LCOV - code coverage report
Current view: top level - ves - TD_Uniform.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 55 56 98.2 %
Date: 2024-10-11 08:09:47 Functions: 7 7 100.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : 
      25             : #include "core/ActionRegister.h"
      26             : 
      27             : 
      28             : namespace PLMD {
      29             : namespace ves {
      30             : 
      31             : //+PLUMEDOC VES_TARGETDIST TD_UNIFORM
      32             : /*
      33             : Uniform target distribution (static).
      34             : 
      35             : Using this keyword you can define a uniform target distribution which is a
      36             : product of one-dimensional distributions \f$p_{k}(s_{k})\f$ that are uniform
      37             : over a given interval \f$[a_{k},b_{k}]\f$
      38             : 
      39             : \f[
      40             : p_{k}(s_{k}) =
      41             : \left \{\begin{array}{ll}
      42             : \frac{1}{(b_{k}-a_{k})} & \mathrm{if} \ a_{k} \leq s_{k} \leq b_{k} \\
      43             : &\\
      44             : 0 & \mathrm{otherwise}
      45             : \end{array}\right .
      46             : \f]
      47             : 
      48             : The overall distribution is then given as
      49             : \f[
      50             : p(\mathbf{s}) =
      51             : \prod^{d}_{k} p_{k}(s_{k}) =
      52             : \left\{\begin{array}{ll}
      53             : \prod^{d}_{k} \frac{1}{(b_{k}-a_{k})}
      54             : & \mathrm{if} \ a_{k} \leq s_{k} \leq b_{k} \ \mathrm{for\ all}\ k \\
      55             : \\
      56             : 0 & \mathrm{otherwise}
      57             : \end{array}\right.
      58             : \f]
      59             : The distribution is thus uniform inside a rectangular for two arguments
      60             : and a cube for a three arguments.
      61             : 
      62             : The limits of the intervals \f$ a_{k}\f$ and \f$ b_{k}\f$ are given
      63             : with the MINIMA and MAXIMA keywords, respectively. If one or both of
      64             : these keywords are missing the code should automatically detect the limits.
      65             : 
      66             : 
      67             : It is also possible to use one-dimensional distributions
      68             : that go smoothly to zero at the boundaries.
      69             : This is done by employing a function with
      70             : Gaussian switching functions at the boundaries \f$a_{k}\f$ and \f$b_{k}\f$
      71             : \f[
      72             : f_{k}(s_{k}) =
      73             : \begin{cases}
      74             : \exp\left(-\frac{(s_{k}-a_{k})^2}{2 \sigma^2_{a,k}}\right)
      75             : & \mathrm{if}\, s_{k} < a_{k} \\
      76             : \\
      77             : 1 & \mathrm{if}\, a_{k} \leq s_{k} \leq b_{k} \\
      78             : \\
      79             : \exp\left(-\frac{(s_{k}-b_{k})^2}{2 \sigma^2_{b,k}}\right)
      80             : & \mathrm{if}\, s_{k} > b_{k}
      81             : \end{cases}
      82             : \f]
      83             : where the standard deviation parameters \f$\sigma_{a,k}\f$
      84             : and \f$\sigma_{b,k}\f$ determine how quickly the switching functions
      85             : goes to zero.
      86             : The overall distribution is then normalized
      87             : \f[
      88             : p(\mathbf{s}) =
      89             : \prod^{d}_{k} p_{k}(s_{k}) =
      90             : \prod^{d}_{k} \frac{f(s_{k})}{\int d s_{k} \, f(s_{k})}
      91             : \f]
      92             : To use this option you need to provide the standard deviation
      93             : parameters \f$\sigma_{a,k}\f$ and \f$\sigma_{b,k}\f$ by using the
      94             : SIGMA_MINIMA and SIGMA_MAXIMA keywords, respectively. Giving a value of
      95             : 0.0 means that the boundary is sharp, which is the default behavior.
      96             : 
      97             : 
      98             : 
      99             : 
     100             : 
     101             : 
     102             : \par Examples
     103             : 
     104             : If one or both of the MINIMA or MAXIMA keywords are missing
     105             : the code should automatically detect the limits not given.
     106             : Therefore, if we consider a target distribution that is
     107             : defined over an interval from 0.0 to 10.0 for the first
     108             : argument and from 0.2 to 1.0 for the second argument are
     109             : the following example
     110             : \plumedfile
     111             : td: TD_UNIFORM
     112             : \endplumedfile
     113             : 
     114             : is equivalent to this one
     115             : 
     116             : \plumedfile
     117             : TD_UNIFORM ...
     118             :  MINIMA=0.0,0.2
     119             :  MAXIMA=10.0,1.0
     120             :  LABEL=td
     121             :  ... TD_UNIFORM
     122             : \endplumedfile
     123             : 
     124             : and this one
     125             : 
     126             : \plumedfile
     127             : td: TD_UNIFORM  MAXIMA=10.0,1.0
     128             : \endplumedfile
     129             : 
     130             : and also this one
     131             : 
     132             : \plumedfile
     133             : td: TD_UNIFORM MINIMA=0.0,0,2
     134             : \endplumedfile
     135             : 
     136             : 
     137             : We can also define a target distribution that goes smoothly to zero
     138             : at the boundaries of the uniform distribution. In the following
     139             : we consider an interval of 0 to 10 for the target distribution.
     140             : The following input would result in a target distribution that
     141             : would be uniform from 2 to 7 and then smoothly go to zero from
     142             : 2 to 0 and from 7 to 10.
     143             : \plumedfile
     144             : TD_UNIFORM ...
     145             :  MINIMA=2.0
     146             :  MAXIMA=+7.0
     147             :  SIGMA_MINIMA=0.5
     148             :  SIGMA_MAXIMA=1.0
     149             :  LABEL=td
     150             : ... TD_UNIFORM
     151             : \endplumedfile
     152             : It is also possible to employ a smooth switching function for just one
     153             : of the boundaries as shown here where the target distribution
     154             : would be uniform from 0 to 7 and then smoothly go to zero from 7 to 10.
     155             : \plumedfile
     156             : TD_UNIFORM ...
     157             :  MAXIMA=+7.0
     158             :  SIGMA_MAXIMA=1.0
     159             :  LABEL=td
     160             : ... TD_UNIFORM
     161             : \endplumedfile
     162             : Furthermore, it is possible to employ a sharp boundary by
     163             : using
     164             : \plumedfile
     165             : TD_UNIFORM ...
     166             :  MAXIMA=+7.0
     167             :  SIGMA_MAXIMA=0.0
     168             :  LABEL=td
     169             : ... TD_UNIFORM
     170             : \endplumedfile
     171             : or
     172             : \plumedfile
     173             : td: TD_UNIFORM MAXIMA=+7.0
     174             : \endplumedfile
     175             : 
     176             : 
     177             : */
     178             : //+ENDPLUMEDOC
     179             : 
     180             : class TD_Uniform : public TargetDistribution {
     181             :   std::vector<double> minima_;
     182             :   std::vector<double> maxima_;
     183             :   std::vector<double> sigma_min_;
     184             :   std::vector<double> sigma_max_;
     185             :   double GaussianSwitchingFunc(const double, const double, const double) const;
     186             :   void setupAdditionalGrids(const std::vector<Value*>&, const std::vector<std::string>&, const std::vector<std::string>&, const std::vector<unsigned int>&) override;
     187             : public:
     188             :   static void registerKeywords( Keywords&);
     189             :   explicit TD_Uniform(const ActionOptions& ao);
     190             :   double getValue(const std::vector<double>&) const override;
     191             : };
     192             : 
     193             : 
     194       10492 : PLUMED_REGISTER_ACTION(TD_Uniform,"TD_UNIFORM")
     195             : 
     196             : 
     197          74 : void TD_Uniform::registerKeywords(Keywords& keys) {
     198          74 :   TargetDistribution::registerKeywords(keys);
     199         148 :   keys.add("optional","MINIMA","The minimum of the intervals where the target distribution is taken as uniform. You should give one value for each argument.");
     200         148 :   keys.add("optional","MAXIMA","The maximum of the intervals where the target distribution is taken as uniform. You should give one value for each argument.");
     201         148 :   keys.add("optional","SIGMA_MINIMA","The standard deviation parameters of the Gaussian switching functions for the minima of the intervals. You should give one value for each argument. Value of 0.0 means that switch is done without a smooth switching function, this is the default behavior.");
     202         148 :   keys.add("optional","SIGMA_MAXIMA","The standard deviation parameters of the Gaussian switching functions for the maximum of the intervals. You should give one value for each argument. Value of 0.0 means that switch is done without a smooth switching function, this is the default behavior.");
     203          74 : }
     204             : 
     205             : 
     206          73 : TD_Uniform::TD_Uniform(const ActionOptions& ao):
     207             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     208         146 :   minima_(0),
     209          73 :   maxima_(0),
     210          73 :   sigma_min_(0),
     211         146 :   sigma_max_(0)
     212             : {
     213          73 :   parseVector("MINIMA",minima_);
     214          73 :   parseVector("MAXIMA",maxima_);
     215             : 
     216          73 :   parseVector("SIGMA_MINIMA",sigma_min_);
     217         146 :   parseVector("SIGMA_MAXIMA",sigma_max_);
     218          73 :   if(minima_.size()==0 && sigma_min_.size()>0) {plumed_merror(getName()+": you cannot give SIGMA_MINIMA if MINIMA is not given");}
     219          73 :   if(maxima_.size()==0 && sigma_max_.size()>0) {plumed_merror(getName()+": you cannot give SIGMA_MAXIMA if MAXIMA is not given");}
     220             : 
     221          73 :   if(minima_.size()>0 && maxima_.size()>0) {
     222             :     // both MINIMA and MAXIMA given, do all checks
     223          58 :     if(minima_.size()!=maxima_.size()) {plumed_merror(getName()+": MINIMA and MAXIMA do not have the same number of values.");}
     224          58 :     setDimension(minima_.size());
     225         122 :     for(unsigned int k=0; k<getDimension(); k++) {
     226          64 :       if(minima_[k]>maxima_[k]) {
     227           0 :         plumed_merror(getName()+": error in MINIMA and MAXIMA keywords, one of the MINIMA values is larger than the corresponding MAXIMA values");
     228             :       }
     229             :     }
     230             :   }
     231          15 :   else if(minima_.size()>0 && maxima_.size()==0) {
     232             :     // only MINIMA given, MAXIMA assigned later on.
     233           1 :     setDimension(minima_.size());
     234             :   }
     235          14 :   else if(maxima_.size()>0 && minima_.size()==0) {
     236             :     // only MAXIMA given, MINIMA assigned later on.
     237           1 :     setDimension(maxima_.size());
     238             :   }
     239          13 :   else if(maxima_.size()==0 && minima_.size()==0) {
     240             :     // neither MAXIMA nor MINIMA givenm, both assigned later on.
     241          13 :     setDimension(0);
     242             :   }
     243             : 
     244          73 :   if(sigma_min_.size()==0) {sigma_min_.assign(getDimension(),0.0);}
     245          73 :   if(sigma_max_.size()==0) {sigma_max_.assign(getDimension(),0.0);}
     246          73 :   if(sigma_min_.size()!=getDimension()) {plumed_merror(getName()+": SIGMA_MINIMA has the wrong number of values");}
     247          73 :   if(sigma_max_.size()!=getDimension()) {plumed_merror(getName()+": SIGMA_MAXIMA has the wrong number of values");}
     248             :   //
     249             :   setForcedNormalization();
     250          73 :   checkRead();
     251          73 : }
     252             : 
     253             : 
     254          73 : void TD_Uniform::setupAdditionalGrids(const std::vector<Value*>& arguments, const std::vector<std::string>& min, const std::vector<std::string>& max, const std::vector<unsigned int>& nbins) {
     255             : 
     256          73 :   if(minima_.size()==0) {
     257          14 :     minima_.assign(getDimension(),0.0);
     258          33 :     for(unsigned int k=0; k<getDimension(); k++) {Tools::convert(min[k],minima_[k]);}
     259             :   }
     260             : 
     261          73 :   if(maxima_.size()==0) {
     262          14 :     maxima_.assign(getDimension(),0.0);
     263          33 :     for(unsigned int k=0; k<getDimension(); k++) {Tools::convert(max[k],maxima_[k]);}
     264             :   }
     265             : 
     266          73 : }
     267             : 
     268             : 
     269      118654 : double TD_Uniform::getValue(const std::vector<double>& argument) const {
     270             :   //
     271             :   double value = 1.0;
     272      338719 :   for(unsigned int k=0; k<getDimension(); k++) {
     273             :     double tmp;
     274      220065 :     if(argument[k] < minima_[k]) {
     275       15379 :       tmp = GaussianSwitchingFunc(argument[k],minima_[k],sigma_min_[k]);
     276             :     }
     277      204686 :     else if(argument[k] > maxima_[k]) {
     278       15566 :       tmp = GaussianSwitchingFunc(argument[k],maxima_[k],sigma_max_[k]);
     279             :     }
     280             :     else {
     281             :       tmp = 1.0;
     282             :     }
     283      220065 :     value *= tmp;
     284             :   }
     285      118654 :   return value;
     286             : }
     287             : 
     288             : inline
     289             : double TD_Uniform::GaussianSwitchingFunc(const double argument, const double center, const double sigma) const {
     290       30945 :   if(sigma>0.0) {
     291       23278 :     double arg=(argument-center)/sigma;
     292       23278 :     return exp(-0.5*arg*arg);
     293             :   }
     294             :   else {
     295             :     return 0.0;
     296             :   }
     297             : }
     298             : 
     299             : 
     300             : 
     301             : 
     302             : 
     303             : 
     304             : }
     305             : }

Generated by: LCOV version 1.15