_exp_max;
     710             :   //
     711           3 :   std::string swfunc_errors="";
     712           6 :   bias_cutoff_swfunc_pntr_ = Tools::make_unique<FermiSwitchingFunction>();
     713           3 :   bias_cutoff_swfunc_pntr_->set(swfunc_keywords,swfunc_errors);
     714           3 :   if(swfunc_errors.size()>0) {
     715           0 :     plumed_merror("problem with setting up Fermi switching function: " + swfunc_errors);
     716             :   }
     717             :   //
     718           3 :   bias_cutoff_value_=bias_cutoff_value;
     719           3 :   bias_cutoff_active_=true;
     720             :   enableDynamicTargetDistribution();
     721           3 : }
     722             : 
     723             : 
     724        3263 : double VesBias::getBiasCutoffSwitchingFunction(const double bias, double& deriv_factor) const {
     725        3263 :   plumed_massert(bias_cutoff_active_,"The bias cutoff is not active so you cannot call this function");
     726        3263 :   double arg = -(bias-bias_current_max_value);
     727        3263 :   double deriv=0.0;
     728        3263 :   double value = bias_cutoff_swfunc_pntr_->calculate(arg,deriv);
     729             :   // as FermiSwitchingFunction class has different behavior from normal SwitchingFunction class
     730             :   // I was having problems with NaN as it was dividing with zero
     731             :   // deriv *= arg;
     732        3263 :   deriv_factor = value-bias*deriv;
     733        3263 :   return value;
     734             : }
     735             : 
     736             : 
     737         567 : bool VesBias::useMultipleWalkers() const {
     738             :   bool use_mwalkers_mpi=false;
     739         567 :   if(optimizeCoeffs() && getOptimizerPntr()->useMultipleWalkers()) {
     740             :     use_mwalkers_mpi=true;
     741             :   }
     742         567 :   return use_mwalkers_mpi;
     743             : }
     744             : 
     745             : 
     746           0 : void VesBias::updateReweightFactor() {
     747           0 :   if(calc_reweightfactor_) {
     748           0 :     double value = calculateReweightFactor();
     749           0 :     getPntrToComponent("rct")->set(value);
     750             :   }
     751           0 : }
     752             : 
     753             : 
     754           0 : double VesBias::calculateReweightFactor() const {
     755           0 :   plumed_merror(getName()+" with label "+getLabel()+": calculation of the reweight factor c(t) has not been implemented for this type of VES bias");
     756             :   return 0.0;
     757             : }
     758             : 
     759             : 
     760             : }
     761             : }

Generated by: LCOV version 1.15