LCOV - code coverage report
Current view: top level - opes - OPESmetad.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 792 827 95.8 %
Date: 2024-10-11 08:09:47 Functions: 33 34 97.1 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2020-2021 of Michele Invernizzi.
       3             : 
       4             :    This file is part of the OPES plumed module.
       5             : 
       6             :    The OPES plumed module is free software: you can redistribute it and/or modify
       7             :    it under the terms of the GNU Lesser General Public License as published by
       8             :    the Free Software Foundation, either version 3 of the License, or
       9             :    (at your option) any later version.
      10             : 
      11             :    The OPES plumed module is distributed in the hope that it will be useful,
      12             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      13             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14             :    GNU Lesser General Public License for more details.
      15             : 
      16             :    You should have received a copy of the GNU Lesser General Public License
      17             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      18             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      19             : #include "bias/Bias.h"
      20             : #include "core/PlumedMain.h"
      21             : #include "core/ActionRegister.h"
      22             : #include "core/Atoms.h"
      23             : #include "tools/Communicator.h"
      24             : #include "tools/File.h"
      25             : #include "tools/OpenMP.h"
      26             : 
      27             : namespace PLMD {
      28             : namespace opes {
      29             : 
      30             : //+PLUMEDOC OPES_BIAS OPES_METAD
      31             : /*
      32             : On-the-fly probability enhanced sampling (\ref OPES "OPES") with metadynamics-like target distribution \cite Invernizzi2020rethinking.
      33             : 
      34             : This \ref OPES_METAD action samples target distributions defined via their marginal \f$p^{\text{tg}}(\mathbf{s})\f$ over some collective variables (CVs), \f$\mathbf{s}=\mathbf{s}(\mathbf{x})\f$.
      35             : By default \ref OPES_METAD targets the well-tempered distribution, \f$p^{\text{WT}}(\mathbf{s})\propto [P(\mathbf{s})]^{1/\gamma}\f$, where \f$\gamma\f$ is known as BIASFACTOR.
      36             : Similarly to \ref METAD, \ref OPES_METAD optimizes the bias on-the-fly, with a given PACE.
      37             : It does so by reweighting via kernel density estimation the unbiased distribution in the CV space, \f$P(\mathbf{s})\f$.
      38             : A compression algorithm is used to prevent the number of kernels from growing linearly with the simulation time.
      39             : The bias at step \f$n\f$ is
      40             : \f[
      41             : V_n(\mathbf{s}) = (1-1/\gamma)\frac{1}{\beta}\log\left(\frac{P_n(\mathbf{s})}{Z_n}+\epsilon\right)\, .
      42             : \f]
      43             : See Ref.\cite Invernizzi2020rethinking for a complete description of the method.
      44             : 
      45             : As an intuitive picture, rather than gradually filling the metastable basins, \ref OPES_METAD quickly tries to get a coarse idea of the full free energy surface (FES), and then slowly refines its details.
      46             : It has a fast initial exploration phase, and then becomes extremely conservative and does not significantly change the shape of the deposited bias any more, reaching a regime of quasi-static bias.
      47             : For this reason, it is possible to use standard umbrella sampling reweighting (see \ref REWEIGHT_BIAS) to analyse the trajectory.
      48             : At <a href="https://github.com/invemichele/opes/tree/master/postprocessing">this link</a> you can find some python scripts that work in a similar way to \ref sum_hills, but the preferred way to obtain a FES with OPES is via reweighting (see \ref opes-metad).
      49             : The estimated \f$c(t)\f$ is printed for reference only, since it should converge to a fixed value as the bias converges.
      50             : This \f$c(t)\f$ should NOT be used for reweighting.
      51             : Similarly, the \f$Z_n\f$ factor is printed only for reference, and it should converge when no new region of the CV-space is explored.
      52             : 
      53             : Notice that \ref OPES_METAD is more sensitive to degenerate CVs than \ref METAD.
      54             : If the employed CVs map different metastable basins onto the same CV-space region, then \ref OPES_METAD will remain stuck rather than completely reshaping the bias.
      55             : This can be useful to diagnose problems with your collective variable.
      56             : If it is not possible to improve the set of CVs and remove this degeneracy, then you might instead consider to use \ref OPES_METAD_EXPLORE or \ref METAD.
      57             : In this way you will be able to obtain an estimate of the FES, but be aware that you most likely will not reach convergence and thus this estimate will be subjected to systematic errors (see e.g. Fig.3 in \cite Pietrucci2017review).
      58             : On the contrary, if your CVs are not degenerate but only suboptimal, you should converge faster by using \ref OPES_METAD instead of \ref METAD \cite Invernizzi2020rethinking.
      59             : 
      60             : The parameter BARRIER should be set to be at least equal to the highest free energy barrier you wish to overcome.
      61             : If it is much lower than that, you will not cross the barrier, if it is much higher, convergence might take a little longer.
      62             : If the system has a basin that is clearly more stable than the others, it is better to start the simulation from there.
      63             : 
      64             : By default, the kernels SIGMA is adaptive, estimated from the fluctuations over ADAPTIVE_SIGMA_STRIDE simulation steps (similar to \ref METAD ADAPTIVE=DIFF, but contrary to that, no artifacts are introduced and the bias will converge to the correct one).
      65             : However, notice that depending on the system this might not be the optimal choice for SIGMA.
      66             : 
      67             : You can target a uniform flat distribution by explicitly setting BIASFACTOR=inf.
      68             : However, this should be useful only in very specific cases.
      69             : 
      70             : It is possible to take into account also of other bias potentials besides the one of \ref OPES_METAD during the internal reweighting for \f$P(\mathbf{s})\f$ estimation.
      71             : To do so, one has to add those biases with the EXTRA_BIAS keyword, as in the example below.
      72             : This allows one to define a custom target distribution by adding another bias potential equal to the desired target free energy and setting BIASFACTOR=inf (see example below).
      73             : Another possible usage of EXTRA_BIAS is to make sure that \ref OPES_METAD does not push against another fixed bias added to restrain the CVs range (e.g. \ref UPPER_WALLS).
      74             : 
      75             : Through the EXCLUDED_REGION keywork, it is possible to specify a region of CV space where no kernels will be deposited.
      76             : This can be useful for example for making sure the bias does not modify the transition region, thus allowing for rate calculation.
      77             : See below for an example of how to use this keyword.
      78             : 
      79             : Restart can be done from a KERNELS file, but it might be not perfect (due to limited precision when printing kernels to file, or if adaptive SIGMA is used).
      80             : For an exact restart you must use STATE_RFILE to read a checkpoint with all the needed info.
      81             : To save such checkpoints, define a STATE_WFILE and choose how often to print them with STATE_WSTRIDE.
      82             : By default this file is overwritten, but you can instead append to it using the flag STORE_STATES.
      83             : 
      84             : Multiple walkers are supported only with MPI communication, via the keyword WALKERS_MPI.
      85             : 
      86             : \par Examples
      87             : 
      88             : Several examples can be found on the <a href="https://www.plumed-nest.org/browse.html">PLUMED-NEST website</a>, by searching for the OPES keyword.
      89             : The \ref opes-metad can also be useful to get started with the method.
      90             : 
      91             : The following is a minimal working example:
      92             : 
      93             : \plumedfile
      94             : cv: DISTANCE ATOMS=1,2
      95             : opes: OPES_METAD ARG=cv PACE=200 BARRIER=40
      96             : PRINT STRIDE=200 FILE=COLVAR ARG=*
      97             : \endplumedfile
      98             : 
      99             : Another more articulated one:
     100             : 
     101             : \plumedfile
     102             : phi: TORSION ATOMS=5,7,9,15
     103             : psi: TORSION ATOMS=7,9,15,17
     104             : opes: OPES_METAD ...
     105             :   FILE=Kernels.data
     106             :   TEMP=300
     107             :   ARG=phi,psi
     108             :   PACE=500
     109             :   BARRIER=50
     110             :   SIGMA=0.15,0.15
     111             :   SIGMA_MIN=0.01,0.01
     112             :   STATE_RFILE=Restart.data
     113             :   STATE_WFILE=State.data
     114             :   STATE_WSTRIDE=500*100
     115             :   STORE_STATES
     116             :   WALKERS_MPI
     117             :   NLIST
     118             : ...
     119             : PRINT FMT=%g STRIDE=500 FILE=Colvar.data ARG=phi,psi,opes.*
     120             : \endplumedfile
     121             : 
     122             : Next is an example of how to define a custom target distribution different from the well-tempered one.
     123             : Here we chose to focus more on the transition state, that is around \f$\phi=0\f$.
     124             : Our target distribution is a Gaussian centered there, thus the target free energy we want to sample is a parabola, \f$F^{\text{tg}}(\mathbf{s})=-\frac{1}{\beta} \log [p^{\text{tg}}(\mathbf{s})]\f$.
     125             : 
     126             : \plumedfile
     127             : phi: TORSION ATOMS=5,7,9,15
     128             : FtgValue: CUSTOM ARG=phi PERIODIC=NO FUNC=(x/0.4)^2
     129             : Ftg: BIASVALUE ARG=FtgValue
     130             : opes: OPES_METAD ...
     131             :   ARG=phi
     132             :   PACE=500
     133             :   BARRIER=50
     134             :   SIGMA=0.2
     135             :   BIASFACTOR=inf
     136             :   EXTRA_BIAS=Ftg.bias
     137             : ...
     138             : PRINT FMT=%g STRIDE=500 FILE=COLVAR ARG=phi,Ftg.bias,opes.bias
     139             : \endplumedfile
     140             : 
     141             : Notice that in order to reweight for the unbiased \f$P(\mathbf{s})\f$ during postprocessing, the total bias `Ftg.bias+opes.bias` must be used.
     142             : 
     143             : Finally, an example of how to use the EXCLUDED_REGION keyword.
     144             : It expects a characteristic function that is different from zero in the region to be excluded.
     145             : You can use \ref CUSTOM and a combination of the step function to define it.
     146             : With the following input no kernel is deposited in the transition state region of alanine dipeptide, defined by the interval \f$\phi \in [-0.6, 0.7]\f$:
     147             : 
     148             : \plumedfile
     149             : phi: TORSION ATOMS=5,7,9,15
     150             : psi: TORSION ATOMS=7,9,15,17
     151             : xx: CUSTOM PERIODIC=NO ARG=phi FUNC=step(x+0.6)-step(x-0.7)
     152             : opes: OPES_METAD ...
     153             :   ARG=phi,psi
     154             :   PACE=500
     155             :   BARRIER=30
     156             :   EXCLUDED_REGION=xx
     157             :   NLIST
     158             : ...
     159             : PRINT FMT=%g STRIDE=500 FILE=COLVAR ARG=phi,psi,xx,opes.*
     160             : \endplumedfile
     161             : 
     162             : */
     163             : //+ENDPLUMEDOC
     164             : 
     165             : template <class mode>
     166             : class OPESmetad : public bias::Bias {
     167             : 
     168             : private:
     169             :   bool isFirstStep_;
     170             :   unsigned NumOMP_;
     171             :   unsigned NumParallel_;
     172             :   unsigned rank_;
     173             :   unsigned NumWalkers_;
     174             :   unsigned walker_rank_;
     175             :   unsigned long counter_;
     176             :   std::size_t ncv_;
     177             : 
     178             :   double kbt_;
     179             :   double biasfactor_;
     180             :   double bias_prefactor_;
     181             :   unsigned stride_;
     182             :   std::vector<double> sigma0_;
     183             :   std::vector<double> sigma_min_;
     184             :   unsigned adaptive_sigma_stride_;
     185             :   unsigned long adaptive_counter_;
     186             :   std::vector<double> av_cv_;
     187             :   std::vector<double> av_M2_;
     188             :   bool fixed_sigma_;
     189             :   bool adaptive_sigma_;
     190             :   double epsilon_;
     191             :   double sum_weights_;
     192             :   double sum_weights2_;
     193             : 
     194             :   bool no_Zed_;
     195             :   double Zed_;
     196             :   double KDEnorm_;
     197             : 
     198             :   double threshold2_;
     199             :   bool recursive_merge_;
     200             : //kernels are truncated diagonal Gaussians
     201             :   struct kernel
     202             :   {
     203             :     double height;
     204             :     std::vector<double> center;
     205             :     std::vector<double> sigma;
     206        1050 :     kernel(double h, const std::vector<double>& c,const std::vector<double>& s):
     207        1050 :       height(h),center(c),sigma(s) {}
     208             :   };
     209             :   double cutoff2_;
     210             :   double val_at_cutoff_;
     211             :   void mergeKernels(kernel&,const kernel&); //merge the second one into the first one
     212             :   double evaluateKernel(const kernel&,const std::vector<double>&) const;
     213             :   double evaluateKernel(const kernel&,const std::vector<double>&,std::vector<double>&,std::vector<double>&);
     214             :   std::vector<kernel> kernels_; //all compressed kernels
     215             :   OFile kernelsOfile_;
     216             : //neighbour list stuff
     217             :   bool nlist_;
     218             :   double nlist_param_[2];
     219             :   std::vector<unsigned> nlist_index_;
     220             :   std::vector<double> nlist_center_;
     221             :   std::vector<double> nlist_dev2_;
     222             :   unsigned nlist_steps_;
     223             :   bool nlist_update_;
     224             :   bool nlist_pace_reset_;
     225             : 
     226             :   bool calc_work_;
     227             :   double work_;
     228             :   double old_KDEnorm_;
     229             :   std::vector<kernel> delta_kernels_;
     230             : 
     231             :   Value* excluded_region_;
     232             :   std::vector<Value*> extra_biases_;
     233             : 
     234             :   OFile stateOfile_;
     235             :   int wStateStride_;
     236             :   bool storeOldStates_;
     237             : 
     238             :   double getProbAndDerivatives(const std::vector<double>&,std::vector<double>&);
     239             :   void addKernel(const double,const std::vector<double>&,const std::vector<double>&);
     240             :   void addKernel(const double,const std::vector<double>&,const std::vector<double>&,const double); //also print to file
     241             :   unsigned getMergeableKernel(const std::vector<double>&,const unsigned);
     242             :   void updateNlist(const std::vector<double>&);
     243             :   void dumpStateToFile();
     244             : 
     245             : public:
     246             :   explicit OPESmetad(const ActionOptions&);
     247             :   void calculate() override;
     248             :   void update() override;
     249             :   static void registerKeywords(Keywords& keys);
     250             : };
     251             : 
     252             : struct convergence { static const bool explore=false; };
     253             : typedef OPESmetad<convergence> OPESmetad_c;
     254       10447 : PLUMED_REGISTER_ACTION(OPESmetad_c,"OPES_METAD")
     255             : 
     256             : //OPES_METAD_EXPLORE is very similar from the point of view of the code,
     257             : //but conceptually it is better to make it a separate BIAS action
     258             : 
     259             : //+PLUMEDOC OPES_BIAS OPES_METAD_EXPLORE
     260             : /*
     261             : On-the-fly probability enhanced sampling (\ref OPES "OPES") with well-tempered target distribution, exploration mode \cite Invernizzi2022explore .
     262             : 
     263             : This \ref OPES_METAD_EXPLORE action samples the well-tempered target distribution, that is defined via its marginal \f$p^{\text{WT}}(\mathbf{s})\propto [P(\mathbf{s})]^{1/\gamma}\f$ over some collective variables (CVs), \f$\mathbf{s}=\mathbf{s}(\mathbf{x})\f$.
     264             : While \ref OPES_METAD does so by estimating the unbiased distribution \f$P(\mathbf{s})\f$, \ref OPES_METAD_EXPLORE instead estimates on-the-fly the target \f$p^{\text{WT}}(\mathbf{s})\f$ and uses it to define the bias.
     265             : The bias at step \f$n\f$ is
     266             : \f[
     267             : V_n(\mathbf{s}) = (\gamma-1)\frac{1}{\beta}\log\left(\frac{p^{\text{WT}}_n(\mathbf{s})}{Z_n}+\epsilon\right)\, .
     268             : \f]
     269             : See Ref.\cite Invernizzi2022explore for a complete description of the method.
     270             : 
     271             : Intuitively, while \ref OPES_METAD aims at quickly converging the reweighted free energy, \ref OPES_METAD_EXPLORE aims at quickly sampling the target well-tempered distribution.
     272             : Given enough simulation time, both will converge to the same bias potential but they do so in a qualitatively different way.
     273             : Compared to \ref OPES_METAD, \ref OPES_METAD_EXPLORE is more similar to \ref METAD, because it allows the bias to vary significantly, thus enhancing exploration.
     274             : This goes at the expenses of a typically slower convergence of the reweight estimate.
     275             : \ref OPES_METAD_EXPLORE can be useful e.g.~for simulating a new system with an unknown BARRIER, or for quickly testing the effectiveness of a new CV that might be degenerate.
     276             : 
     277             : Similarly to \ref OPES_METAD, also \ref OPES_METAD_EXPLORE uses a kernel density estimation with the same on-the-fly compression algorithm.
     278             : The only difference is that the kernels are not weighted, since it estimates the sampled distribution and not the reweighted unbiased one.
     279             : 
     280             : All the options of \ref OPES_METAD are also available in \ref OPES_METAD_EXPLORE, except for those that modify the target distribution, since only a well-tempered target is allowed in this case.
     281             : 
     282             : \par Examples
     283             : 
     284             : The following is a minimal working example:
     285             : 
     286             : \plumedfile
     287             : cv: DISTANCE ATOMS=1,2
     288             : opes: OPES_METAD_EXPLORE ARG=cv PACE=500 BARRIER=40
     289             : PRINT STRIDE=100 FILE=COLVAR ARG=cv,opes.*
     290             : \endplumedfile
     291             : */
     292             : //+ENDPLUMEDOC
     293             : 
     294             : struct exploration { static const bool explore=true; };
     295             : typedef OPESmetad<exploration> OPESmetad_e;
     296             : // For some reason, this is not seen correctly by cppcheck
     297             : // cppcheck-suppress unknownMacro
     298       10433 : PLUMED_REGISTER_ACTION(OPESmetad_e,"OPES_METAD_EXPLORE")
     299             : 
     300             : template <class mode>
     301          23 : void OPESmetad<mode>::registerKeywords(Keywords& keys)
     302             : {
     303          23 :   Bias::registerKeywords(keys);
     304          23 :   keys.use("ARG");
     305          46 :   keys.add("compulsory","TEMP","-1","temperature. If not set, it is taken from MD engine, but not all MD codes provide it");
     306          46 :   keys.add("compulsory","PACE","the frequency for kernel deposition");
     307          46 :   keys.add("compulsory","SIGMA","ADAPTIVE","the initial widths of the kernels. If not set, adaptive sigma will be used with the given ADAPTIVE_SIGMA_STRIDE");
     308          46 :   keys.add("compulsory","BARRIER","the free energy barrier to be overcome. It is used to set BIASFACTOR, EPSILON, and KERNEL_CUTOFF to reasonable values");
     309          69 :   keys.add("compulsory","COMPRESSION_THRESHOLD","1","merge kernels if closer than this threshold, in units of sigma");
     310             : //extra options
     311          69 :   keys.add("optional","ADAPTIVE_SIGMA_STRIDE","number of steps for measuring adaptive sigma. Default is 10xPACE");
     312          46 :   keys.add("optional","SIGMA_MIN","never reduce SIGMA below this value");
     313          23 :   std::string info_biasfactor("the \\f$\\gamma\\f$ bias factor used for the well-tempered target distribution. ");
     314             :   if(mode::explore)
     315             :     info_biasfactor+="Cannot be 'inf'";
     316             :   else
     317             :     info_biasfactor+="Set to 'inf' for uniform flat target";
     318          46 :   keys.add("optional","BIASFACTOR",info_biasfactor);
     319          46 :   keys.add("optional","EPSILON","the value of the regularization constant for the probability");
     320          46 :   keys.add("optional","KERNEL_CUTOFF","truncate kernels at this distance, in units of sigma");
     321          69 :   keys.add("optional","NLIST_PARAMETERS","( default=3.0,0.5 ) the two cutoff parameters for the kernels neighbor list");
     322          46 :   keys.addFlag("NLIST",false,"use neighbor list for kernels summation, faster but experimental");
     323          46 :   keys.addFlag("NLIST_PACE_RESET",false,"force the reset of the neighbor list at each PACE. Can be useful with WALKERS_MPI");
     324          46 :   keys.addFlag("FIXED_SIGMA",false,"do not decrease sigma as the simulation proceeds. Can be added in a RESTART, to keep in check the number of compressed kernels");
     325          46 :   keys.addFlag("RECURSIVE_MERGE_OFF",false,"do not recursively attempt kernel merging when a new one is added");
     326          46 :   keys.addFlag("NO_ZED",false,"do not normalize over the explored CV space, \\f$Z_n=1\\f$");
     327             : //kernels and state files
     328          46 :   keys.add("compulsory","FILE","KERNELS","a file in which the list of all deposited kernels is stored");
     329          46 :   keys.add("optional","FMT","specify format for KERNELS file");
     330          46 :   keys.add("optional","STATE_RFILE","read from this file the compressed kernels and all the info needed to RESTART the simulation");
     331          46 :   keys.add("optional","STATE_WFILE","write to this file the compressed kernels and all the info needed to RESTART the simulation");
     332          46 :   keys.add("optional","STATE_WSTRIDE","number of MD steps between writing the STATE_WFILE. Default is only on CPT events (but not all MD codes set them)");
     333          46 :   keys.addFlag("STORE_STATES",false,"append to STATE_WFILE instead of ovewriting it each time");
     334             : //miscellaneous
     335          46 :   keys.add("optional","EXCLUDED_REGION","kernels are not deposited when the action provided here has a nonzero value, see example above");
     336             :   if(!mode::explore)
     337          30 :     keys.add("optional","EXTRA_BIAS","consider also these other bias potentials for the internal reweighting. This can be used e.g. for sampling a custom target distribution (see example above)");
     338          46 :   keys.addFlag("CALC_WORK",false,"calculate the total accumulated work done by the bias since last restart");
     339          46 :   keys.addFlag("WALKERS_MPI",false,"switch on MPI version of multiple walkers");
     340          46 :   keys.addFlag("SERIAL",false,"perform calculations in serial");
     341          23 :   keys.use("RESTART");
     342          23 :   keys.use("UPDATE_FROM");
     343          23 :   keys.use("UPDATE_UNTIL");
     344             : 
     345             : //output components
     346          46 :   keys.addOutputComponent("rct","default","estimate of \\f$c(t)\\f$: \\f$\\frac{1}{\\beta}\\log \\langle e^{\\beta V} \\rangle\\f$, should become flat as the simulation converges. Do NOT use for reweighting");
     347          46 :   keys.addOutputComponent("zed","default","estimate of \\f$Z_n\\f$, should become flat once no new CV-space region is explored");
     348          46 :   keys.addOutputComponent("neff","default","effective sample size");
     349          46 :   keys.addOutputComponent("nker","default","total number of compressed kernels used to represent the bias");
     350          46 :   keys.addOutputComponent("work","CALC_WORK","total accumulated work done by the bias");
     351          46 :   keys.addOutputComponent("nlker","NLIST","number of kernels in the neighbor list");
     352          69 :   keys.addOutputComponent("nlsteps","NLIST","number of steps from last neighbor list update");
     353          23 : }
     354             : 
     355             : template <class mode>
     356          21 : OPESmetad<mode>::OPESmetad(const ActionOptions& ao)
     357             :   : PLUMED_BIAS_INIT(ao)
     358          21 :   , isFirstStep_(true)
     359          21 :   , counter_(1)
     360          21 :   , ncv_(getNumberOfArguments())
     361          21 :   , Zed_(1)
     362          21 :   , work_(0)
     363          21 :   , excluded_region_(NULL)
     364             : {
     365          42 :   std::string error_in_input1("Error in input in action "+getName()+" with label "+getLabel()+": the keyword ");
     366          21 :   std::string error_in_input2(" could not be read correctly");
     367             : 
     368             : //set kbt_
     369          21 :   const double kB=plumed.getAtoms().getKBoltzmann();
     370          21 :   kbt_=plumed.getAtoms().getKbT();
     371          21 :   double temp=-1;
     372          21 :   parse("TEMP",temp);
     373          21 :   if(temp>0)
     374             :   {
     375          21 :     if(kbt_>0 && std::abs(kbt_-kB*temp)>1e-4)
     376           0 :       log.printf(" +++ WARNING +++ using TEMP=%g while MD engine uses %g\n",temp,kbt_/kB);
     377          21 :     kbt_=kB*temp;
     378             :   }
     379          21 :   plumed_massert(kbt_>0,"your MD engine does not pass the temperature to plumed, you must specify it using TEMP");
     380             : 
     381             : //other compulsory input
     382          21 :   parse("PACE",stride_);
     383             : 
     384          21 :   double barrier=0;
     385          21 :   parse("BARRIER",barrier);
     386          21 :   plumed_massert(barrier>=0,"the BARRIER should be greater than zero");
     387             : 
     388          21 :   biasfactor_=barrier/kbt_;
     389             :   std::string biasfactor_str;
     390          42 :   parse("BIASFACTOR",biasfactor_str);
     391          38 :   if(biasfactor_str=="inf" || biasfactor_str=="INF")
     392             :   {
     393           4 :     biasfactor_=std::numeric_limits<double>::infinity();
     394           4 :     bias_prefactor_=1;
     395             :   }
     396             :   else
     397             :   {
     398          17 :     if(biasfactor_str.length()>0)
     399           3 :       plumed_massert(Tools::convertNoexcept(biasfactor_str,biasfactor_),error_in_input1+"BIASFACTOR"+error_in_input2);
     400          17 :     plumed_massert(biasfactor_>1,"BIASFACTOR must be greater than one (use 'inf' for uniform target)");
     401          17 :     bias_prefactor_=1-1./biasfactor_;
     402             :   }
     403             :   if(mode::explore)
     404             :   {
     405           7 :     plumed_massert(!std::isinf(biasfactor_),"BIASFACTOR=inf is not compatible with EXPLORE mode");
     406           7 :     bias_prefactor_=biasfactor_-1;
     407             :   }
     408             : 
     409          21 :   adaptive_sigma_=false;
     410          21 :   adaptive_sigma_stride_=0;
     411          42 :   parse("ADAPTIVE_SIGMA_STRIDE",adaptive_sigma_stride_);
     412             :   std::vector<std::string> sigma_str;
     413          21 :   parseVector("SIGMA",sigma_str);
     414          21 :   sigma0_.resize(ncv_);
     415             :   double dummy;
     416          21 :   if(sigma_str.size()==1 && !Tools::convertNoexcept(sigma_str[0],dummy))
     417             :   {
     418          11 :     plumed_massert(sigma_str[0]=="ADAPTIVE" || sigma_str[0]=="adaptive",error_in_input1+"SIGMA"+error_in_input2);
     419          11 :     plumed_massert(!std::isinf(biasfactor_),"cannot use BIASFACTOR=inf with adaptive SIGMA");
     420          11 :     adaptive_counter_=0;
     421          11 :     if(adaptive_sigma_stride_==0)
     422           2 :       adaptive_sigma_stride_=10*stride_; //NB: this is arbitrary, chosen from few tests
     423          11 :     av_cv_.resize(ncv_,0);
     424          11 :     av_M2_.resize(ncv_,0);
     425          11 :     plumed_massert(adaptive_sigma_stride_>=stride_,"better to chose ADAPTIVE_SIGMA_STRIDE > PACE");
     426          11 :     adaptive_sigma_=true;
     427             :   }
     428             :   else
     429             :   {
     430          10 :     plumed_massert(sigma_str.size()==ncv_,"number of SIGMA parameters does not match number of arguments");
     431          10 :     plumed_massert(adaptive_sigma_stride_==0,"if SIGMA is not ADAPTIVE you cannot set an ADAPTIVE_SIGMA_STRIDE");
     432          29 :     for(unsigned i=0; i<ncv_; i++)
     433             :     {
     434          19 :       plumed_massert(Tools::convertNoexcept(sigma_str[i],sigma0_[i]),error_in_input1+"SIGMA"+error_in_input2);
     435             :       if(mode::explore)
     436           6 :         sigma0_[i]*=std::sqrt(biasfactor_); //the sigma of the target is broader Ftg(s)=1/gamma*F(s)
     437             :     }
     438             :   }
     439          42 :   parseVector("SIGMA_MIN",sigma_min_);
     440          21 :   plumed_massert(sigma_min_.size()==0 || sigma_min_.size()==ncv_,"number of SIGMA_MIN does not match number of arguments");
     441          21 :   if(sigma_min_.size()>0 && !adaptive_sigma_)
     442             :   {
     443           3 :     for(unsigned i=0; i<ncv_; i++)
     444           2 :       plumed_massert(sigma_min_[i]<=sigma0_[i],"SIGMA_MIN should be smaller than SIGMA");
     445             :   }
     446             : 
     447          21 :   epsilon_=std::exp(-barrier/bias_prefactor_/kbt_);
     448          21 :   parse("EPSILON",epsilon_);
     449          21 :   plumed_massert(epsilon_>0,"you must choose a value for EPSILON greater than zero. Is your BARRIER too high?");
     450          21 :   sum_weights_=std::pow(epsilon_,bias_prefactor_); //to avoid NANs we start with counter_=1 and w0=exp(beta*V0)
     451          21 :   sum_weights2_=sum_weights_*sum_weights_;
     452             : 
     453          21 :   double cutoff=sqrt(2.*barrier/bias_prefactor_/kbt_);
     454             :   if(mode::explore)
     455           7 :     cutoff=sqrt(2.*barrier/kbt_); //otherwise it is too small
     456          21 :   parse("KERNEL_CUTOFF",cutoff);
     457          21 :   plumed_massert(cutoff>0,"you must choose a value for KERNEL_CUTOFF greater than zero");
     458          21 :   cutoff2_=cutoff*cutoff;
     459          21 :   val_at_cutoff_=std::exp(-0.5*cutoff2_);
     460             : 
     461          21 :   threshold2_=1;
     462          21 :   parse("COMPRESSION_THRESHOLD",threshold2_);
     463          21 :   threshold2_*=threshold2_;
     464          21 :   if(threshold2_!=0)
     465          21 :     plumed_massert(threshold2_>0 && threshold2_<cutoff2_,"COMPRESSION_THRESHOLD cannot be bigger than the KERNEL_CUTOFF");
     466             : 
     467             : //setup neighbor list
     468          21 :   nlist_=false;
     469          21 :   parseFlag("NLIST",nlist_);
     470          21 :   nlist_pace_reset_=false;
     471          21 :   parseFlag("NLIST_PACE_RESET",nlist_pace_reset_);
     472          21 :   if(nlist_pace_reset_)
     473           2 :     nlist_=true;
     474             :   std::vector<double> nlist_param;
     475          42 :   parseVector("NLIST_PARAMETERS",nlist_param);
     476          21 :   if(nlist_param.size()==0)
     477             :   {
     478          17 :     nlist_param_[0]=3.0;//*cutoff2_ -> max distance of neighbors
     479          17 :     nlist_param_[1]=0.5;//*nlist_dev2_[i] -> condition for rebuilding
     480             :   }
     481             :   else
     482             :   {
     483           4 :     nlist_=true;
     484           4 :     plumed_massert(nlist_param.size()==2,"two cutoff parameters are needed for the neighbor list");
     485           4 :     plumed_massert(nlist_param[0]>1.0,"the first of NLIST_PARAMETERS must be greater than 1. The smaller the first, the smaller should be the second as well");
     486           4 :     const double min_PARAM_1=(1.-1./std::sqrt(nlist_param[0]))+0.16;
     487           4 :     plumed_massert(nlist_param[1]>0,"the second of NLIST_PARAMETERS must be greater than 0");
     488           4 :     plumed_massert(nlist_param[1]<=min_PARAM_1,"the second of NLIST_PARAMETERS must be smaller to avoid systematic errors. Largest suggested value is: 1.16-1/sqrt(PARAM_0) = "+std::to_string(min_PARAM_1));
     489           4 :     nlist_param_[0]=nlist_param[0];
     490           4 :     nlist_param_[1]=nlist_param[1];
     491             :   }
     492          21 :   nlist_center_.resize(ncv_);
     493          21 :   nlist_dev2_.resize(ncv_,0.);
     494          21 :   nlist_steps_=0;
     495          21 :   nlist_update_=true;
     496             : 
     497             : //optional stuff
     498          21 :   no_Zed_=false;
     499          21 :   parseFlag("NO_ZED",no_Zed_);
     500          21 :   if(no_Zed_)
     501             :   { //this makes it more gentle in the initial phase
     502           6 :     sum_weights_=1;
     503           6 :     sum_weights2_=1;
     504             :   }
     505          21 :   fixed_sigma_=false;
     506          21 :   parseFlag("FIXED_SIGMA",fixed_sigma_);
     507          21 :   bool recursive_merge_off=false;
     508          21 :   parseFlag("RECURSIVE_MERGE_OFF",recursive_merge_off);
     509          21 :   recursive_merge_=!recursive_merge_off;
     510          42 :   parseFlag("CALC_WORK",calc_work_);
     511             : 
     512             : //options involving extra arguments
     513             :   std::vector<Value*> args;
     514          42 :   parseArgumentList("EXCLUDED_REGION",args);
     515          21 :   if(args.size()>0)
     516             :   {
     517           2 :     plumed_massert(args.size()==1,"only one characteristic function should define the region to be excluded");
     518           2 :     requestExtraDependencies(args);
     519           2 :     excluded_region_=args[0];
     520             :   }
     521             :   if(!mode::explore)
     522             :   {
     523          28 :     parseArgumentList("EXTRA_BIAS",extra_biases_);
     524          14 :     if(extra_biases_.size()>0)
     525           2 :       requestExtraDependencies(extra_biases_);
     526             :   }
     527             : 
     528             : //kernels file
     529             :   std::string kernelsFileName;
     530          42 :   parse("FILE",kernelsFileName);
     531             :   std::string fmt;
     532          42 :   parse("FMT",fmt);
     533             : 
     534             : //output checkpoint of current state
     535             :   std::string restartFileName;
     536          42 :   parse("STATE_RFILE",restartFileName);
     537             :   std::string stateFileName;
     538          21 :   parse("STATE_WFILE",stateFileName);
     539          21 :   wStateStride_=0;
     540          21 :   parse("STATE_WSTRIDE",wStateStride_);
     541          21 :   storeOldStates_=false;
     542          21 :   parseFlag("STORE_STATES",storeOldStates_);
     543          21 :   if(wStateStride_!=0 || storeOldStates_)
     544          10 :     plumed_massert(stateFileName.length()>0,"filename for storing simulation status not specified, use STATE_WFILE");
     545          21 :   if(wStateStride_>0)
     546          10 :     plumed_massert(wStateStride_>=(int)stride_,"STATE_WSTRIDE is in units of MD steps, thus it is suggested to use a multiple of PACE");
     547          21 :   if(stateFileName.length()>0 && wStateStride_==0)
     548           1 :     wStateStride_=-1;//will print only on CPT events (checkpoints set by some MD engines, like gromacs)
     549             : 
     550             : //multiple walkers //TODO implement also external mw for cp2k
     551          21 :   bool walkers_mpi=false;
     552          21 :   parseFlag("WALKERS_MPI",walkers_mpi);
     553          21 :   if(walkers_mpi)
     554             :   {
     555          10 :     if(comm.Get_rank()==0)//multi_sim_comm works on first rank only
     556             :     {
     557          10 :       NumWalkers_=multi_sim_comm.Get_size();
     558          10 :       walker_rank_=multi_sim_comm.Get_rank();
     559             :     }
     560          10 :     comm.Bcast(NumWalkers_,0); //if each walker has more than one processor update them all
     561          10 :     comm.Bcast(walker_rank_,0);
     562             :   }
     563             :   else
     564             :   {
     565          11 :     NumWalkers_=1;
     566          11 :     walker_rank_=0;
     567             :   }
     568             : 
     569             : //parallelization stuff
     570          21 :   NumOMP_=OpenMP::getNumThreads();
     571          21 :   NumParallel_=comm.Get_size();
     572          21 :   rank_=comm.Get_rank();
     573          21 :   bool serial=false;
     574          21 :   parseFlag("SERIAL",serial);
     575          21 :   if(serial)
     576             :   {
     577           4 :     NumOMP_=1;
     578           4 :     NumParallel_=1;
     579           4 :     rank_=0;
     580             :   }
     581             : 
     582          21 :   checkRead();
     583             : 
     584             : //restart if needed
     585             :   bool convertKernelsToState=false;
     586          21 :   if(getRestart())
     587             :   {
     588             :     bool stateRestart=true;
     589          11 :     if(restartFileName.length()==0)
     590             :     {
     591             :       stateRestart=false;
     592             :       restartFileName=kernelsFileName;
     593             :     }
     594          11 :     IFile ifile;
     595          11 :     ifile.link(*this);
     596          11 :     if(ifile.FileExist(restartFileName))
     597             :     {
     598          11 :       bool tmp_nlist=nlist_;
     599          11 :       nlist_=false; // NLIST is not needed while restarting
     600          11 :       ifile.open(restartFileName);
     601          11 :       log.printf("  RESTART - make sure all used options are compatible\n");
     602          11 :       log.printf("    restarting from: %s\n",restartFileName.c_str());
     603          11 :       std::string action_name=getName();
     604          11 :       if(stateRestart)
     605             :       {
     606           6 :         log.printf("    it should be a STATE file (not a KERNELS file)\n");
     607             :         action_name+="_state";
     608             :       }
     609             :       else
     610             :       {
     611           5 :         log.printf(" +++ WARNING +++ RESTART from KERNELS might be approximate, use STATE_WFILE and STATE_RFILE to restart from the exact state\n");
     612             :         action_name+="_kernels";
     613             :       }
     614             :       std::string old_action_name;
     615          11 :       ifile.scanField("action",old_action_name);
     616          11 :       plumed_massert(action_name==old_action_name,"RESTART - mismatch between old and new action name. Expected '"+action_name+"', but found '"+old_action_name+"'");
     617             :       std::string old_biasfactor_str;
     618          22 :       ifile.scanField("biasfactor",old_biasfactor_str);
     619          21 :       if(old_biasfactor_str=="inf" || old_biasfactor_str=="INF")
     620             :       {
     621           1 :         if(!std::isinf(biasfactor_))
     622           0 :           log.printf(" +++ WARNING +++ previous bias factor was inf while now it is %g\n",biasfactor_);
     623             :       }
     624             :       else
     625             :       {
     626             :         double old_biasfactor;
     627          10 :         ifile.scanField("biasfactor",old_biasfactor);
     628          10 :         if(std::abs(biasfactor_-old_biasfactor)>1e-6*biasfactor_)
     629           0 :           log.printf(" +++ WARNING +++ previous bias factor was %g while now it is %g. diff = %g\n",old_biasfactor,biasfactor_,biasfactor_-old_biasfactor);
     630             :       }
     631             :       double old_epsilon;
     632          11 :       ifile.scanField("epsilon",old_epsilon);
     633          11 :       if(std::abs(epsilon_-old_epsilon)>1e-6*epsilon_)
     634           8 :         log.printf(" +++ WARNING +++ previous epsilon was %g while now it is %g. diff = %g\n",old_epsilon,epsilon_,epsilon_-old_epsilon);
     635             :       double old_cutoff;
     636          11 :       ifile.scanField("kernel_cutoff",old_cutoff);
     637          11 :       if(std::abs(cutoff-old_cutoff)>1e-6*cutoff)
     638           0 :         log.printf(" +++ WARNING +++ previous kernel_cutoff was %g while now it is %g. diff = %g\n",old_cutoff,cutoff,cutoff-old_cutoff);
     639             :       double old_threshold;
     640          11 :       const double threshold=sqrt(threshold2_);
     641          11 :       ifile.scanField("compression_threshold",old_threshold);
     642          11 :       if(std::abs(threshold-old_threshold)>1e-6*threshold)
     643           0 :         log.printf(" +++ WARNING +++ previous compression_threshold was %g while now it is %g. diff = %g\n",old_threshold,threshold,threshold-old_threshold);
     644          11 :       if(stateRestart)
     645             :       {
     646           6 :         ifile.scanField("zed",Zed_);
     647           6 :         ifile.scanField("sum_weights",sum_weights_);
     648           6 :         ifile.scanField("sum_weights2",sum_weights2_);
     649           6 :         ifile.scanField("counter",counter_);
     650           6 :         if(adaptive_sigma_)
     651             :         {
     652           6 :           ifile.scanField("adaptive_counter",adaptive_counter_);
     653           6 :           if(NumWalkers_==1)
     654             :           {
     655           6 :             for(unsigned i=0; i<ncv_; i++)
     656             :             {
     657           8 :               ifile.scanField("sigma0_"+getPntrToArgument(i)->getName(),sigma0_[i]);
     658           8 :               ifile.scanField("av_cv_"+getPntrToArgument(i)->getName(),av_cv_[i]);
     659           8 :               ifile.scanField("av_M2_"+getPntrToArgument(i)->getName(),av_M2_[i]);
     660             :             }
     661             :           }
     662             :           else
     663             :           {
     664          12 :             for(unsigned w=0; w<NumWalkers_; w++)
     665          24 :               for(unsigned i=0; i<ncv_; i++)
     666             :               {
     667             :                 double tmp0,tmp1,tmp2;
     668          32 :                 const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
     669          16 :                 ifile.scanField("sigma0_"+arg_iw,tmp0);
     670          16 :                 ifile.scanField("av_cv_"+arg_iw,tmp1);
     671          16 :                 ifile.scanField("av_M2_"+arg_iw,tmp2);
     672          16 :                 if(w==walker_rank_)
     673             :                 {
     674           8 :                   sigma0_[i]=tmp0;
     675           8 :                   av_cv_[i]=tmp1;
     676           8 :                   av_M2_[i]=tmp2;
     677             :                 }
     678             :               }
     679             :           }
     680             :         }
     681             :       }
     682          33 :       for(unsigned i=0; i<ncv_; i++)
     683             :       {
     684          22 :         if(getPntrToArgument(i)->isPeriodic())
     685             :         {
     686             :           std::string arg_min,arg_max;
     687          22 :           getPntrToArgument(i)->getDomain(arg_min,arg_max);
     688             :           std::string file_min,file_max;
     689          44 :           ifile.scanField("min_"+getPntrToArgument(i)->getName(),file_min);
     690          22 :           ifile.scanField("max_"+getPntrToArgument(i)->getName(),file_max);
     691          22 :           plumed_massert(file_min==arg_min,"RESTART - mismatch between old and new ARG periodicity");
     692          22 :           plumed_massert(file_max==arg_max,"RESTART - mismatch between old and new ARG periodicity");
     693             :         }
     694             :       }
     695          11 :       if(stateRestart)
     696             :       {
     697             :         double time;
     698          60 :         while(ifile.scanField("time",time))
     699             :         {
     700          24 :           std::vector<double> center(ncv_);
     701          24 :           std::vector<double> sigma(ncv_);
     702             :           double height;
     703          72 :           for(unsigned i=0; i<ncv_; i++)
     704          48 :             ifile.scanField(getPntrToArgument(i)->getName(),center[i]);
     705          72 :           for(unsigned i=0; i<ncv_; i++)
     706          96 :             ifile.scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
     707          24 :           ifile.scanField("height",height);
     708          24 :           ifile.scanField();
     709          24 :           kernels_.emplace_back(height,center,sigma);
     710             :         }
     711           6 :         log.printf("    a total of %lu kernels where read\n",kernels_.size());
     712             :       }
     713             :       else
     714             :       {
     715           5 :         ifile.allowIgnoredFields(); //this allows for multiple restart, but without checking for consistency between them!
     716             :         double time;
     717         270 :         while(ifile.scanField("time",time))
     718             :         {
     719         130 :           std::vector<double> center(ncv_);
     720         130 :           std::vector<double> sigma(ncv_);
     721             :           double height;
     722             :           double logweight;
     723         390 :           for(unsigned i=0; i<ncv_; i++)
     724         260 :             ifile.scanField(getPntrToArgument(i)->getName(),center[i]);
     725         390 :           for(unsigned i=0; i<ncv_; i++)
     726         520 :             ifile.scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
     727         130 :           if(counter_==(1+walker_rank_) && adaptive_sigma_)
     728           0 :             sigma0_=sigma;
     729         130 :           ifile.scanField("height",height);
     730         130 :           ifile.scanField("logweight",logweight);
     731         130 :           ifile.scanField();
     732         130 :           addKernel(height,center,sigma);
     733         130 :           const double weight=std::exp(logweight);
     734         130 :           sum_weights_+=weight; //this sum is slightly inaccurate, because when printing some precision is lost
     735         130 :           sum_weights2_+=weight*weight;
     736         130 :           counter_++;
     737             :         }
     738           5 :         KDEnorm_=mode::explore?counter_:sum_weights_;
     739           5 :         if(!no_Zed_)
     740             :         {
     741           2 :           double sum_uprob=0;
     742          48 :           for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
     743        1104 :             for(unsigned kk=0; kk<kernels_.size(); kk++)
     744        1058 :               sum_uprob+=evaluateKernel(kernels_[kk],kernels_[k].center);
     745           2 :           if(NumParallel_>1)
     746           0 :             comm.Sum(sum_uprob);
     747           2 :           Zed_=sum_uprob/KDEnorm_/kernels_.size();
     748             :         }
     749           5 :         log.printf("    a total of %lu kernels where read, and compressed to %lu\n",counter_-1,kernels_.size());
     750             :         convertKernelsToState=true;
     751             :       }
     752          11 :       ifile.reset(false);
     753          11 :       ifile.close();
     754          11 :       nlist_=tmp_nlist;
     755             :     }
     756             :     else //same behaviour as METAD
     757           0 :       plumed_merror("RESTART requested, but file '"+restartFileName+"' was not found!\n  Set RESTART=NO or provide a restart file");
     758          11 :     if(NumWalkers_>1) //make sure that all walkers are doing the same thing
     759             :     {
     760           6 :       const unsigned kernels_size=kernels_.size();
     761           6 :       std::vector<unsigned> all_kernels_size(NumWalkers_);
     762           6 :       if(comm.Get_rank()==0)
     763           6 :         multi_sim_comm.Allgather(kernels_size,all_kernels_size);
     764           6 :       comm.Bcast(all_kernels_size,0);
     765             :       bool same_number_of_kernels=true;
     766          12 :       for(unsigned w=1; w<NumWalkers_; w++)
     767           6 :         if(all_kernels_size[0]!=all_kernels_size[w])
     768             :           same_number_of_kernels=false;
     769           6 :       plumed_massert(same_number_of_kernels,"RESTART - not all walkers are reading the same file!");
     770             :     }
     771          11 :   }
     772          10 :   else if(restartFileName.length()>0)
     773           4 :     log.printf(" +++ WARNING +++ the provided STATE_RFILE will be ignored, since RESTART was not requested\n");
     774             : 
     775             : //sync all walkers to avoid opening files before reading is over (see also METAD)
     776          21 :   comm.Barrier();
     777          21 :   if(comm.Get_rank()==0 && walkers_mpi)
     778          10 :     multi_sim_comm.Barrier();
     779             : 
     780             : //setup output kernels file
     781          21 :   kernelsOfile_.link(*this);
     782          21 :   if(NumWalkers_>1)
     783             :   {
     784          10 :     if(walker_rank_>0)
     785             :       kernelsFileName="/dev/null"; //only first walker writes on file
     786          20 :     kernelsOfile_.enforceSuffix("");
     787             :   }
     788          21 :   kernelsOfile_.open(kernelsFileName);
     789          21 :   if(fmt.length()>0)
     790          42 :     kernelsOfile_.fmtField(" "+fmt);
     791             :   kernelsOfile_.setHeavyFlush(); //do I need it?
     792             :   //define and set const fields
     793          21 :   kernelsOfile_.addConstantField("action");
     794          21 :   kernelsOfile_.addConstantField("biasfactor");
     795          21 :   kernelsOfile_.addConstantField("epsilon");
     796          21 :   kernelsOfile_.addConstantField("kernel_cutoff");
     797          21 :   kernelsOfile_.addConstantField("compression_threshold");
     798          61 :   for(unsigned i=0; i<ncv_; i++)
     799          40 :     kernelsOfile_.setupPrintValue(getPntrToArgument(i));
     800          42 :   kernelsOfile_.printField("action",getName()+"_kernels");
     801          21 :   kernelsOfile_.printField("biasfactor",biasfactor_);
     802          21 :   kernelsOfile_.printField("epsilon",epsilon_);
     803          21 :   kernelsOfile_.printField("kernel_cutoff",sqrt(cutoff2_));
     804          21 :   kernelsOfile_.printField("compression_threshold",sqrt(threshold2_));
     805             : 
     806             : //open file for storing state
     807          21 :   if(wStateStride_!=0)
     808             :   {
     809          11 :     stateOfile_.link(*this);
     810          11 :     if(NumWalkers_>1)
     811             :     {
     812           8 :       if(walker_rank_>0)
     813             :         stateFileName="/dev/null"; //only first walker writes on file
     814          16 :       stateOfile_.enforceSuffix("");
     815             :     }
     816          11 :     stateOfile_.open(stateFileName);
     817          11 :     if(fmt.length()>0)
     818          22 :       stateOfile_.fmtField(" "+fmt);
     819          11 :     if(convertKernelsToState)
     820           0 :       dumpStateToFile();
     821             :   }
     822             : 
     823             : //set initial old values
     824          21 :   KDEnorm_=mode::explore?counter_:sum_weights_;
     825          21 :   old_KDEnorm_=KDEnorm_;
     826             : 
     827             : //add and set output components
     828          21 :   addComponent("rct");
     829          21 :   componentIsNotPeriodic("rct");
     830          21 :   getPntrToComponent("rct")->set(kbt_*std::log(sum_weights_/counter_));
     831          21 :   addComponent("zed");
     832          21 :   componentIsNotPeriodic("zed");
     833          21 :   getPntrToComponent("zed")->set(Zed_);
     834          21 :   addComponent("neff");
     835          21 :   componentIsNotPeriodic("neff");
     836          21 :   getPntrToComponent("neff")->set(std::pow(1+sum_weights_,2)/(1+sum_weights2_));
     837          21 :   addComponent("nker");
     838          21 :   componentIsNotPeriodic("nker");
     839          21 :   getPntrToComponent("nker")->set(kernels_.size());
     840          21 :   if(calc_work_)
     841             :   {
     842           7 :     addComponent("work");
     843          14 :     componentIsNotPeriodic("work");
     844             :   }
     845          21 :   if(nlist_)
     846             :   {
     847           5 :     addComponent("nlker");
     848           5 :     componentIsNotPeriodic("nlker");
     849           5 :     addComponent("nlsteps");
     850          10 :     componentIsNotPeriodic("nlsteps");
     851             :   }
     852             : 
     853             : //printing some info
     854          21 :   log.printf("  temperature = %g\n",kbt_/kB);
     855          21 :   log.printf("  beta = %g\n",1./kbt_);
     856          21 :   log.printf("  depositing new kernels with PACE = %u\n",stride_);
     857          21 :   log.printf("  expected BARRIER is %g\n",barrier);
     858          21 :   log.printf("  using target distribution with BIASFACTOR gamma = %g\n",biasfactor_);
     859          21 :   if(std::isinf(biasfactor_))
     860           4 :     log.printf("    (thus a uniform flat target distribution, no well-tempering)\n");
     861          21 :   if(excluded_region_!=NULL)
     862           2 :     log.printf(" -- EXCLUDED_REGION: kernels will be deposited only when '%s' is equal to zero\n",excluded_region_->getName().c_str());
     863          21 :   if(extra_biases_.size()>0)
     864             :   {
     865           2 :     log.printf(" -- EXTRA_BIAS: ");
     866           5 :     for(unsigned e=0; e<extra_biases_.size(); e++)
     867           3 :       log.printf("%s ",extra_biases_[e]->getName().c_str());
     868           2 :     log.printf("will be reweighted\n");
     869             :   }
     870          21 :   if(adaptive_sigma_)
     871             :   {
     872          11 :     log.printf("  adaptive SIGMA will be used, with ADAPTIVE_SIGMA_STRIDE = %u\n",adaptive_sigma_stride_);
     873          11 :     unsigned x=std::ceil(adaptive_sigma_stride_/stride_);
     874          11 :     log.printf("    thus the first x kernel depositions will be skipped, x = ADAPTIVE_SIGMA_STRIDE/PACE = %u\n",x);
     875             :   }
     876             :   else
     877             :   {
     878          10 :     log.printf("  kernels have initial SIGMA = ");
     879          29 :     for(unsigned i=0; i<ncv_; i++)
     880          19 :       log.printf(" %g",sigma0_[i]);
     881          10 :     log.printf("\n");
     882             :   }
     883          21 :   if(sigma_min_.size()>0)
     884             :   {
     885           3 :     log.printf("  kernels have a SIGMA_MIN = ");
     886           9 :     for(unsigned i=0; i<ncv_; i++)
     887           6 :       log.printf(" %g",sigma_min_[i]);
     888           3 :     log.printf("\n");
     889             :   }
     890          21 :   if(fixed_sigma_)
     891           6 :     log.printf(" -- FIXED_SIGMA: sigma will not decrease as the simulation proceeds\n");
     892          21 :   log.printf("  kernels are truncated with KERNELS_CUTOFF = %g\n",cutoff);
     893          21 :   if(cutoff<3.5)
     894           0 :     log.printf(" +++ WARNING +++ probably kernels are truncated too much\n");
     895          21 :   log.printf("  the value at cutoff is = %g\n",val_at_cutoff_);
     896          21 :   log.printf("  regularization EPSILON = %g\n",epsilon_);
     897          21 :   if(val_at_cutoff_>epsilon_*(1+1e-6))
     898           0 :     log.printf(" +++ WARNING +++ the KERNEL_CUTOFF might be too small for the given EPSILON\n");
     899          21 :   log.printf("  kernels will be compressed when closer than COMPRESSION_THRESHOLD = %g\n",sqrt(threshold2_));
     900          21 :   if(threshold2_==0)
     901           0 :     log.printf(" +++ WARNING +++ kernels will never merge, expect slowdowns\n");
     902          21 :   if(!recursive_merge_)
     903           6 :     log.printf(" -- RECURSIVE_MERGE_OFF: only one merge for each new kernel will be attempted. This is faster only if total number of kernels does not grow too much\n");
     904          21 :   if(nlist_)
     905           5 :     log.printf(" -- NLIST: using neighbor list for kernels, with parameters: %g,%g\n",nlist_param_[0],nlist_param_[1]);
     906          21 :   if(nlist_pace_reset_)
     907           2 :     log.printf(" -- NLIST_PACE_RESET: forcing the neighbor list to update every PACE\n");
     908          21 :   if(no_Zed_)
     909           6 :     log.printf(" -- NO_ZED: using fixed normalization factor = %g\n",Zed_);
     910          21 :   if(wStateStride_>0)
     911          10 :     log.printf("  state checkpoints are written on file %s every %d MD steps\n",stateFileName.c_str(),wStateStride_);
     912          21 :   if(wStateStride_==-1)
     913           1 :     log.printf("  state checkpoints are written on file %s only on CPT events (or never if MD code does define them!)\n",stateFileName.c_str());
     914          21 :   if(walkers_mpi)
     915          10 :     log.printf(" -- WALKERS_MPI: if multiple replicas are present, they will share the same bias via MPI\n");
     916          21 :   if(NumWalkers_>1)
     917             :   {
     918          10 :     log.printf("  using multiple walkers\n");
     919          10 :     log.printf("    number of walkers: %u\n",NumWalkers_);
     920          10 :     log.printf("    walker rank: %u\n",walker_rank_);
     921             :   }
     922          21 :   int mw_warning=0;
     923          21 :   if(!walkers_mpi && comm.Get_rank()==0 && multi_sim_comm.Get_size()>(int)NumWalkers_)
     924           0 :     mw_warning=1;
     925          21 :   comm.Bcast(mw_warning,0);
     926          21 :   if(mw_warning) //log.printf messes up with comm, so never use it without Bcast!
     927           0 :     log.printf(" +++ WARNING +++ multiple replicas will NOT communicate unless the flag WALKERS_MPI is used\n");
     928          21 :   if(NumParallel_>1)
     929           4 :     log.printf("  using multiple MPI processes per simulation: %u\n",NumParallel_);
     930          21 :   if(NumOMP_>1)
     931          17 :     log.printf("  using multiple OpenMP threads per simulation: %u\n",NumOMP_);
     932          21 :   if(serial)
     933           4 :     log.printf(" -- SERIAL: no loop parallelization, despite %d MPI processes and %u OpenMP threads available\n",comm.Get_size(),OpenMP::getNumThreads());
     934          21 :   log.printf("  Bibliography: ");
     935          42 :   log<<plumed.cite("M. Invernizzi and M. Parrinello, J. Phys. Chem. Lett. 11, 2731-2736 (2020)");
     936          14 :   if(mode::explore || adaptive_sigma_)
     937          35 :     log<<plumed.cite("M. Invernizzi and M. Parrinello, J. Chem. Theory Comput. 18, 3988-3996 (2022)");
     938          21 :   log.printf("\n");
     939          42 : }
     940             : 
     941             : template <class mode>
     942        1071 : void OPESmetad<mode>::calculate()
     943             : {
     944             : //get cv
     945        1071 :   std::vector<double> cv(ncv_);
     946        3111 :   for(unsigned i=0; i<ncv_; i++)
     947        2040 :     cv[i]=getArgument(i);
     948             : 
     949             : //check neighbor list
     950        1071 :   if(nlist_)
     951             :   {
     952         255 :     nlist_steps_++;
     953         255 :     if(getExchangeStep())
     954           0 :       nlist_update_=true;
     955             :     else
     956             :     {
     957         275 :       for(unsigned i=0; i<ncv_; i++)
     958             :       {
     959         270 :         const double diff_i=difference(i,cv[i],nlist_center_[i]);
     960         270 :         if(diff_i*diff_i>nlist_param_[1]*nlist_dev2_[i])
     961             :         {
     962         250 :           nlist_update_=true;
     963         250 :           break;
     964             :         }
     965             :       }
     966             :     }
     967         255 :     if(nlist_update_)
     968         250 :       updateNlist(cv);
     969             :   }
     970             : 
     971             : //set bias and forces
     972        1071 :   std::vector<double> der_prob(ncv_,0);
     973        1071 :   const double prob=getProbAndDerivatives(cv,der_prob);
     974        1071 :   const double bias=kbt_*bias_prefactor_*std::log(prob/Zed_+epsilon_);
     975             :   setBias(bias);
     976        3111 :   for(unsigned i=0; i<ncv_; i++)
     977        2040 :     setOutputForce(i,-kbt_*bias_prefactor_/(prob/Zed_+epsilon_)*der_prob[i]/Zed_);
     978        1071 : }
     979             : 
     980             : template <class mode>
     981        1071 : void OPESmetad<mode>::update()
     982             : {
     983        1071 :   if(isFirstStep_)//same in MetaD, useful for restarts?
     984             :   {
     985          21 :     isFirstStep_=false;
     986          21 :     return;
     987             :   }
     988             : 
     989             : //update variance if adaptive sigma
     990        1050 :   if(adaptive_sigma_)
     991             :   {
     992         550 :     adaptive_counter_++;
     993         550 :     unsigned tau=adaptive_sigma_stride_;
     994         550 :     if(adaptive_counter_<adaptive_sigma_stride_)
     995          45 :       tau=adaptive_counter_;
     996        1600 :     for(unsigned i=0; i<ncv_; i++)
     997             :     { //Welford's online algorithm for standard deviation
     998             :       const double cv_i=getArgument(i);
     999        1050 :       const double diff_i=difference(i,av_cv_[i],cv_i);
    1000        1050 :       av_cv_[i]+=diff_i/tau; //exponentially decaying average
    1001        1050 :       av_M2_[i]+=diff_i*difference(i,av_cv_[i],cv_i);
    1002             :     }
    1003         550 :     if(adaptive_counter_<adaptive_sigma_stride_ && counter_==1) //counter_>1 if restarting
    1004             :       return; //do not apply bias before having measured sigma
    1005             :   }
    1006             : 
    1007             : //do update
    1008        1005 :   if(getStep()%stride_==0 && (excluded_region_==NULL || excluded_region_->get()==0))
    1009             :   {
    1010         257 :     old_KDEnorm_=KDEnorm_;
    1011         257 :     delta_kernels_.clear();
    1012         257 :     unsigned old_nker=kernels_.size();
    1013             : 
    1014             :     //get new kernel height
    1015         257 :     double log_weight=getOutputQuantity(0)/kbt_; //first value is always the current bias
    1016         277 :     for(unsigned e=0; e<extra_biases_.size(); e++)
    1017          20 :       log_weight+=extra_biases_[e]->get()/kbt_; //extra biases contribute to the weight
    1018         257 :     double height=std::exp(log_weight);
    1019             : 
    1020             :     //update sum_weights_ and neff
    1021         257 :     double sum_heights=height;
    1022         257 :     double sum_heights2=height*height;
    1023         257 :     if(NumWalkers_>1)
    1024             :     {
    1025         126 :       if(comm.Get_rank()==0)
    1026             :       {
    1027         126 :         multi_sim_comm.Sum(sum_heights);
    1028         126 :         multi_sim_comm.Sum(sum_heights2);
    1029             :       }
    1030         126 :       comm.Bcast(sum_heights,0);
    1031         126 :       comm.Bcast(sum_heights2,0);
    1032             :     }
    1033         257 :     counter_+=NumWalkers_;
    1034         257 :     sum_weights_+=sum_heights;
    1035         257 :     sum_weights2_+=sum_heights2;
    1036         257 :     const double neff=std::pow(1+sum_weights_,2)/(1+sum_weights2_); //adding 1 makes it more robust at the start
    1037         257 :     getPntrToComponent("rct")->set(kbt_*std::log(sum_weights_/counter_));
    1038         257 :     getPntrToComponent("neff")->set(neff);
    1039             :     if(mode::explore)
    1040             :     {
    1041          68 :       KDEnorm_=counter_;
    1042          68 :       height=1; //plain KDE, bias reweight does not enter here
    1043             :     }
    1044             :     else
    1045         189 :       KDEnorm_=sum_weights_;
    1046             : 
    1047             :     //if needed, rescale sigma and height
    1048         257 :     std::vector<double> sigma=sigma0_;
    1049         257 :     if(adaptive_sigma_)
    1050             :     {
    1051          93 :       const double factor=mode::explore?1:biasfactor_;
    1052         131 :       if(counter_==1+NumWalkers_) //first time only
    1053             :       {
    1054          14 :         for(unsigned i=0; i<ncv_; i++)
    1055           9 :           av_M2_[i]*=biasfactor_; //from unbiased, thus must be adjusted
    1056          14 :         for(unsigned i=0; i<ncv_; i++)
    1057           9 :           sigma0_[i]=std::sqrt(av_M2_[i]/adaptive_counter_/factor);
    1058           5 :         if(sigma_min_.size()==0)
    1059             :         {
    1060          14 :           for(unsigned i=0; i<ncv_; i++)
    1061           9 :             plumed_massert(sigma0_[i]>1e-6,"ADAPTIVE SIGMA is suspiciously small for CV i="+std::to_string(i)+"\nManually provide SIGMA or set a safe SIGMA_MIN to avoid possible issues");
    1062             :         }
    1063             :         else
    1064             :         {
    1065           0 :           for(unsigned i=0; i<ncv_; i++)
    1066           0 :             sigma0_[i]=std::max(sigma0_[i],sigma_min_[i]);
    1067             :         }
    1068             :       }
    1069         388 :       for(unsigned i=0; i<ncv_; i++)
    1070         257 :         sigma[i]=std::sqrt(av_M2_[i]/adaptive_counter_/factor);
    1071         131 :       if(sigma_min_.size()==0)
    1072             :       {
    1073         238 :         for(unsigned i=0; i<ncv_; i++)
    1074             :         {
    1075         157 :           if(sigma[i]<1e-6)
    1076             :           {
    1077           0 :             log.printf("+++ WARNING +++ the ADAPTIVE SIGMA is suspiciously small, you should set a safe SIGMA_MIN. 1e-6 will be used here\n");
    1078           0 :             sigma[i]=1e-6;
    1079           0 :             sigma_min_.resize(ncv_,1e-6);
    1080             :           }
    1081             :         }
    1082             :       }
    1083             :       else
    1084             :       {
    1085         150 :         for(unsigned i=0; i<ncv_; i++)
    1086         100 :           sigma[i]=std::max(sigma[i],sigma_min_[i]);
    1087             :       }
    1088             :     }
    1089         257 :     if(!fixed_sigma_)
    1090             :     {
    1091          38 :       const double size=mode::explore?counter_:neff; //for EXPLORE neff is not relevant
    1092         197 :       const double s_rescaling=std::pow(size*(ncv_+2.)/4.,-1./(4+ncv_));
    1093         576 :       for(unsigned i=0; i<ncv_; i++)
    1094         379 :         sigma[i]*=s_rescaling;
    1095         197 :       if(sigma_min_.size()>0)
    1096             :       {
    1097         150 :         for(unsigned i=0; i<ncv_; i++)
    1098         100 :           sigma[i]=std::max(sigma[i],sigma_min_[i]);
    1099             :       }
    1100             :     }
    1101             :     //the height should be divided by sqrt(2*pi)*sigma0_,
    1102             :     //but this overall factor would be canceled when dividing by Zed
    1103             :     //thus we skip it altogether, but keep any other sigma rescaling
    1104         756 :     for(unsigned i=0; i<ncv_; i++)
    1105         499 :       height*=(sigma0_[i]/sigma[i]);
    1106             : 
    1107             :     //get new kernel center
    1108         257 :     std::vector<double> center(ncv_);
    1109         756 :     for(unsigned i=0; i<ncv_; i++)
    1110         499 :       center[i]=getArgument(i);
    1111             : 
    1112             :     //add new kernel(s)
    1113         257 :     if(NumWalkers_==1)
    1114         131 :       addKernel(height,center,sigma,log_weight);
    1115             :     else
    1116             :     {
    1117         126 :       std::vector<double> all_height(NumWalkers_,0.0);
    1118         126 :       std::vector<double> all_center(NumWalkers_*ncv_,0.0);
    1119         126 :       std::vector<double> all_sigma(NumWalkers_*ncv_,0.0);
    1120         126 :       std::vector<double> all_logweight(NumWalkers_,0.0);
    1121         126 :       if(comm.Get_rank()==0)
    1122             :       {
    1123         126 :         multi_sim_comm.Allgather(height,all_height);
    1124         126 :         multi_sim_comm.Allgather(center,all_center);
    1125         126 :         multi_sim_comm.Allgather(sigma,all_sigma);
    1126         126 :         multi_sim_comm.Allgather(log_weight,all_logweight);
    1127             :       }
    1128         126 :       comm.Bcast(all_height,0);
    1129         126 :       comm.Bcast(all_center,0);
    1130         126 :       comm.Bcast(all_sigma,0);
    1131         126 :       comm.Bcast(all_logweight,0);
    1132         126 :       if(nlist_)
    1133             :       { //gather all the nlist_index_, so merging can be done using it
    1134          50 :         std::vector<int> all_nlist_size(NumWalkers_);
    1135          50 :         if(comm.Get_rank()==0)
    1136             :         {
    1137          50 :           all_nlist_size[walker_rank_]=nlist_index_.size();
    1138          50 :           multi_sim_comm.Sum(all_nlist_size);
    1139             :         }
    1140          50 :         comm.Bcast(all_nlist_size,0);
    1141             :         unsigned tot_size=0;
    1142         150 :         for(unsigned w=0; w<NumWalkers_; w++)
    1143         100 :           tot_size+=all_nlist_size[w];
    1144          50 :         if(tot_size>0)
    1145             :         {
    1146          50 :           std::vector<int> disp(NumWalkers_);
    1147         100 :           for(unsigned w=0; w<NumWalkers_-1; w++)
    1148          50 :             disp[w+1]=disp[w]+all_nlist_size[w];
    1149          50 :           std::vector<unsigned> all_nlist_index(tot_size);
    1150          50 :           if(comm.Get_rank()==0)
    1151          50 :             multi_sim_comm.Allgatherv(nlist_index_,all_nlist_index,&all_nlist_size[0],&disp[0]);
    1152          50 :           comm.Bcast(all_nlist_index,0);
    1153          50 :           std::set<unsigned> nlist_index_set(all_nlist_index.begin(),all_nlist_index.end()); //remove duplicates and sort
    1154          50 :           nlist_index_.assign(nlist_index_set.begin(),nlist_index_set.end());
    1155             :         }
    1156             :       }
    1157         378 :       for(unsigned w=0; w<NumWalkers_; w++)
    1158             :       {
    1159         252 :         std::vector<double> center_w(all_center.begin()+ncv_*w,all_center.begin()+ncv_*(w+1));
    1160         252 :         std::vector<double> sigma_w(all_sigma.begin()+ncv_*w,all_sigma.begin()+ncv_*(w+1));
    1161         252 :         addKernel(all_height[w],center_w,sigma_w,all_logweight[w]);
    1162             :       }
    1163             :     }
    1164         257 :     getPntrToComponent("nker")->set(kernels_.size());
    1165         257 :     if(nlist_)
    1166             :     {
    1167         106 :       getPntrToComponent("nlker")->set(nlist_index_.size());
    1168         106 :       if(nlist_pace_reset_)
    1169          50 :         nlist_update_=true;
    1170             :     }
    1171             : 
    1172             :     //update Zed_
    1173         257 :     if(!no_Zed_)
    1174             :     {
    1175         197 :       double sum_uprob=0;
    1176         197 :       const unsigned ks=kernels_.size();
    1177         197 :       const unsigned ds=delta_kernels_.size();
    1178         197 :       const bool few_kernels=(ks*ks<(3*ks*ds+2*ds*ds*NumParallel_+100)); //this seems reasonable, but is not rigorous...
    1179         197 :       if(few_kernels) //really needed? Probably is almost always false
    1180             :       {
    1181         147 :         #pragma omp parallel num_threads(NumOMP_)
    1182             :         {
    1183             :           #pragma omp for reduction(+:sum_uprob) nowait
    1184             :           for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1185             :             for(unsigned kk=0; kk<kernels_.size(); kk++)
    1186             :               sum_uprob+=evaluateKernel(kernels_[kk],kernels_[k].center);
    1187             :         }
    1188         147 :         if(NumParallel_>1)
    1189          50 :           comm.Sum(sum_uprob);
    1190             :       }
    1191             :       else
    1192             :       {
    1193             :         // Here instead of redoing the full summation, we add only the changes, knowing that
    1194             :         // uprob = old_uprob + delta_uprob
    1195             :         // and we also need to consider that in the new sum there are some novel centers and some disappeared ones
    1196          50 :         double delta_sum_uprob=0;
    1197          50 :         if(!nlist_)
    1198             :         {
    1199           0 :           #pragma omp parallel num_threads(NumOMP_)
    1200             :           {
    1201             :             #pragma omp for reduction(+:delta_sum_uprob) nowait
    1202             :             for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1203             :             {
    1204             :               for(unsigned d=0; d<delta_kernels_.size(); d++)
    1205             :               {
    1206             :                 const double sign=delta_kernels_[d].height<0?-1:1; //take away contribution from kernels that are gone, and add the one from new ones
    1207             :                 delta_sum_uprob+=evaluateKernel(delta_kernels_[d],kernels_[k].center)+sign*evaluateKernel(kernels_[k],delta_kernels_[d].center);
    1208             :               }
    1209             :             }
    1210             :           }
    1211             :         }
    1212             :         else
    1213             :         {
    1214          50 :           #pragma omp parallel num_threads(NumOMP_)
    1215             :           {
    1216             :             #pragma omp for reduction(+:delta_sum_uprob) nowait
    1217             :             for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_)
    1218             :             {
    1219             :               const unsigned k=nlist_index_[nk];
    1220             :               for(unsigned d=0; d<delta_kernels_.size(); d++)
    1221             :               {
    1222             :                 const double sign=delta_kernels_[d].height<0?-1:1; //take away contribution from kernels that are gone, and add the one from new ones
    1223             :                 delta_sum_uprob+=evaluateKernel(delta_kernels_[d],kernels_[k].center)+sign*evaluateKernel(kernels_[k],delta_kernels_[d].center);
    1224             :               }
    1225             :             }
    1226             :           }
    1227             :         }
    1228          50 :         if(NumParallel_>1)
    1229           0 :           comm.Sum(delta_sum_uprob);
    1230          50 :         #pragma omp parallel num_threads(NumOMP_)
    1231             :         {
    1232             :           #pragma omp for reduction(+:delta_sum_uprob)
    1233             :           for(unsigned d=0; d<delta_kernels_.size(); d++)
    1234             :           {
    1235             :             for(unsigned dd=0; dd<delta_kernels_.size(); dd++)
    1236             :             { //now subtract the delta_uprob added before, but not needed
    1237             :               const double sign=delta_kernels_[d].height<0?-1:1;
    1238             :               delta_sum_uprob-=sign*evaluateKernel(delta_kernels_[dd],delta_kernels_[d].center);
    1239             :             }
    1240             :           }
    1241             :         }
    1242          50 :         sum_uprob=Zed_*old_KDEnorm_*old_nker+delta_sum_uprob;
    1243             :       }
    1244         197 :       Zed_=sum_uprob/KDEnorm_/kernels_.size();
    1245         394 :       getPntrToComponent("zed")->set(Zed_);
    1246             :     }
    1247             : 
    1248             :     //calculate work if requested
    1249         257 :     if(calc_work_)
    1250             :     {
    1251          70 :       std::vector<double> dummy(ncv_); //derivatives are not actually needed
    1252          70 :       const double prob=getProbAndDerivatives(center,dummy);
    1253          70 :       const double new_bias=kbt_*bias_prefactor_*std::log(prob/Zed_+epsilon_);
    1254          70 :       work_+=new_bias-getOutputQuantity(0);
    1255         140 :       getPntrToComponent("work")->set(work_);
    1256             :     }
    1257             :   }
    1258             : 
    1259             : //dump state if requested
    1260        1005 :   if( (wStateStride_>0 && getStep()%wStateStride_==0) || (wStateStride_==-1 && getCPT()) )
    1261          18 :     dumpStateToFile();
    1262             : }
    1263             : 
    1264             : template <class mode>
    1265        1141 : double OPESmetad<mode>::getProbAndDerivatives(const std::vector<double>& cv,std::vector<double>& der_prob)
    1266             : {
    1267        1141 :   double prob=0.0;
    1268        1141 :   if(!nlist_)
    1269             :   {
    1270         886 :     if(NumOMP_==1 || (unsigned)kernels_.size()<2*NumOMP_*NumParallel_)
    1271             :     {
    1272             :       // for performances and thread safety
    1273         707 :       std::vector<double> dist(ncv_);
    1274        2647 :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1275        1940 :         prob+=evaluateKernel(kernels_[k],cv,der_prob,dist);
    1276             :     }
    1277             :     else
    1278             :     {
    1279         179 :       #pragma omp parallel num_threads(NumOMP_)
    1280             :       {
    1281             :         std::vector<double> omp_deriv(der_prob.size(),0.);
    1282             :         // for performances and thread safety
    1283             :         std::vector<double> dist(ncv_);
    1284             :         #pragma omp for reduction(+:prob) nowait
    1285             :         for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1286             :           prob+=evaluateKernel(kernels_[k],cv,omp_deriv,dist);
    1287             :         #pragma omp critical
    1288             :         for(unsigned i=0; i<ncv_; i++)
    1289             :           der_prob[i]+=omp_deriv[i];
    1290             :       }
    1291             :     }
    1292             :   }
    1293             :   else
    1294             :   {
    1295         255 :     if(NumOMP_==1 || (unsigned)nlist_index_.size()<2*NumOMP_*NumParallel_)
    1296             :     {
    1297             :       // for performances and thread safety
    1298         230 :       std::vector<double> dist(ncv_);
    1299         660 :       for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_)
    1300         430 :         prob+=evaluateKernel(kernels_[nlist_index_[nk]],cv,der_prob,dist);
    1301             :     }
    1302             :     else
    1303             :     {
    1304          25 :       #pragma omp parallel num_threads(NumOMP_)
    1305             :       {
    1306             :         std::vector<double> omp_deriv(der_prob.size(),0.);
    1307             :         // for performances and thread safety
    1308             :         std::vector<double> dist(ncv_);
    1309             :         #pragma omp for reduction(+:prob) nowait
    1310             :         for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_)
    1311             :           prob+=evaluateKernel(kernels_[nlist_index_[nk]],cv,omp_deriv,dist);
    1312             :         #pragma omp critical
    1313             :         for(unsigned i=0; i<ncv_; i++)
    1314             :           der_prob[i]+=omp_deriv[i];
    1315             :       }
    1316             :     }
    1317             :   }
    1318        1141 :   if(NumParallel_>1)
    1319             :   {
    1320         224 :     comm.Sum(prob);
    1321         224 :     comm.Sum(der_prob);
    1322             :   }
    1323             : //normalize the estimate
    1324        1141 :   prob/=KDEnorm_;
    1325        3311 :   for(unsigned i=0; i<ncv_; i++)
    1326        2170 :     der_prob[i]/=KDEnorm_;
    1327             : 
    1328        1141 :   return prob;
    1329             : }
    1330             : 
    1331             : template <class mode>
    1332         513 : void OPESmetad<mode>::addKernel(const double height,const std::vector<double>& center,const std::vector<double>& sigma)
    1333             : {
    1334             :   bool no_match=true;
    1335         513 :   if(threshold2_!=0)
    1336             :   {
    1337         513 :     unsigned taker_k=getMergeableKernel(center,kernels_.size());
    1338         513 :     if(taker_k<kernels_.size())
    1339             :     {
    1340             :       no_match=false;
    1341         388 :       delta_kernels_.emplace_back(-1*kernels_[taker_k].height,kernels_[taker_k].center,kernels_[taker_k].sigma);
    1342         388 :       mergeKernels(kernels_[taker_k],kernel(height,center,sigma));
    1343         388 :       delta_kernels_.push_back(kernels_[taker_k]);
    1344         388 :       if(recursive_merge_) //the overhead is worth it if it keeps low the total number of kernels
    1345             :       {
    1346             :         unsigned giver_k=taker_k;
    1347         337 :         taker_k=getMergeableKernel(kernels_[giver_k].center,giver_k);
    1348         337 :         while(taker_k<kernels_.size())
    1349             :         {
    1350             :           delta_kernels_.pop_back();
    1351           0 :           delta_kernels_.emplace_back(-1*kernels_[taker_k].height,kernels_[taker_k].center,kernels_[taker_k].sigma);
    1352           0 :           if(taker_k>giver_k) //saves time when erasing
    1353             :             std::swap(taker_k,giver_k);
    1354           0 :           mergeKernels(kernels_[taker_k],kernels_[giver_k]);
    1355           0 :           delta_kernels_.push_back(kernels_[taker_k]);
    1356           0 :           kernels_.erase(kernels_.begin()+giver_k);
    1357           0 :           if(nlist_)
    1358             :           {
    1359             :             unsigned giver_nk=0;
    1360             :             bool found_giver=false;
    1361           0 :             for(unsigned nk=0; nk<nlist_index_.size(); nk++)
    1362             :             {
    1363           0 :               if(found_giver)
    1364           0 :                 nlist_index_[nk]--; //all the indexes shift due to erase
    1365           0 :               if(nlist_index_[nk]==giver_k)
    1366             :               {
    1367             :                 giver_nk=nk;
    1368             :                 found_giver=true;
    1369             :               }
    1370             :             }
    1371             :             plumed_dbg_massert(found_giver,"problem with merging and NLIST");
    1372           0 :             nlist_index_.erase(nlist_index_.begin()+giver_nk);
    1373             :           }
    1374             :           giver_k=taker_k;
    1375           0 :           taker_k=getMergeableKernel(kernels_[giver_k].center,giver_k);
    1376             :         }
    1377             :       }
    1378             :     }
    1379             :   }
    1380             :   if(no_match)
    1381             :   {
    1382         125 :     kernels_.emplace_back(height,center,sigma);
    1383         125 :     delta_kernels_.emplace_back(height,center,sigma);
    1384         125 :     if(nlist_)
    1385          12 :       nlist_index_.push_back(kernels_.size()-1);
    1386             :   }
    1387         513 : }
    1388             : 
    1389             : template <class mode>
    1390         383 : void OPESmetad<mode>::addKernel(const double height,const std::vector<double>& center,const std::vector<double>& sigma,const double logweight)
    1391             : {
    1392         383 :   addKernel(height,center,sigma);
    1393             : //write to file
    1394         383 :   kernelsOfile_.printField("time",getTime());
    1395        1134 :   for(unsigned i=0; i<ncv_; i++)
    1396         751 :     kernelsOfile_.printField(getPntrToArgument(i),center[i]);
    1397        1134 :   for(unsigned i=0; i<ncv_; i++)
    1398        1502 :     kernelsOfile_.printField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
    1399         383 :   kernelsOfile_.printField("height",height);
    1400         383 :   kernelsOfile_.printField("logweight",logweight);
    1401         383 :   kernelsOfile_.printField();
    1402         383 : }
    1403             : 
    1404             : template <class mode>
    1405         850 : unsigned OPESmetad<mode>::getMergeableKernel(const std::vector<double>& giver_center,const unsigned giver_k)
    1406             : { //returns kernels_.size() if no match is found
    1407         850 :   unsigned min_k=kernels_.size();
    1408         850 :   double min_norm2=threshold2_;
    1409         850 :   if(!nlist_)
    1410             :   {
    1411         550 :     #pragma omp parallel num_threads(NumOMP_)
    1412             :     {
    1413             :       unsigned min_k_omp = min_k;
    1414             :       double min_norm2_omp = threshold2_;
    1415             :       #pragma omp for nowait
    1416             :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1417             :       {
    1418             :         if(k==giver_k) //a kernel should not be merged with itself
    1419             :           continue;
    1420             :         double norm2=0;
    1421             :         for(unsigned i=0; i<ncv_; i++)
    1422             :         {
    1423             :           const double dist_i=difference(i,giver_center[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1424             :           norm2+=dist_i*dist_i;
    1425             :           if(norm2>=min_norm2_omp)
    1426             :             break;
    1427             :         }
    1428             :         if(norm2<min_norm2_omp)
    1429             :         {
    1430             :           min_norm2_omp=norm2;
    1431             :           min_k_omp=k;
    1432             :         }
    1433             :       }
    1434             :       #pragma omp critical
    1435             :       {
    1436             :         if(min_norm2_omp < min_norm2)
    1437             :         {
    1438             :           min_norm2 = min_norm2_omp;
    1439             :           min_k = min_k_omp;
    1440             :         }
    1441             :       }
    1442             :     }
    1443             :   }
    1444             :   else
    1445             :   {
    1446         300 :     #pragma omp parallel num_threads(NumOMP_)
    1447             :     {
    1448             :       unsigned min_k_omp = min_k;
    1449             :       double min_norm2_omp = threshold2_;
    1450             :       #pragma omp for nowait
    1451             :       for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_)
    1452             :       {
    1453             :         const unsigned k=nlist_index_[nk];
    1454             :         if(k==giver_k) //a kernel should not be merged with itself
    1455             :           continue;
    1456             :         double norm2=0;
    1457             :         for(unsigned i=0; i<ncv_; i++)
    1458             :         {
    1459             :           const double dist_i=difference(i,giver_center[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1460             :           norm2+=dist_i*dist_i;
    1461             :           if(norm2>=min_norm2)
    1462             :             break;
    1463             :         }
    1464             :         if(norm2<min_norm2_omp)
    1465             :         {
    1466             :           min_norm2_omp=norm2;
    1467             :           min_k_omp=k;
    1468             :         }
    1469             :       }
    1470             :       #pragma omp critical
    1471             :       {
    1472             :         if(min_norm2_omp < min_norm2)
    1473             :         {
    1474             :           min_norm2 = min_norm2_omp;
    1475             :           min_k = min_k_omp;
    1476             :         }
    1477             :       }
    1478             :     }
    1479             :   }
    1480         850 :   if(NumParallel_>1)
    1481             :   {
    1482         134 :     std::vector<double> all_min_norm2(NumParallel_);
    1483         134 :     std::vector<unsigned> all_min_k(NumParallel_);
    1484         134 :     comm.Allgather(min_norm2,all_min_norm2);
    1485         134 :     comm.Allgather(min_k,all_min_k);
    1486         134 :     const unsigned best=std::distance(std::begin(all_min_norm2),std::min_element(std::begin(all_min_norm2),std::end(all_min_norm2)));
    1487         134 :     min_k=all_min_k[best];
    1488             :   }
    1489         850 :   return min_k;
    1490             : }
    1491             : 
    1492             : template <class mode>
    1493         250 : void OPESmetad<mode>::updateNlist(const std::vector<double>& new_center)
    1494             : {
    1495         250 :   if(kernels_.size()==0) //no need to check for neighbors
    1496           6 :     return;
    1497             : 
    1498         244 :   nlist_center_=new_center;
    1499         244 :   nlist_index_.clear();
    1500             :   //first we gather all the nlist_index
    1501         244 :   if(NumOMP_==1 || (unsigned)kernels_.size()<2*NumOMP_*NumParallel_)
    1502             :   {
    1503         198 :     for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1504             :     {
    1505             :       double norm2_k=0;
    1506         444 :       for(unsigned i=0; i<ncv_; i++)
    1507             :       {
    1508         296 :         const double dist_ik=difference(i,nlist_center_[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1509         296 :         norm2_k+=dist_ik*dist_ik;
    1510             :       }
    1511         148 :       if(norm2_k<=nlist_param_[0]*cutoff2_)
    1512         104 :         nlist_index_.push_back(k);
    1513             :     }
    1514             :   }
    1515             :   else
    1516             :   {
    1517         194 :     #pragma omp parallel num_threads(NumOMP_)
    1518             :     {
    1519             :       std::vector<unsigned> private_nlist_index;
    1520             :       #pragma omp for nowait
    1521             :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1522             :       {
    1523             :         double norm2_k=0;
    1524             :         for(unsigned i=0; i<ncv_; i++)
    1525             :         {
    1526             :           const double dist_ik=difference(i,nlist_center_[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1527             :           norm2_k+=dist_ik*dist_ik;
    1528             :         }
    1529             :         if(norm2_k<=nlist_param_[0]*cutoff2_)
    1530             :           private_nlist_index.push_back(k);
    1531             :       }
    1532             :       #pragma omp critical
    1533             :       nlist_index_.insert(nlist_index_.end(),private_nlist_index.begin(),private_nlist_index.end());
    1534             :     }
    1535         194 :     if(recursive_merge_)
    1536         194 :       std::sort(nlist_index_.begin(),nlist_index_.end());
    1537             :   }
    1538         244 :   if(NumParallel_>1)
    1539             :   {
    1540         100 :     std::vector<int> all_nlist_size(NumParallel_);
    1541         100 :     all_nlist_size[rank_]=nlist_index_.size();
    1542         100 :     comm.Sum(all_nlist_size);
    1543             :     unsigned tot_size=0;
    1544         300 :     for(unsigned r=0; r<NumParallel_; r++)
    1545         200 :       tot_size+=all_nlist_size[r];
    1546         100 :     if(tot_size>0)
    1547             :     {
    1548         100 :       std::vector<int> disp(NumParallel_);
    1549         200 :       for(unsigned r=0; r<NumParallel_-1; r++)
    1550         100 :         disp[r+1]=disp[r]+all_nlist_size[r];
    1551         100 :       std::vector<unsigned> local_nlist_index=nlist_index_;
    1552         100 :       nlist_index_.resize(tot_size);
    1553         100 :       comm.Allgatherv(local_nlist_index,nlist_index_,&all_nlist_size[0],&disp[0]);
    1554         100 :       if(recursive_merge_)
    1555         100 :         std::sort(nlist_index_.begin(),nlist_index_.end());
    1556             :     }
    1557             :   }
    1558             :   //calculate the square deviation
    1559         244 :   std::vector<double> dev2(ncv_,0.);
    1560         773 :   for(unsigned k=rank_; k<nlist_index_.size(); k+=NumParallel_)
    1561             :   {
    1562        1587 :     for(unsigned i=0; i<ncv_; i++)
    1563             :     {
    1564        1058 :       const double diff_ik=difference(i,nlist_center_[i],kernels_[nlist_index_[k]].center[i]);
    1565        1058 :       dev2[i]+=diff_ik*diff_ik;
    1566             :     }
    1567             :   }
    1568         244 :   if(NumParallel_>1)
    1569         100 :     comm.Sum(dev2);
    1570         732 :   for(unsigned i=0; i<ncv_; i++)
    1571             :   {
    1572         488 :     if(dev2[i]==0) //e.g. if nlist_index_.size()==0
    1573          56 :       nlist_dev2_[i]=std::pow(kernels_.back().sigma[i],2);
    1574             :     else
    1575         432 :       nlist_dev2_[i]=dev2[i]/nlist_index_.size();
    1576             :   }
    1577         244 :   getPntrToComponent("nlker")->set(nlist_index_.size());
    1578         244 :   getPntrToComponent("nlsteps")->set(nlist_steps_);
    1579         244 :   nlist_steps_=0;
    1580         244 :   nlist_update_=false;
    1581             : }
    1582             : 
    1583             : template <class mode>
    1584          18 : void OPESmetad<mode>::dumpStateToFile()
    1585             : {
    1586             : //gather adaptive sigma info if needed
    1587             : //doing this while writing to file can lead to misterious slowdowns
    1588             :   std::vector<double> all_sigma0;
    1589             :   std::vector<double> all_av_cv;
    1590             :   std::vector<double> all_av_M2;
    1591          18 :   if(adaptive_sigma_ && NumWalkers_>1)
    1592             :   {
    1593          16 :     all_sigma0.resize(NumWalkers_*ncv_);
    1594          16 :     all_av_cv.resize(NumWalkers_*ncv_);
    1595          16 :     all_av_M2.resize(NumWalkers_*ncv_);
    1596          16 :     if(comm.Get_rank()==0)
    1597             :     {
    1598          16 :       multi_sim_comm.Allgather(sigma0_,all_sigma0);
    1599          16 :       multi_sim_comm.Allgather(av_cv_,all_av_cv);
    1600          16 :       multi_sim_comm.Allgather(av_M2_,all_av_M2);
    1601             :     }
    1602          16 :     comm.Bcast(all_sigma0,0);
    1603          16 :     comm.Bcast(all_av_cv,0);
    1604          16 :     comm.Bcast(all_av_M2,0);
    1605             :   }
    1606             : 
    1607             : //rewrite header or rewind file
    1608          18 :   if(storeOldStates_)
    1609          16 :     stateOfile_.clearFields();
    1610           2 :   else if(walker_rank_==0)
    1611           2 :     stateOfile_.rewind();
    1612             : //define fields
    1613          18 :   stateOfile_.addConstantField("action");
    1614          18 :   stateOfile_.addConstantField("biasfactor");
    1615          18 :   stateOfile_.addConstantField("epsilon");
    1616          18 :   stateOfile_.addConstantField("kernel_cutoff");
    1617          18 :   stateOfile_.addConstantField("compression_threshold");
    1618          18 :   stateOfile_.addConstantField("zed");
    1619          18 :   stateOfile_.addConstantField("sum_weights");
    1620          18 :   stateOfile_.addConstantField("sum_weights2");
    1621          18 :   stateOfile_.addConstantField("counter");
    1622          18 :   if(adaptive_sigma_)
    1623             :   {
    1624          18 :     stateOfile_.addConstantField("adaptive_counter");
    1625          18 :     if(NumWalkers_==1)
    1626             :     {
    1627           6 :       for(unsigned i=0; i<ncv_; i++)
    1628             :       {
    1629           8 :         stateOfile_.addConstantField("sigma0_"+getPntrToArgument(i)->getName());
    1630           8 :         stateOfile_.addConstantField("av_cv_"+getPntrToArgument(i)->getName());
    1631           8 :         stateOfile_.addConstantField("av_M2_"+getPntrToArgument(i)->getName());
    1632             :       }
    1633             :     }
    1634             :     else
    1635             :     {
    1636          48 :       for(unsigned w=0; w<NumWalkers_; w++)
    1637          96 :         for(unsigned i=0; i<ncv_; i++)
    1638             :         {
    1639         128 :           const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
    1640          64 :           stateOfile_.addConstantField("sigma0_"+arg_iw);
    1641          64 :           stateOfile_.addConstantField("av_cv_"+arg_iw);
    1642         128 :           stateOfile_.addConstantField("av_M2_"+arg_iw);
    1643             :         }
    1644             :     }
    1645             :   }
    1646             : //print fields
    1647          54 :   for(unsigned i=0; i<ncv_; i++) //periodicity of CVs
    1648          36 :     stateOfile_.setupPrintValue(getPntrToArgument(i));
    1649          36 :   stateOfile_.printField("action",getName()+"_state");
    1650          18 :   stateOfile_.printField("biasfactor",biasfactor_);
    1651          18 :   stateOfile_.printField("epsilon",epsilon_);
    1652          18 :   stateOfile_.printField("kernel_cutoff",sqrt(cutoff2_));
    1653          18 :   stateOfile_.printField("compression_threshold",sqrt(threshold2_));
    1654          18 :   stateOfile_.printField("zed",Zed_);
    1655          18 :   stateOfile_.printField("sum_weights",sum_weights_);
    1656          18 :   stateOfile_.printField("sum_weights2",sum_weights2_);
    1657          18 :   stateOfile_.printField("counter",counter_);
    1658          18 :   if(adaptive_sigma_)
    1659             :   {
    1660          18 :     stateOfile_.printField("adaptive_counter",adaptive_counter_);
    1661          18 :     if(NumWalkers_==1)
    1662             :     {
    1663           6 :       for(unsigned i=0; i<ncv_; i++)
    1664             :       {
    1665           8 :         stateOfile_.printField("sigma0_"+getPntrToArgument(i)->getName(),sigma0_[i]);
    1666           8 :         stateOfile_.printField("av_cv_"+getPntrToArgument(i)->getName(),av_cv_[i]);
    1667           8 :         stateOfile_.printField("av_M2_"+getPntrToArgument(i)->getName(),av_M2_[i]);
    1668             :       }
    1669             :     }
    1670             :     else
    1671             :     {
    1672          48 :       for(unsigned w=0; w<NumWalkers_; w++)
    1673          96 :         for(unsigned i=0; i<ncv_; i++)
    1674             :         {
    1675         128 :           const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
    1676          64 :           stateOfile_.printField("sigma0_"+arg_iw,all_sigma0[w*ncv_+i]);
    1677          64 :           stateOfile_.printField("av_cv_"+arg_iw,all_av_cv[w*ncv_+i]);
    1678         128 :           stateOfile_.printField("av_M2_"+arg_iw,all_av_M2[w*ncv_+i]);
    1679             :         }
    1680             :     }
    1681             :   }
    1682             : //print kernels
    1683          82 :   for(unsigned k=0; k<kernels_.size(); k++)
    1684             :   {
    1685          64 :     stateOfile_.printField("time",getTime()); //this is not very usefull
    1686         192 :     for(unsigned i=0; i<ncv_; i++)
    1687         128 :       stateOfile_.printField(getPntrToArgument(i),kernels_[k].center[i]);
    1688         192 :     for(unsigned i=0; i<ncv_; i++)
    1689         256 :       stateOfile_.printField("sigma_"+getPntrToArgument(i)->getName(),kernels_[k].sigma[i]);
    1690          64 :     stateOfile_.printField("height",kernels_[k].height);
    1691          64 :     stateOfile_.printField();
    1692             :   }
    1693             : //make sure file is written even if small
    1694          18 :   if(!storeOldStates_)
    1695           2 :     stateOfile_.flush();
    1696          18 : }
    1697             : 
    1698             : template <class mode>
    1699        5969 : inline double OPESmetad<mode>::evaluateKernel(const kernel& G,const std::vector<double>& x) const
    1700             : { //NB: cannot be a method of kernel class, because uses external variables (for cutoff)
    1701             :   double norm2=0;
    1702       13923 :   for(unsigned i=0; i<ncv_; i++)
    1703             :   {
    1704       10288 :     const double dist_i=difference(i,G.center[i],x[i])/G.sigma[i];
    1705       10288 :     norm2+=dist_i*dist_i;
    1706       10288 :     if(norm2>=cutoff2_)
    1707             :       return 0;
    1708             :   }
    1709        3635 :   return G.height*(std::exp(-0.5*norm2)-val_at_cutoff_);
    1710             : }
    1711             : 
    1712             : template <class mode>
    1713        3364 : inline double OPESmetad<mode>::evaluateKernel(const kernel& G,const std::vector<double>& x, std::vector<double>& acc_der, std::vector<double>& dist)
    1714             : { //NB: cannot be a method of kernel class, because uses external variables (for cutoff)
    1715             :   double norm2=0;
    1716        7483 :   for(unsigned i=0; i<ncv_; i++)
    1717             :   {
    1718        5578 :     dist[i]=difference(i,G.center[i],x[i])/G.sigma[i];
    1719        5578 :     norm2+=dist[i]*dist[i];
    1720        5578 :     if(norm2>=cutoff2_)
    1721             :       return 0;
    1722             :   }
    1723        1905 :   const double val=G.height*(std::exp(-0.5*norm2)-val_at_cutoff_);
    1724        5576 :   for(unsigned i=0; i<ncv_; i++)
    1725        3671 :     acc_der[i]-=dist[i]/G.sigma[i]*val; //NB: we accumulate the derivative into der
    1726             :   return val;
    1727             : }
    1728             : 
    1729             : template <class mode>
    1730         388 : inline void OPESmetad<mode>::mergeKernels(kernel& k1,const kernel& k2)
    1731             : {
    1732         388 :   const double h=k1.height+k2.height;
    1733        1159 :   for(unsigned i=0; i<k1.center.size(); i++)
    1734             :   {
    1735         771 :     const bool isPeriodic_i=getPntrToArgument(i)->isPeriodic();
    1736         771 :     if(isPeriodic_i)
    1737         771 :       k1.center[i]=k2.center[i]+difference(i,k2.center[i],k1.center[i]); //fix PBC
    1738         771 :     const double c_i=(k1.height*k1.center[i]+k2.height*k2.center[i])/h;
    1739         771 :     const double ss_k1_part=k1.height*(k1.sigma[i]*k1.sigma[i]+k1.center[i]*k1.center[i]);
    1740         771 :     const double ss_k2_part=k2.height*(k2.sigma[i]*k2.sigma[i]+k2.center[i]*k2.center[i]);
    1741         771 :     const double ss_i=(ss_k1_part+ss_k2_part)/h-c_i*c_i;
    1742         771 :     if(isPeriodic_i)
    1743         771 :       k1.center[i]=bringBackInPbc(i,c_i);
    1744             :     else
    1745           0 :       k1.center[i]=c_i;
    1746         771 :     k1.sigma[i]=sqrt(ss_i);
    1747             :   }
    1748         388 :   k1.height=h;
    1749         388 : }
    1750             : 
    1751             : }
    1752             : }

Generated by: LCOV version 1.15