LCOV - code coverage report
Current view: top level - tools - SwitchingFunction.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 256 263 97.3 %
Date: 2024-10-11 08:09:47 Functions: 11 11 100.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2012-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "SwitchingFunction.h"
      23             : #include "Tools.h"
      24             : #include "Keywords.h"
      25             : #include "OpenMP.h"
      26             : #include <vector>
      27             : #include <limits>
      28             : #include <algorithm>
      29             : 
      30             : #define PI 3.14159265358979323846
      31             : 
      32             : namespace PLMD {
      33             : 
      34             : //+PLUMEDOC INTERNAL switchingfunction
      35             : /*
      36             : Functions that measure whether values are less than a certain quantity.
      37             : 
      38             : Switching functions \f$s(r)\f$ take a minimum of one input parameter \f$r_0\f$.
      39             : For \f$r \le d_0 \quad s(r)=1.0\f$ while for \f$r > d_0\f$ the function decays smoothly to 0.
      40             : The various switching functions available in PLUMED differ in terms of how this decay is performed.
      41             : 
      42             : Where there is an accepted convention in the literature (e.g. \ref COORDINATION) on the form of the
      43             : switching function we use the convention as the default.  However, the flexibility to use different
      44             : switching functions is always present generally through a single keyword. This keyword generally
      45             : takes an input with the following form:
      46             : 
      47             : \verbatim
      48             : KEYWORD={TYPE <list of parameters>}
      49             : \endverbatim
      50             : 
      51             : The following table contains a list of the various switching functions that are available in PLUMED 2
      52             : together with an example input.
      53             : 
      54             : <table align=center frame=void width=95%% cellpadding=5%%>
      55             : <tr>
      56             : <td> TYPE </td> <td> FUNCTION </td> <td> EXAMPLE INPUT </td> <td> DEFAULT PARAMETERS </td>
      57             : </tr> <tr> <td>RATIONAL </td> <td>
      58             : \f$
      59             : s(r)=\frac{ 1 - \left(\frac{ r - d_0 }{ r_0 }\right)^{n} }{ 1 - \left(\frac{ r - d_0 }{ r_0 }\right)^{m} }
      60             : \f$
      61             : </td> <td>
      62             : {RATIONAL R_0=\f$r_0\f$ D_0=\f$d_0\f$ NN=\f$n\f$ MM=\f$m\f$}
      63             : </td> <td> \f$d_0=0.0\f$, \f$n=6\f$, \f$m=2n\f$ </td>
      64             : </tr> <tr>
      65             : <td> EXP </td> <td>
      66             : \f$
      67             : s(r)=\exp\left(-\frac{ r - d_0 }{ r_0 }\right)
      68             : \f$
      69             : </td> <td>
      70             : {EXP  R_0=\f$r_0\f$ D_0=\f$d_0\f$}
      71             : </td> <td> \f$d_0=0.0\f$ </td>
      72             : </tr> <tr>
      73             : <td> GAUSSIAN </td> <td>
      74             : \f$
      75             : s(r)=\exp\left(-\frac{ (r - d_0)^2 }{ 2r_0^2 }\right)
      76             : \f$
      77             : </td> <td>
      78             : {GAUSSIAN R_0=\f$r_0\f$ D_0=\f$d_0\f$}
      79             : </td> <td> \f$d_0=0.0\f$ </td>
      80             : </tr> <tr>
      81             : <td> SMAP </td> <td>
      82             : \f$
      83             : s(r) = \left[ 1 + ( 2^{a/b} -1 )\left( \frac{r-d_0}{r_0} \right)^a \right]^{-b/a}
      84             : \f$
      85             : </td> <td>
      86             : {SMAP R_0=\f$r_0\f$ D_0=\f$d_0\f$ A=\f$a\f$ B=\f$b\f$}
      87             : </td> <td> \f$d_0=0.0\f$ </td>
      88             : </tr> <tr>
      89             : <td> Q </td> <td>
      90             : \f$
      91             : s(r) = \frac{1}{1 + \exp(\beta(r_{ij} - \lambda r_{ij}^0))}
      92             : \f$
      93             : </td> <td>
      94             : {Q REF=\f$r_{ij}^0\f$ BETA=\f$\beta\f$ LAMBDA=\f$\lambda\f$ }
      95             : </td> <td> \f$\lambda=1.8\f$,  \f$\beta=50 nm^-1\f$ (all-atom)<br/>\f$\lambda=1.5\f$,  \f$\beta=50 nm^-1\f$ (coarse-grained)  </td>
      96             : </tr> <tr>
      97             : <td> CUBIC </td> <td>
      98             : \f$
      99             : s(r) = (y-1)^2(1+2y) \qquad \textrm{where} \quad y = \frac{r - r_1}{r_0-r_1}
     100             : \f$
     101             : </td> <td>
     102             : {CUBIC D_0=\f$r_1\f$ D_MAX=\f$r_0\f$}
     103             : </td> <td> </td>
     104             : </tr> <tr>
     105             : <td> TANH </td> <td>
     106             : \f$
     107             : s(r) = 1 - \tanh\left( \frac{ r - d_0 }{ r_0 } \right)
     108             : \f$
     109             : </td> <td>
     110             : {TANH R_0=\f$r_0\f$ D_0=\f$d_0\f$}
     111             : </td> <td> </td>
     112             : </tr> <tr>
     113             : <td> COSINUS </td> <td>
     114             : \f$s(r) =\left\{\begin{array}{ll}
     115             :    1                                                           & \mathrm{if } r \leq d_0 \\
     116             :    0.5 \left( \cos ( \frac{ r - d_0 }{ r_0 } \pi ) + 1 \right) & \mathrm{if } d_0 < r\leq d_0 + r_0 \\
     117             :    0                                                           & \mathrm{if } r < d_0 + r_0
     118             :   \end{array}\right.
     119             : \f$
     120             : </td> <td>
     121             : {COSINUS R_0=\f$r_0\f$ D_0=\f$d_0\f$}
     122             : </td> <td> </td>
     123             : </tr> <tr>
     124             : <td> CUSTOM </td> <td>
     125             : \f$
     126             : s(r) = FUNC
     127             : \f$
     128             : </td> <td>
     129             : {CUSTOM FUNC=1/(1+x^6) R_0=\f$r_0\f$ D_0=\f$d_0\f$}
     130             : </td> <td> </td>
     131             : </tr>
     132             : </table>
     133             : 
     134             : Notice that for backward compatibility we allow using `MATHEVAL` instead of `CUSTOM`.
     135             : Also notice that if the a `CUSTOM` switching function only depends on even powers of `x` it can be
     136             : made faster by using `x2` as a variable. For instance
     137             : \verbatim
     138             : {CUSTOM FUNC=1/(1+x2^3) R_0=0.3}
     139             : \endverbatim
     140             : is equivalent to
     141             : \verbatim
     142             : {CUSTOM FUNC=1/(1+x^6) R_0=0.3}
     143             : \endverbatim
     144             : but runs faster. The reason is that there is an expensive square root calculation that can be optimized out.
     145             : 
     146             : 
     147             : \attention
     148             : With the default implementation CUSTOM is slower than other functions
     149             : (e.g., it is slower than an equivalent RATIONAL function by approximately a factor 2).
     150             : Checkout page \ref Lepton to see how to improve its performance.
     151             : 
     152             : For all the switching functions in the above table one can also specify a further (optional) parameter using the parameter
     153             : keyword D_MAX to assert that for \f$r>d_{\textrm{max}}\f$ the switching function can be assumed equal to zero.
     154             : In this case the function is brought smoothly to zero by stretching and shifting it.
     155             : \verbatim
     156             : KEYWORD={RATIONAL R_0=1 D_MAX=3}
     157             : \endverbatim
     158             : the resulting switching function will be
     159             : \f$
     160             : s(r) = \frac{s'(r)-s'(d_{max})}{s'(0)-s'(d_{max})}
     161             : \f$
     162             : where
     163             : \f$
     164             : s'(r)=\frac{1-r^6}{1-r^{12}}
     165             : \f$
     166             : Since PLUMED 2.2 this is the default. The old behavior (no stretching) can be obtained with the
     167             : NOSTRETCH flag. The NOSTRETCH keyword is only provided for backward compatibility and might be
     168             : removed in the future. Similarly, the STRETCH keyword is still allowed but has no effect.
     169             : 
     170             : Notice that switching functions defined with the simplified syntax are never stretched
     171             : for backward compatibility. This might change in the future.
     172             : 
     173             : */
     174             : //+ENDPLUMEDOC
     175             : 
     176          90 : void SwitchingFunction::registerKeywords( Keywords& keys ) {
     177         180 :   keys.add("compulsory","R_0","the value of R_0 in the switching function");
     178         180 :   keys.add("compulsory","D_0","0.0","the value of D_0 in the switching function");
     179         180 :   keys.add("optional","D_MAX","the value at which the switching function can be assumed equal to zero");
     180         180 :   keys.add("compulsory","NN","6","the value of n in the switching function (only needed for TYPE=RATIONAL)");
     181         180 :   keys.add("compulsory","MM","0","the value of m in the switching function (only needed for TYPE=RATIONAL); 0 implies 2*NN");
     182         180 :   keys.add("compulsory","A","the value of a in the switching function (only needed for TYPE=SMAP)");
     183         180 :   keys.add("compulsory","B","the value of b in the switching function (only needed for TYPE=SMAP)");
     184          90 : }
     185             : 
     186        1018 : void SwitchingFunction::set(const std::string & definition,std::string& errormsg) {
     187        1018 :   std::vector<std::string> data=Tools::getWords(definition);
     188        1018 :   if( data.size()<1 ) {
     189             :     errormsg="missing all input for switching function";
     190             :     return;
     191             :   }
     192        1018 :   std::string name=data[0];
     193             :   data.erase(data.begin());
     194        1018 :   invr0=0.0;
     195        1018 :   invr0_2=0.0;
     196        1018 :   d0=0.0;
     197        1018 :   dmax=std::numeric_limits<double>::max();
     198        1018 :   dmax_2=std::numeric_limits<double>::max();
     199        1018 :   stretch=1.0;
     200        1018 :   shift=0.0;
     201        1018 :   init=true;
     202             : 
     203             :   bool present;
     204             : 
     205        1018 :   present=Tools::findKeyword(data,"D_0");
     206        1312 :   if(present && !Tools::parse(data,"D_0",d0)) errormsg="could not parse D_0";
     207             : 
     208        1018 :   present=Tools::findKeyword(data,"D_MAX");
     209        1246 :   if(present && !Tools::parse(data,"D_MAX",dmax)) errormsg="could not parse D_MAX";
     210        1018 :   if(dmax<std::sqrt(std::numeric_limits<double>::max())) dmax_2=dmax*dmax;
     211        1018 :   bool dostretch=false;
     212        1018 :   Tools::parseFlag(data,"STRETCH",dostretch); // this is ignored now
     213        1018 :   dostretch=true;
     214        1018 :   bool dontstretch=false;
     215        1018 :   Tools::parseFlag(data,"NOSTRETCH",dontstretch); // this is ignored now
     216        1018 :   if(dontstretch) dostretch=false;
     217             :   double r0;
     218        1018 :   if(name=="CUBIC") {
     219          18 :     r0 = dmax - d0;
     220             :   } else {
     221        1000 :     bool found_r0=Tools::parse(data,"R_0",r0);
     222        1000 :     if(!found_r0) errormsg="R_0 is required";
     223             :   }
     224        1018 :   invr0=1.0/r0;
     225        1018 :   invr0_2=invr0*invr0;
     226             : 
     227        1018 :   if(name=="RATIONAL") {
     228         290 :     type=rational;
     229         290 :     nn=6;
     230         290 :     mm=0;
     231         290 :     present=Tools::findKeyword(data,"NN");
     232         438 :     if(present && !Tools::parse(data,"NN",nn)) errormsg="could not parse NN";
     233         290 :     present=Tools::findKeyword(data,"MM");
     234         438 :     if(present && !Tools::parse(data,"MM",mm)) errormsg="could not parse MM";
     235         290 :     if(mm==0) mm=2*nn;
     236         356 :     fastrational=(nn%2==0 && mm%2==0 && d0==0.0);
     237         728 :   } else if(name=="SMAP") {
     238          10 :     type=smap;
     239          10 :     present=Tools::findKeyword(data,"A");
     240          30 :     if(present && !Tools::parse(data,"A",a)) errormsg="could not parse A";
     241          10 :     present=Tools::findKeyword(data,"B");
     242          30 :     if(present && !Tools::parse(data,"B",b)) errormsg="could not parse B";
     243          10 :     c=std::pow(2., static_cast<double>(a)/static_cast<double>(b) ) - 1;
     244          10 :     d = -static_cast<double>(b) / static_cast<double>(a);
     245             :   }
     246         718 :   else if(name=="Q") {
     247         570 :     type=nativeq;
     248         570 :     beta = 50.0;  // nm-1
     249         570 :     lambda = 1.8; // unitless
     250         570 :     present=Tools::findKeyword(data,"BETA");
     251        1710 :     if(present && !Tools::parse(data, "BETA", beta)) errormsg="could not parse BETA";
     252         570 :     present=Tools::findKeyword(data,"LAMBDA");
     253        1710 :     if(present && !Tools::parse(data, "LAMBDA", lambda)) errormsg="could not parse LAMBDA";
     254         570 :     bool found_ref=Tools::parse(data,"REF",ref); // nm
     255         570 :     if(!found_ref) errormsg="REF (reference disatance) is required for native Q";
     256             : 
     257             :   }
     258         148 :   else if(name=="EXP") type=exponential;
     259          83 :   else if(name=="GAUSSIAN") type=gaussian;
     260          35 :   else if(name=="CUBIC") type=cubic;
     261          17 :   else if(name=="TANH") type=tanh;
     262          15 :   else if(name=="COSINUS") type=cosinus;
     263          25 :   else if((name=="MATHEVAL" || name=="CUSTOM")) {
     264          13 :     type=leptontype;
     265             :     std::string func;
     266          13 :     Tools::parse(data,"FUNC",func);
     267          15 :     lepton::ParsedExpression pe=lepton::Parser::parse(func).optimize(lepton::Constants());
     268          13 :     lepton_func=func;
     269          13 :     expression.resize(OpenMP::getNumThreads());
     270          39 :     for(auto & e : expression) e=pe.createCompiledExpression();
     271          13 :     lepton_ref.resize(expression.size());
     272          35 :     for(unsigned t=0; t<lepton_ref.size(); t++) {
     273          24 :       auto vars=expression[t].getVariables();
     274          24 :       bool found_x=std::find(vars.begin(),vars.end(),"x")!=vars.end();
     275          24 :       bool found_x2=std::find(vars.begin(),vars.end(),"x2")!=vars.end();
     276          24 :       if (vars.size()==0) {
     277             : // this is necessary since in some cases lepton thinks a variable is not present even though it is present
     278             : // e.g. func=0*x
     279           0 :         lepton_ref[t]=nullptr;
     280          24 :       } else if(vars.size()==1 && found_x) {
     281          16 :         lepton_ref[t]=&const_cast<lepton::CompiledExpression*>(&expression[t])->getVariableReference("x");
     282           8 :       } else if(vars.size()==1 && found_x2) {
     283           8 :         lepton_ref[t]=&const_cast<lepton::CompiledExpression*>(&expression[t])->getVariableReference("x2");
     284           6 :         leptonx2=true;
     285           2 :       } else if(vars.size()==2 && found_x && found_x2) {
     286           2 :         plumed_error() << "Cannot use simultaneously x and x2 argument in switching function: "<<func;
     287             :       } else {
     288           2 :         plumed_error() << "Something wrong in the arguments for switching function: "<<func;
     289             :       }
     290             :     }
     291          13 :     std::string arg="x";
     292          11 :     if(leptonx2) arg="x2";
     293          22 :     lepton::ParsedExpression ped=lepton::Parser::parse(func).differentiate(arg).optimize(lepton::Constants());
     294          11 :     expression_deriv.resize(OpenMP::getNumThreads());
     295          33 :     for(auto & e : expression_deriv) e=ped.createCompiledExpression();
     296          11 :     lepton_ref_deriv.resize(expression_deriv.size());
     297          33 :     for(unsigned t=0; t<lepton_ref_deriv.size(); t++) {
     298             :       try {
     299          22 :         lepton_ref_deriv[t]=&const_cast<lepton::CompiledExpression*>(&expression_deriv[t])->getVariableReference(arg);
     300           0 :       } catch(const PLMD::lepton::Exception& exc) {
     301             : // this is necessary since in some cases lepton things a variable is not present even though it is present
     302             : // e.g. func=3*x
     303           0 :         lepton_ref_deriv[t]=nullptr;
     304           0 :       }
     305             :     }
     306             : 
     307             :   }
     308           2 :   else errormsg="cannot understand switching function type '"+name+"'";
     309        1016 :   if( !data.empty() ) {
     310             :     errormsg="found the following rogue keywords in switching function input : ";
     311           2 :     for(unsigned i=0; i<data.size(); ++i) errormsg = errormsg + data[i] + " ";
     312             :   }
     313             : 
     314        1016 :   if(dostretch && dmax!=std::numeric_limits<double>::max()) {
     315             :     double dummy;
     316          95 :     double s0=calculate(0.0,dummy);
     317          95 :     double sd=calculate(dmax,dummy);
     318          95 :     stretch=1.0/(s0-sd);
     319          95 :     shift=-sd*stretch;
     320             :   }
     321        1016 :   plumed_assert(!(leptonx2 && d0!=0.0)) << "You cannot use lepton x2 optimization with d0!=0.0 (d0=" << d0 <<")\n"
     322           0 :                                         << "Please rewrite your function using x as a variable";
     323        1018 : }
     324             : 
     325        1068 : std::string SwitchingFunction::description() const {
     326        1068 :   std::ostringstream ostr;
     327        1068 :   ostr<<1./invr0<<".  Using ";
     328        1068 :   if(type==rational) {
     329         347 :     ostr<<"rational";
     330             :   } else if(type==exponential) {
     331          61 :     ostr<<"exponential";
     332             :   } else if(type==nativeq) {
     333         570 :     ostr<<"nativeq";
     334             :   } else if(type==gaussian) {
     335          48 :     ostr<<"gaussian";
     336             :   } else if(type==smap) {
     337          10 :     ostr<<"smap";
     338             :   } else if(type==cubic) {
     339          18 :     ostr<<"cubic";
     340             :   } else if(type==tanh) {
     341           2 :     ostr<<"tanh";
     342             :   } else if(type==cosinus) {
     343           1 :     ostr<<"cosinus";
     344             :   } else if(type==leptontype) {
     345          11 :     ostr<<"lepton";
     346             :   } else {
     347           0 :     plumed_merror("Unknown switching function type");
     348             :   }
     349        1068 :   ostr<<" switching function with parameters d0="<<d0;
     350        1068 :   if(type==rational) {
     351         347 :     ostr<<" nn="<<nn<<" mm="<<mm;
     352         721 :   } else if(type==nativeq) {
     353         570 :     ostr<<" beta="<<beta<<" lambda="<<lambda<<" ref="<<ref;
     354         151 :   } else if(type==smap) {
     355          10 :     ostr<<" a="<<a<<" b="<<b;
     356         141 :   } else if(type==cubic) {
     357          18 :     ostr<<" dmax="<<dmax;
     358         123 :   } else if(type==leptontype) {
     359          11 :     ostr<<" func="<<lepton_func;
     360             : 
     361             :   }
     362        1068 :   return ostr.str();
     363        1068 : }
     364             : 
     365    41285999 : double SwitchingFunction::do_rational(double rdist,double&dfunc,int nn,int mm)const {
     366             :   double result;
     367    41285999 :   if(2*nn==mm) {
     368             : // if 2*N==M, then (1.0-rdist^N)/(1.0-rdist^M) = 1.0/(1.0+rdist^N)
     369    25190661 :     double rNdist=Tools::fastpow(rdist,nn-1);
     370    25190661 :     double iden=1.0/(1+rNdist*rdist);
     371    25190661 :     dfunc = -nn*rNdist*iden*iden;
     372             :     result = iden;
     373             :   } else {
     374    16095338 :     if(rdist>(1.-5.0e10*epsilon) && rdist<(1+5.0e10*epsilon)) {
     375          10 :       const double secDev = ((nn * (mm * mm - 3.0* mm * (-1 + nn ) + nn *(-3 + 2* nn )))/(6.0* mm ));
     376          10 :       const double x =(rdist-1.0);
     377          10 :       dfunc=0.5*nn*double(nn-mm)/mm;
     378          10 :       result = double(nn)/mm+ x * ( dfunc + 0.5 * x * secDev);
     379          10 :       dfunc  = dfunc + x * secDev;
     380          10 :     } else {
     381    16095328 :       double rNdist=Tools::fastpow(rdist,nn-1);
     382    16095328 :       double rMdist=Tools::fastpow(rdist,mm-1);
     383    16095328 :       double num = 1.-rNdist*rdist;
     384    16095328 :       double iden = 1./(1.-rMdist*rdist);
     385    16095328 :       double func = num*iden;
     386             :       result = func;
     387    16095328 :       dfunc = ((-nn*rNdist*iden)+(func*(iden*mm)*rMdist));
     388             :     }
     389             :   }
     390    41285999 :   return result;
     391             : }
     392             : 
     393    19721455 : double SwitchingFunction::calculateSqr(double distance2,double&dfunc)const {
     394    19721455 :   if(fastrational) {
     395     7657979 :     if(distance2>dmax_2) {
     396      144482 :       dfunc=0.0;
     397      144482 :       return 0.0;
     398             :     }
     399     7513497 :     const double rdist_2 = distance2*invr0_2;
     400     7513497 :     double result=do_rational(rdist_2,dfunc,nn/2,mm/2);
     401             : // chain rule:
     402     7513497 :     dfunc*=2*invr0_2;
     403             : // stretch:
     404     7513497 :     result=result*stretch+shift;
     405     7513497 :     dfunc*=stretch;
     406     7513497 :     return result;
     407    12063476 :   } else if(leptonx2) {
     408     1248110 :     if(distance2>dmax_2) {
     409           8 :       dfunc=0.0;
     410           8 :       return 0.0;
     411             :     }
     412     1248102 :     const unsigned t=OpenMP::getThreadNum();
     413     1248102 :     const double rdist_2 = distance2*invr0_2;
     414     1248102 :     plumed_assert(t<expression.size());
     415     1248102 :     if(lepton_ref[t]) *lepton_ref[t]=rdist_2;
     416     1248102 :     if(lepton_ref_deriv[t]) *lepton_ref_deriv[t]=rdist_2;
     417     1248102 :     double result=expression[t].evaluate();
     418     1248102 :     dfunc=expression_deriv[t].evaluate();
     419             : // chain rule:
     420     1248102 :     dfunc*=2*invr0_2;
     421             : // stretch:
     422     1248102 :     result=result*stretch+shift;
     423     1248102 :     dfunc*=stretch;
     424     1248102 :     return result;
     425             :   } else {
     426    10815366 :     double distance=std::sqrt(distance2);
     427    10815366 :     return calculate(distance,dfunc);
     428             :   }
     429             : }
     430             : 
     431    88945887 : double SwitchingFunction::calculate(double distance,double&dfunc)const {
     432    88945887 :   plumed_massert(init,"you are trying to use an unset SwitchingFunction");
     433    88945887 :   if(distance>dmax) {
     434      450541 :     dfunc=0.0;
     435      450541 :     return 0.0;
     436             :   }
     437             : // in this case, the lepton object stores only the calculateSqr function
     438             : // so we have to implement calculate in terms of calculateSqr
     439    88495346 :   if(leptonx2) {
     440           2 :     return calculateSqr(distance*distance,dfunc);
     441             :   }
     442    88495344 :   const double rdist = (distance-d0)*invr0;
     443             :   double result;
     444             : 
     445    88495344 :   if(rdist<=0.) {
     446             :     result=1.;
     447    24431541 :     dfunc=0.0;
     448             :   } else {
     449    64063803 :     if(type==smap) {
     450    21789971 :       double sx=c*Tools::fastpow( rdist, a );
     451    21789971 :       result=std::pow( 1.0 + sx, d );
     452    21789971 :       dfunc=-b*sx/rdist*result/(1.0+sx);
     453             :     } else if(type==rational) {
     454    33772502 :       result=do_rational(rdist,dfunc,nn,mm);
     455             :     } else if(type==exponential) {
     456     2486478 :       result=std::exp(-rdist);
     457     2486478 :       dfunc=-result;
     458             :     } else if(type==nativeq) {
     459      146570 :       double rdist2 = beta*(distance - lambda * ref);
     460      146570 :       double exprdist=std::exp(rdist2);
     461      146570 :       double exprmdist=1.0/exprdist;
     462      146570 :       result=1./(1.+exprdist);
     463      146570 :       dfunc=-beta/(exprmdist+1.0)/(1.+exprdist)/invr0;
     464             :     } else if(type==gaussian) {
     465      195683 :       result=std::exp(-0.5*rdist*rdist);
     466      195683 :       dfunc=-rdist*result;
     467             :     } else if(type==cubic) {
     468      127132 :       double tmp1=rdist-1, tmp2=(1+2*rdist);
     469      127132 :       result=tmp1*tmp1*tmp2;
     470      127132 :       dfunc=2*tmp1*tmp2 + 2*tmp1*tmp1;
     471             :     } else if(type==tanh) {
     472        8000 :       double tmp1=std::tanh(rdist);
     473        8000 :       result = 1.0 - tmp1;
     474        8000 :       dfunc=-(1-tmp1*tmp1);
     475             :     } else if(type==cosinus) {
     476             :       if(rdist<=0.0) {
     477             : // rdist = (r-r1)/(r2-r1) ; rdist<=0.0 if r <=r1
     478             :         result=1.;
     479             :         dfunc=0.0;
     480      522053 :       } else if(rdist<=1.0) {
     481             : // rdist = (r-r1)/(r2-r1) ; 0.0<=rdist<=1.0 if r1 <= r <=r2; (r2-r1)/(r2-r1)=1
     482      226962 :         double tmpcos = std::cos ( rdist * PI );
     483      226962 :         double tmpsin = std::sin ( rdist * PI );
     484      226962 :         result = 0.5 * (tmpcos + 1.0);
     485      226962 :         dfunc=-0.5 * PI * tmpsin * invr0;
     486             :       } else {
     487             :         result=0.;
     488      295091 :         dfunc=0.0;
     489             :       }
     490             :     } else if(type==leptontype) {
     491     5015414 :       const unsigned t=OpenMP::getThreadNum();
     492     5015414 :       plumed_assert(t<expression.size());
     493     5015414 :       if(lepton_ref[t]) *lepton_ref[t]=rdist;
     494     5015414 :       if(lepton_ref_deriv[t]) *lepton_ref_deriv[t]=rdist;
     495     5015414 :       result=expression[t].evaluate();
     496     5015414 :       dfunc=expression_deriv[t].evaluate();
     497           0 :     } else plumed_merror("Unknown switching function type");
     498             : // this is for the chain rule (derivative of rdist):
     499    64063803 :     dfunc*=invr0;
     500             : // for any future switching functions, be aware that multiplying invr0 is only correct for functions of rdist = (r-d0)/r0.
     501             : 
     502             : // this is because calculate() sets dfunc to the derivative divided times the distance.
     503             : // (I think this is misleading and I would like to modify it - GB)
     504    64063803 :     dfunc/=distance;
     505             :   }
     506             : 
     507    88495344 :   result=result*stretch+shift;
     508    88495344 :   dfunc*=stretch;
     509             : 
     510    88495344 :   return result;
     511             : }
     512             : 
     513          61 : void SwitchingFunction::set(int nn,int mm,double r0,double d0) {
     514          61 :   init=true;
     515          61 :   type=rational;
     516          61 :   if(mm==0) mm=2*nn;
     517          61 :   this->nn=nn;
     518          61 :   this->mm=mm;
     519          61 :   this->invr0=1.0/r0;
     520          61 :   this->invr0_2=this->invr0*this->invr0;
     521          61 :   this->d0=d0;
     522          61 :   this->dmax=d0+r0*std::pow(0.00001,1./(nn-mm));
     523          61 :   this->dmax_2=this->dmax*this->dmax;
     524          61 :   this->leptonx2=false;
     525          61 :   this->fastrational=(nn%2==0 && mm%2==0 && d0==0.0);
     526             : 
     527             :   double dummy;
     528          61 :   double s0=calculate(0.0,dummy);
     529          61 :   double sd=calculate(dmax,dummy);
     530          61 :   stretch=1.0/(s0-sd);
     531          61 :   shift=-sd*stretch;
     532          61 : }
     533             : 
     534          30 : double SwitchingFunction::get_r0() const {
     535          30 :   return 1./invr0;
     536             : }
     537             : 
     538           6 : double SwitchingFunction::get_d0() const {
     539           6 :   return d0;
     540             : }
     541             : 
     542   117918073 : double SwitchingFunction::get_dmax() const {
     543   117918073 :   return dmax;
     544             : }
     545             : 
     546    23893569 : double SwitchingFunction::get_dmax2() const {
     547    23893569 :   return dmax_2;
     548             : }
     549             : 
     550             : }
     551             : 
     552             : 
     553             : 

Generated by: LCOV version 1.15