Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2016-2021 The VES code team 3 : (see the PEOPLE-VES file at the root of this folder for a list of names) 4 : 5 : See http://www.ves-code.org for more information. 6 : 7 : This file is part of VES code module. 8 : 9 : The VES code module is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : The VES code module is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with the VES code module. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : 23 : #include "Optimizer.h" 24 : #include "CoeffsVector.h" 25 : #include "CoeffsMatrix.h" 26 : 27 : #include "core/ActionRegister.h" 28 : #include "core/PlumedMain.h" 29 : 30 : 31 : 32 : namespace PLMD { 33 : namespace ves { 34 : 35 : //+PLUMEDOC VES_OPTIMIZER OPT_AVERAGED_SGD 36 : /* 37 : Averaged stochastic gradient decent with fixed step size. 38 : 39 : \par Algorithm 40 : 41 : This optimizer updates the coefficients according to the averaged stochastic gradient decent algorithm described in ref \cite Bach-NIPS-2013. This algorithm considers two sets of coefficients, the so-called instantaneous coefficients that are updated according to the recursion formula given by 42 : \f[ 43 : \boldsymbol{\alpha}^{(n+1)} = \boldsymbol{\alpha}^{(n)} - 44 : \mu \left[ 45 : \nabla \Omega(\bar{\boldsymbol{\alpha}}^{(n)}) + 46 : \mathbf{H}(\bar{\boldsymbol{\alpha}}^{(n)}) 47 : [\boldsymbol{\alpha}^{(n)}-\bar{\boldsymbol{\alpha}}^{(n)}] 48 : \right], 49 : \f] 50 : where \f$\mu\f$ is a fixed step size and the gradient \f$ \nabla\Omega(\bar{\boldsymbol{\alpha}}^{(n)})\f$ and the Hessian \f$\mathbf{H}(\bar{\boldsymbol{\alpha}}^{(n)})\f$ depend on the averaged coefficients defined as 51 : \f[ 52 : \bar{\boldsymbol{\alpha}}^{(n)} = \frac{1}{n+1} \sum_{k=0}^{n} \boldsymbol{\alpha}^{(k)}. 53 : \f] 54 : This means that the bias acting on the system depends on the averaged coefficients \f$\bar{\boldsymbol{\alpha}}^{(n)}\f$ which leads to a smooth convergence of the bias and the estimated free energy surface. Furthermore, this allows for a rather short sampling time for each iteration, for classical MD simulations typical sampling times are on the order of few ps (around 1000-4000 MD steps). 55 : 56 : Currently it is only supported to employ the diagonal part of the Hessian which is generally sufficient. Support for employing the full Hessian will be added later on. 57 : 58 : The VES bias that is to be optimized should be specified using the 59 : BIAS keyword. 60 : The fixed step size \f$\mu\f$ is given using the STEPSIZE keyword. 61 : The frequency of updating the coefficients is given using the 62 : STRIDE keyword where the value is given in the number of MD steps. 63 : For example, if the MD time step is 0.02 ps and STRIDE=2000 will the 64 : coefficients be updated every 4 ps. 65 : The coefficients will be outputted to the file given by the 66 : COEFFS_FILE keyword. How often the coefficients are written 67 : to this file is controlled by the COEFFS_OUTPUT keyword. 68 : 69 : If the VES bias employs a dynamic target distribution that needs to be 70 : iteratively updated (e.g. \ref TD_WELLTEMPERED) \cite Valsson-JCTC-2015, you will need to specify 71 : the stride for updating the target distribution by using 72 : the TARGETDIST_STRIDE keyword where the stride 73 : is given in terms coefficient iterations. For example if the 74 : MD time step is 0.02 ps and STRIDE=1000, such that the coefficients 75 : are updated every 2 ps, will TARGETDIST_STRIDE=500 mean that the 76 : target distribution will be updated every 1000 ps. 77 : 78 : The output of the free energy surfaces and biases is controlled by the FES_OUTPUT and the BIAS_OUTPUT 79 : keywords. It is also possible to output one-dimensional projections of the free energy surfaces 80 : by using the FES_PROJ_OUTPUT keyword but for that to work you will need to select 81 : for which argument to do the projections by using the numbered PROJ_ARG keyword in 82 : the VES bias that is optimized. 83 : You can also output dynamic target distributions by using the 84 : TARGETDIST_OUTPUT and TARGETDIST_PROJ_OUTPUT keywords. 85 : 86 : It is possible to start the optimization from some initial set of 87 : coefficients that have been previously obtained by using the INITIAL_COEFFS 88 : keyword. 89 : 90 : When restarting simulations it should be sufficient to put the \ref RESTART action 91 : in the beginning of the input files (or some MD codes the PLUMED should automatically 92 : detect if it is a restart run) and keep the same input as before The restarting of 93 : the optimization should be automatic as the optimizer will then read in the 94 : coefficients from the file given in COEFFS_FILE. For dynamic target 95 : distribution the code will also read in the final target distribution from the 96 : previous run (which is always outputted even if the TARGETDIST_OUTPUT keyword 97 : is not used). 98 : 99 : This optimizer supports the usage of multiple walkers where different copies of the system share the same bias potential (i.e. coefficients) and cooperatively sample the averages needed for the gradient and Hessian. This can significantly help with convergence in difficult cases. It is of course best to start the different copies from different positions in CV space. To activate this option you just need to add the MULTIPLE_WALKERS flag. Note that this is only supported if the MD code support running multiple replicas connected via MPI. 100 : 101 : The optimizer supports the usage of a so-called mask file that can be used to employ different step sizes for different coefficients and/or deactivate the optimization of certain coefficients (by putting values of 0.0). The mask file is read in by using the MASK_FILE keyword and should be in the same format as the coefficient file. It is possible to generate a template mask file by using the OUTPUT_MASK_FILE keyword. 102 : 103 : \par Examples 104 : 105 : In the following input we employ an averaged stochastic gradient decent with a 106 : fixed step size of 1.0 and update the coefficient every 1000 MD steps 107 : (e.g. every 2 ps if the MD time step is 0.02 ps). The coefficient are outputted 108 : to the coefficients.data every 50 iterations while the FES and bias is outputted 109 : to files every 500 iterations (e.g. every 1000 ps). 110 : \plumedfile 111 : phi: TORSION ATOMS=5,7,9,15 112 : 113 : bf1: BF_FOURIER ORDER=5 MINIMUM=-pi MAXIMUM=pi 114 : 115 : VES_LINEAR_EXPANSION ... 116 : ARG=phi 117 : BASIS_FUNCTIONS=bf1 118 : LABEL=ves1 119 : TEMP=300.0 120 : GRID_BINS=100 121 : ... VES_LINEAR_EXPANSION 122 : 123 : OPT_AVERAGED_SGD ... 124 : BIAS=ves1 125 : STRIDE=1000 126 : LABEL=o1 127 : STEPSIZE=1.0 128 : COEFFS_FILE=coefficients.data 129 : COEFFS_OUTPUT=50 130 : FES_OUTPUT=500 131 : BIAS_OUTPUT=500 132 : ... OPT_AVERAGED_SGD 133 : \endplumedfile 134 : 135 : 136 : In the following example we employ a well-tempered target distribution that 137 : is updated every 500 iterations (e.g. every 1000 ps). The target distribution is 138 : also output to a file every 2000 iterations (the TARGETDIST_OUTPUT keyword). 139 : Here we also employ MULTIPLE_WALKERS flag to enable the usage of 140 : multiple walkers. 141 : \plumedfile 142 : #SETTINGS NREPLICAS=2 143 : phi: TORSION ATOMS=5,7,9,15 144 : psi: TORSION ATOMS=7,9,15,17 145 : 146 : bf1: BF_FOURIER ORDER=5 MINIMUM=-pi MAXIMUM=pi 147 : bf2: BF_FOURIER ORDER=4 MINIMUM=-pi MAXIMUM=pi 148 : 149 : td1: TD_WELLTEMPERED BIASFACTOR=10 150 : 151 : VES_LINEAR_EXPANSION ... 152 : ARG=phi,psi 153 : BASIS_FUNCTIONS=bf1,bf2 154 : LABEL=ves1 155 : TEMP=300.0 156 : GRID_BINS=100,100 157 : TARGET_DISTRIBUTION=td1 158 : PROJ_ARG1=phi 159 : PROJ_ARG2=psi 160 : ... VES_LINEAR_EXPANSION 161 : 162 : OPT_AVERAGED_SGD ... 163 : BIAS=ves1 164 : STRIDE=1000 165 : LABEL=o1 166 : STEPSIZE=1.0 167 : MULTIPLE_WALKERS 168 : COEFFS_FILE=coefficients.data 169 : COEFFS_OUTPUT=50 170 : FES_OUTPUT=500 171 : FES_PROJ_OUTPUT=500 172 : BIAS_OUTPUT=500 173 : TARGETDIST_STRIDE=500 174 : TARGETDIST_OUTPUT=2000 175 : ... OPT_AVERAGED_SGD 176 : \endplumedfile 177 : 178 : 179 : 180 : */ 181 : //+ENDPLUMEDOC 182 : 183 : class Opt_BachAveragedSGD : public Optimizer { 184 : private: 185 : std::vector<std::unique_ptr<CoeffsVector>> combinedgradient_pntrs_; 186 : unsigned int combinedgradient_wstride_; 187 : std::vector<std::unique_ptr<OFile>> combinedgradientOFiles_; 188 : double decaying_aver_tau_; 189 : private: 190 60 : CoeffsVector& CombinedGradient(const unsigned int c_id) const {return *combinedgradient_pntrs_[c_id];} 191 : double getAverDecay() const; 192 : public: 193 : static void registerKeywords(Keywords&); 194 : explicit Opt_BachAveragedSGD(const ActionOptions&); 195 : void coeffsUpdate(const unsigned int c_id = 0) override; 196 : }; 197 : 198 : 199 10569 : PLUMED_REGISTER_ACTION(Opt_BachAveragedSGD,"OPT_AVERAGED_SGD") 200 : 201 : 202 76 : void Opt_BachAveragedSGD::registerKeywords(Keywords& keys) { 203 76 : Optimizer::registerKeywords(keys); 204 76 : Optimizer::useFixedStepSizeKeywords(keys); 205 76 : Optimizer::useMultipleWalkersKeywords(keys); 206 76 : Optimizer::useHessianKeywords(keys); 207 76 : Optimizer::useMaskKeywords(keys); 208 76 : Optimizer::useRestartKeywords(keys); 209 76 : Optimizer::useMonitorAverageGradientKeywords(keys); 210 76 : Optimizer::useDynamicTargetDistributionKeywords(keys); 211 228 : keys.add("hidden","COMBINED_GRADIENT_FILE","the name of output file for the combined gradient (gradient + Hessian term)"); 212 228 : keys.add("hidden","COMBINED_GRADIENT_OUTPUT","how often the combined gradient should be written to file. This parameter is given as the number of bias iterations. It is by default 100 if COMBINED_GRADIENT_FILE is specficed"); 213 228 : keys.add("hidden","COMBINED_GRADIENT_FMT","specify format for combined gradient file(s) (useful for decrease the number of digits in regtests)"); 214 228 : keys.add("optional","EXP_DECAYING_AVER","calculate the averaged coefficients using exponentially decaying averaging using the decaying constant given here in the number of iterations"); 215 76 : } 216 : 217 : 218 : 219 75 : Opt_BachAveragedSGD::Opt_BachAveragedSGD(const ActionOptions&ao): 220 : PLUMED_VES_OPTIMIZER_INIT(ao), 221 75 : combinedgradient_wstride_(100), 222 75 : decaying_aver_tau_(0.0) 223 : { 224 75 : log.printf(" Averaged stochastic gradient decent, see and cite "); 225 150 : log << plumed.cite("Bach and Moulines, NIPS 26, 773-781 (2013)"); 226 75 : log.printf("\n"); 227 75 : unsigned int decaying_aver_tau_int=0; 228 75 : parse("EXP_DECAYING_AVER",decaying_aver_tau_int); 229 75 : if(decaying_aver_tau_int>0) { 230 2 : decaying_aver_tau_ = static_cast<double>(decaying_aver_tau_int); 231 2 : log.printf(" Coefficients calculated using an exponentially decaying average with a decaying constant of %u iterations, see and cite ",decaying_aver_tau_int); 232 4 : log << plumed.cite("Invernizzi, Valsson, and Parrinello, Proc. Natl. Acad. Sci. USA 114, 3370-3374 (2017)"); 233 2 : log.printf("\n"); 234 : } 235 : // 236 : std::vector<std::string> combinedgradient_fnames; 237 75 : parseFilenames("COMBINED_GRADIENT_FILE",combinedgradient_fnames); 238 150 : parse("COMBINED_GRADIENT_OUTPUT",combinedgradient_wstride_); 239 75 : setupOFiles(combinedgradient_fnames,combinedgradientOFiles_,useMultipleWalkers()); 240 75 : std::string combinedgradient_fmt=""; 241 150 : parse("COMBINED_GRADIENT_FMT",combinedgradient_fmt); 242 75 : if(combinedgradient_fnames.size()>0) { 243 12 : for(unsigned int i=0; i<numberOfCoeffsSets(); i++) { 244 12 : auto combinedgradient_tmp = Tools::make_unique<CoeffsVector>(*getGradientPntrs()[i]); 245 6 : std::string label = getGradientPntrs()[i]->getLabel(); 246 6 : if(label.find("gradient")!=std::string::npos) { 247 12 : label.replace(label.find("gradient"), std::string("gradient").length(), "combined_gradient"); 248 : } 249 : else { 250 : label += "_combined"; 251 : } 252 6 : combinedgradient_tmp->setLabels(label); 253 6 : if(combinedgradient_fmt.size()>0) { 254 : combinedgradient_tmp->setOutputFmt(combinedgradient_fmt); 255 : } 256 6 : combinedgradient_pntrs_.emplace_back(std::move(combinedgradient_tmp)); 257 6 : } 258 : // 259 6 : if(numberOfCoeffsSets()==1) { 260 12 : log.printf(" Combined gradient (gradient + Hessian term) will be written out to file %s every %u iterations\n",combinedgradientOFiles_[0]->getPath().c_str(),combinedgradient_wstride_); 261 : } 262 : else { 263 0 : log.printf(" Combined gradient (gradient + Hessian term) will be written out to the following files every %u iterations:\n",combinedgradient_wstride_); 264 0 : for(unsigned int i=0; i<combinedgradientOFiles_.size(); i++) { 265 0 : log.printf(" coefficient set %u: %s\n",i,combinedgradientOFiles_[i]->getPath().c_str()); 266 : } 267 : } 268 : } 269 : // 270 : 271 75 : turnOnHessian(); 272 75 : checkRead(); 273 75 : } 274 : 275 : 276 22675 : void Opt_BachAveragedSGD::coeffsUpdate(const unsigned int c_id) { 277 : // 278 22675 : if(combinedgradientOFiles_.size()>0 && (getIterationCounter()+1)%combinedgradient_wstride_==0) { 279 60 : CombinedGradient(c_id).setValues( ( Gradient(c_id) + Hessian(c_id)*(AuxCoeffs(c_id)-Coeffs(c_id)) ) ); 280 60 : combinedgradient_pntrs_[c_id]->setIterationCounterAndTime(getIterationCounter()+1,getTime()); 281 60 : combinedgradient_pntrs_[c_id]->writeToFile(*combinedgradientOFiles_[c_id]); 282 : } 283 : // 284 : double aver_decay = getAverDecay(); 285 22675 : AuxCoeffs(c_id) += - StepSize(c_id)*CoeffsMask(c_id) * ( Gradient(c_id) + Hessian(c_id)*(AuxCoeffs(c_id)-Coeffs(c_id)) ); 286 : //AuxCoeffs() = AuxCoeffs() - StepSize() * ( Gradient() + Hessian()*(AuxCoeffs()-Coeffs()) ); 287 22675 : Coeffs(c_id) += aver_decay * ( AuxCoeffs(c_id)-Coeffs(c_id) ); 288 22675 : } 289 : 290 : 291 : inline 292 : double Opt_BachAveragedSGD::getAverDecay() const { 293 22675 : double aver_decay = 1.0 / ( getIterationCounterDbl() + 1.0 ); 294 22675 : if(decaying_aver_tau_ > 0.0 && (getIterationCounterDbl() + 1.0) > decaying_aver_tau_) { 295 14 : aver_decay = 1.0 / decaying_aver_tau_; 296 : } 297 : return aver_decay; 298 : } 299 : 300 : 301 : } 302 : }