LCOV - code coverage report
Current view: top level - ves - TD_LinearCombination.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 58 77 75.3 %
Date: 2024-10-11 08:09:47 Functions: 9 13 69.2 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : #include "VesTools.h"
      25             : 
      26             : #include "core/ActionRegister.h"
      27             : #include "core/ActionSet.h"
      28             : #include "core/PlumedMain.h"
      29             : #include "tools/Grid.h"
      30             : 
      31             : 
      32             : namespace PLMD {
      33             : 
      34             : // class Grid;
      35             : class Action;
      36             : 
      37             : namespace ves {
      38             : 
      39             : //+PLUMEDOC VES_TARGETDIST TD_LINEAR_COMBINATION
      40             : /*
      41             : Target distribution given by linear combination of distributions (static or dynamic).
      42             : 
      43             : Employ a target distribution that is a linear combination of the other
      44             : distributions, defined as
      45             : \f[
      46             : p(\mathbf{s}) = \sum_{i} w_{i} \, p_{i}(\mathbf{s})
      47             : \f]
      48             : where the weights \f$w_{i}\f$ are normalized to 1, \f$\sum_{i}w_{i}=1\f$.
      49             : 
      50             : The labels of the distributions \f$p_{i}(\mathbf{s})\f$ to be used in the
      51             : linear combination are given in the DISTRIBUTIONS keyword.
      52             : 
      53             : The weights \f$w_{i}\f$ can be given using
      54             : the WEIGHTS keyword. The distributions are weighted equally if no weights are given.
      55             : 
      56             : It is assumed that all the distributions \f$p_{i}(\mathbf{s})\f$ are normalized.
      57             : If that is not the case for some reason should you
      58             : normalize each distribution separately by using the NORMALIZE
      59             : keyword when defining them in the input file (i.e. before the
      60             : TD_LINEAR_COMBINATION action).
      61             : Note that normalizing the overall
      62             : linear combination will generally lead to different results than normalizing
      63             : each distribution separately.
      64             : 
      65             : The linear combination will be a dynamic target distribution if one or more
      66             : of the distributions used is a dynamic distribution, otherwise it will be a
      67             : static distribution.
      68             : 
      69             : \par Examples
      70             : 
      71             : Here we employ a linear combination of a uniform and a Gaussian distribution.
      72             : No weights are given so the two distributions will be weighted equally.
      73             : \plumedfile
      74             : td_uni: TD_UNIFORM
      75             : 
      76             : td_gauss: TD_GAUSSIAN CENTER1=-2.0 SIGMA1=0.5
      77             : 
      78             : td_comb: TD_LINEAR_COMBINATION DISTRIBUTIONS=td_uni,td_gauss
      79             : \endplumedfile
      80             : 
      81             : Here we employ a linear combination of a uniform and two Gaussian distribution.
      82             : The weights are automatically normalized to 1 such that giving
      83             : WEIGHTS=1.0,1.0,2.0 as we do here is equal to giving WEIGHTS=0.25,0.25,0.50.
      84             : \plumedfile
      85             : td_uni: TD_UNIFORM
      86             : 
      87             : td_gauss1: TD_GAUSSIAN CENTER1=-2.0,-2.0 SIGMA1=0.5,0.3
      88             : 
      89             : td_gauss2: TD_GAUSSIAN CENTER1=+2.0,+2.0 SIGMA1=0.3,0.5
      90             : 
      91             : TD_LINEAR_COMBINATION ...
      92             :  DISTRIBUTIONS=td_uni,td_gauss1,td_gauss2
      93             :  WEIGHTS=1.0,1.0,2.0
      94             :  LABEL=td_comb
      95             : ... TD_LINEAR_COMBINATION
      96             : \endplumedfile
      97             : 
      98             : In the above example the two Gaussian kernels are given using two separate
      99             : DISTRIBUTION keywords. As the \ref TD_GAUSSIAN target distribution allows multiple
     100             : centers is it also possible to use just one DISTRIBUTION keyword for the two
     101             : Gaussian kernels. This is shown in the following example which will give the
     102             : exact same result as the one above as the weights have been appropriately
     103             : adjusted
     104             : \plumedfile
     105             : td_uni: TD_UNIFORM
     106             : 
     107             : TD_GAUSSIAN ...
     108             :  CENTER1=-2.0,-2.0  SIGMA1=0.5,0.3
     109             :  CENTER2=+2.0,+2.0  SIGMA2=0.3,0.5
     110             :  WEIGHTS=1.0,2.0
     111             :  LABEL=td_gauss
     112             : ... TD_GAUSSIAN
     113             : 
     114             : TD_LINEAR_COMBINATION ...
     115             :  DISTRIBUTIONS=td_uni,td_gauss
     116             :  WEIGHTS=0.25,0.75
     117             :  LABEL=td_comb
     118             : ... TD_LINEAR_COMBINATION
     119             : \endplumedfile
     120             : 
     121             : */
     122             : //+ENDPLUMEDOC
     123             : 
     124             : class VesBias;
     125             : 
     126             : class TD_LinearCombination: public TargetDistribution {
     127             : private:
     128             :   std::vector<TargetDistribution*> distribution_pntrs_;
     129             :   std::vector<Grid*> grid_pntrs_;
     130             :   std::vector<double> weights_;
     131             :   unsigned int ndist_;
     132             :   void setupAdditionalGrids(const std::vector<Value*>&, const std::vector<std::string>&, const std::vector<std::string>&, const std::vector<unsigned int>&) override;
     133             : public:
     134             :   static void registerKeywords(Keywords&);
     135             :   explicit TD_LinearCombination(const ActionOptions& ao);
     136             :   void updateGrid() override;
     137             :   double getValue(const std::vector<double>&) const override;
     138             :   //
     139             :   void linkVesBias(VesBias*) override;
     140             :   void linkAction(Action*) override;
     141             :   //
     142             :   void linkBiasGrid(Grid*) override;
     143             :   void linkBiasWithoutCutoffGrid(Grid*) override;
     144             :   void linkFesGrid(Grid*) override;
     145             :   //
     146             : };
     147             : 
     148             : 
     149       10431 : PLUMED_REGISTER_ACTION(TD_LinearCombination,"TD_LINEAR_COMBINATION")
     150             : 
     151             : 
     152          13 : void TD_LinearCombination::registerKeywords(Keywords& keys) {
     153          13 :   TargetDistribution::registerKeywords(keys);
     154          26 :   keys.add("compulsory","DISTRIBUTIONS","The labels of the target distribution actions to be used in the linear combination.");
     155          26 :   keys.add("optional","WEIGHTS","The weights of target distributions. Have to be as many as the number of target distribution labels given in DISTRIBUTIONS. If no weights are given the distributions are weighted equally. The weights are automatically normalized to 1.");
     156          13 :   keys.use("WELLTEMPERED_FACTOR");
     157             :   //keys.use("SHIFT_TO_ZERO");
     158          13 :   keys.use("NORMALIZE");
     159          13 : }
     160             : 
     161             : 
     162          12 : TD_LinearCombination::TD_LinearCombination(const ActionOptions& ao):
     163             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     164          24 :   distribution_pntrs_(0),
     165          12 :   grid_pntrs_(0),
     166          12 :   weights_(0),
     167          24 :   ndist_(0)
     168             : {
     169             :   std::vector<std::string> targetdist_labels;
     170          12 :   parseVector("DISTRIBUTIONS",targetdist_labels);
     171             : 
     172          12 :   std::string error_msg = "";
     173          24 :   distribution_pntrs_ = VesTools::getPointersFromLabels<TargetDistribution*>(targetdist_labels,plumed.getActionSet(),error_msg);
     174          12 :   if(error_msg.size()>0) {plumed_merror("Error in keyword DISTRIBUTIONS of "+getName()+": "+error_msg);}
     175             : 
     176          40 :   for(unsigned int i=0; i<distribution_pntrs_.size(); i++) {
     177          28 :     if(distribution_pntrs_[i]->isDynamic()) {setDynamic();}
     178          28 :     if(distribution_pntrs_[i]->fesGridNeeded()) {setFesGridNeeded();}
     179          28 :     if(distribution_pntrs_[i]->biasGridNeeded()) {setBiasGridNeeded();}
     180             :   }
     181             : 
     182          12 :   ndist_ = distribution_pntrs_.size();
     183          12 :   grid_pntrs_.assign(ndist_,NULL);
     184          12 :   if(ndist_==0) {plumed_merror(getName()+ ": no distributions are given.");}
     185          12 :   if(ndist_==1) {plumed_merror(getName()+ ": giving only one distribution does not make sense.");}
     186             :   //
     187          24 :   parseVector("WEIGHTS",weights_);
     188          12 :   if(weights_.size()==0) {weights_.assign(distribution_pntrs_.size(),1.0);}
     189          12 :   if(distribution_pntrs_.size()!=weights_.size()) {
     190           0 :     plumed_merror(getName()+ ": there has to be as many weights given in WEIGHTS as the number of target distribution labels given in DISTRIBUTIONS");
     191             :   }
     192             :   //
     193             :   double sum_weights=0.0;
     194          40 :   for(unsigned int i=0; i<weights_.size(); i++) {sum_weights+=weights_[i];}
     195          40 :   for(unsigned int i=0; i<weights_.size(); i++) {weights_[i]/=sum_weights;}
     196          12 :   checkRead();
     197          12 : }
     198             : 
     199             : 
     200           0 : double TD_LinearCombination::getValue(const std::vector<double>& argument) const {
     201           0 :   plumed_merror("getValue not implemented for TD_LinearCombination");
     202             :   return 0.0;
     203             : }
     204             : 
     205             : 
     206          12 : void TD_LinearCombination::setupAdditionalGrids(const std::vector<Value*>& arguments, const std::vector<std::string>& min, const std::vector<std::string>& max, const std::vector<unsigned int>& nbins) {
     207          40 :   for(unsigned int i=0; i<ndist_; i++) {
     208          28 :     distribution_pntrs_[i]->setupGrids(arguments,min,max,nbins);
     209          28 :     if(distribution_pntrs_[i]->getDimension()!=this->getDimension()) {
     210           0 :       plumed_merror(getName() + ": all target distribution must have the same dimension");
     211             :     }
     212          28 :     grid_pntrs_[i]=distribution_pntrs_[i]->getTargetDistGridPntr();
     213             :   }
     214          12 : }
     215             : 
     216             : 
     217          22 : void TD_LinearCombination::updateGrid() {
     218          70 :   for(unsigned int i=0; i<ndist_; i++) {
     219          48 :     distribution_pntrs_[i]->updateTargetDist();
     220             :   }
     221      162033 :   for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     222             :     double value = 0.0;
     223      506837 :     for(unsigned int i=0; i<ndist_; i++) {
     224      344826 :       value += weights_[i]*grid_pntrs_[i]->getValue(l);
     225             :     }
     226      162011 :     targetDistGrid().setValue(l,value);
     227      162011 :     logTargetDistGrid().setValue(l,-std::log(value));
     228             :   }
     229          22 :   logTargetDistGrid().setMinToZero();
     230          22 : }
     231             : 
     232             : 
     233           1 : void TD_LinearCombination::linkVesBias(VesBias* vesbias_pntr_in) {
     234           1 :   TargetDistribution::linkVesBias(vesbias_pntr_in);
     235           3 :   for(unsigned int i=0; i<ndist_; i++) {
     236           2 :     distribution_pntrs_[i]->linkVesBias(vesbias_pntr_in);
     237             :   }
     238           1 : }
     239             : 
     240             : 
     241           0 : void TD_LinearCombination::linkAction(Action* action_pntr_in) {
     242           0 :   TargetDistribution::linkAction(action_pntr_in);
     243           0 :   for(unsigned int i=0; i<ndist_; i++) {
     244           0 :     distribution_pntrs_[i]->linkAction(action_pntr_in);
     245             :   }
     246           0 : }
     247             : 
     248             : 
     249           0 : void TD_LinearCombination::linkBiasGrid(Grid* bias_grid_pntr_in) {
     250           0 :   TargetDistribution::linkBiasGrid(bias_grid_pntr_in);
     251           0 :   for(unsigned int i=0; i<ndist_; i++) {
     252           0 :     distribution_pntrs_[i]->linkBiasGrid(bias_grid_pntr_in);
     253             :   }
     254           0 : }
     255             : 
     256             : 
     257           0 : void TD_LinearCombination::linkBiasWithoutCutoffGrid(Grid* bias_withoutcutoff_grid_pntr_in) {
     258           0 :   TargetDistribution::linkBiasWithoutCutoffGrid(bias_withoutcutoff_grid_pntr_in);
     259           0 :   for(unsigned int i=0; i<ndist_; i++) {
     260           0 :     distribution_pntrs_[i]->linkBiasWithoutCutoffGrid(bias_withoutcutoff_grid_pntr_in);
     261             :   }
     262           0 : }
     263             : 
     264             : 
     265           1 : void TD_LinearCombination::linkFesGrid(Grid* fes_grid_pntr_in) {
     266           1 :   TargetDistribution::linkFesGrid(fes_grid_pntr_in);
     267           3 :   for(unsigned int i=0; i<ndist_; i++) {
     268           2 :     distribution_pntrs_[i]->linkFesGrid(fes_grid_pntr_in);
     269             :   }
     270           1 : }
     271             : 
     272             : 
     273             : }
     274             : }

Generated by: LCOV version 1.15