LCOV - code coverage report
Current view: top level - multicolvar - VolumeTetrapore.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 8 232 3.4 %
Date: 2024-10-11 08:09:47 Functions: 3 12 25.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2015-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "core/ActionRegister.h"
      23             : #include "core/PlumedMain.h"
      24             : #include "core/Atoms.h"
      25             : #include "tools/Units.h"
      26             : #include "tools/Pbc.h"
      27             : #include "ActionVolume.h"
      28             : 
      29             : //+PLUMEDOC VOLUMES TETRAHEDRALPORE
      30             : /*
      31             : This quantity can be used to calculate functions of the distribution of collective variables for the atoms lie that lie in a box defined by the positions of four atoms at the corners of a tetrahedron.
      32             : 
      33             : Each of the base quantities calculated by a multicolvar can can be assigned to a particular point in three
      34             : dimensional space. For example, if we have the coordination numbers for all the atoms in the
      35             : system each coordination number can be assumed to lie on the position of the central atom.
      36             : Because each base quantity can be assigned to a particular point in space we can calculate functions of the
      37             : distribution of base quantities in a particular part of the box by using:
      38             : 
      39             : \f[
      40             : \overline{s}_{\tau} = \frac{ \sum_i f(s_i) w(u_i,v_i,w_i) }{ \sum_i w(u_i,v_i,w_i) }
      41             : \f]
      42             : 
      43             : where the sum is over the collective variables, \f$s_i\f$, each of which can be thought to be at \f$ (u_i,v_i,z_i)\f$.
      44             : The function \f$(s_i)\f$ can be any of the usual LESS_THAN, MORE_THAN, WITHIN etc that are used in all other multicolvars.
      45             : Notice that here (at variance with what is done in \ref AROUND) we have transformed from the usual \f$(x_i,y_i,z_i)\f$
      46             : position to a position in \f$ (u_i,v_i,z_i)\f$.  This is done using a rotation matrix as follows:
      47             : 
      48             : \f[
      49             : \left(
      50             : \begin{matrix}
      51             :  u_i \\
      52             :  v_i \\
      53             :  w_i
      54             : \end{matrix}
      55             : \right) = \mathbf{R}
      56             : \left(
      57             : \begin{matrix}
      58             :  x_i - x_o \\
      59             :  y_i - y_o \\
      60             :  z_i - z_o
      61             : \end{matrix}
      62             : \right)
      63             : \f]
      64             : 
      65             : where \f$\mathbf{R}\f$ is a rotation matrix that is calculated by constructing a set of three orthonormal vectors from the
      66             : reference positions specified by the user.  Initially unit vectors are found by calculating the bisector, \f$\mathbf{b}\f$, and
      67             : cross product, \f$\mathbf{c}\f$, of the vectors connecting atoms 1 and 2.  A third unit vector, \f$\mathbf{p}\f$ is then found by taking the cross
      68             : product between the cross product calculated during the first step, \f$\mathbf{c}\f$ and the bisector, \f$\mathbf{b}\f$.  From this
      69             : second cross product \f$\mathbf{p}\f$ and the bisector \f$\mathbf{b}\f$ two new vectors are calculated using:
      70             : 
      71             : \f[
      72             : v_1 = \cos\left(\frac{\pi}{4}\right)\mathbf{b} + \sin\left(\frac{\pi}{4}\right)\mathbf{p} \qquad \textrm{and} \qquad
      73             : v_2 = \cos\left(\frac{\pi}{4}\right)\mathbf{b} - \sin\left(\frac{\pi}{4}\right)\mathbf{p}
      74             : \f]
      75             : 
      76             : In the previous function \f$ w(u_i,v_i,w_i) \f$ measures whether or not the system is in the subregion of interest. It
      77             : is equal to:
      78             : 
      79             : \f[
      80             : w(u_i,v_i,w_i) = \int_{0}^{u'} \int_{0}^{v'} \int_{0}^{w'} \textrm{d}u\textrm{d}v\textrm{d}w
      81             :    K\left( \frac{u - u_i}{\sigma} \right)K\left( \frac{v - v_i}{\sigma} \right)K\left( \frac{w - w_i}{\sigma} \right)
      82             : \f]
      83             : 
      84             : where \f$K\f$ is one of the kernel functions described on \ref histogrambead and \f$\sigma\f$ is a bandwidth parameter.
      85             : The values of \f$u'\f$ and \f$v'\f$ are found by finding the projections of the vectors connecting atoms 1 and 2 and 1
      86             : and 3 \f$v_1\f$ and \f$v_2\f$.  This gives four projections: the largest two projections are used in the remainder of
      87             : the calculations.  \f$w'\f$ is calculated by taking the projection of the vector connecting atoms 1 and 4 on the vector
      88             : \f$\mathbf{c}\f$.  Notice that the manner by which this box is constructed differs from the way this is done in \ref CAVITY.
      89             : This is in fact the only point of difference between these two actions.
      90             : 
      91             : \par Examples
      92             : 
      93             : The following commands tell plumed to calculate the number of atom inside a tetrahedral cavity.  The extent of the tetrahedral
      94             : cavity is calculated from the positions of atoms 1, 4, 5, and 11,  The final value will be labeled cav.
      95             : 
      96             : \plumedfile
      97             : d1: DENSITY SPECIES=20-500
      98             : TETRAHEDRALPORE DATA=d1 ATOMS=1,4,5,11 SIGMA=0.1 LABEL=cav
      99             : \endplumedfile
     100             : 
     101             : The following command tells plumed to calculate the coordination numbers (with other water molecules) for the water
     102             : molecules in the tetrahedral cavity described above.  The average coordination number and the number of coordination
     103             : numbers more than 4 is then calculated.  The values of these two quantities are given the labels cav.mean and cav.morethan
     104             : 
     105             : \plumedfile
     106             : d1: COORDINATIONNUMBER SPECIES=20-500 R_0=0.1
     107             : CAVITY DATA=d1 ATOMS=1,4,5,11 SIGMA=0.1 MEAN MORE_THAN={RATIONAL R_0=4} LABEL=cav
     108             : \endplumedfile
     109             : 
     110             : */
     111             : //+ENDPLUMEDOC
     112             : 
     113             : namespace PLMD {
     114             : namespace multicolvar {
     115             : 
     116             : class VolumeTetrapore : public ActionVolume {
     117             : private:
     118             :   bool boxout;
     119             :   OFile boxfile;
     120             :   double lenunit;
     121             :   double jacob_det;
     122             :   double len_bi, len_cross, len_perp, sigma;
     123             :   Vector origin, bi, cross, perp;
     124             :   std::vector<Vector> dlbi, dlcross, dlperp;
     125             :   std::vector<Tensor> dbi, dcross, dperp;
     126             : public:
     127             :   static void registerKeywords( Keywords& keys );
     128             :   explicit VolumeTetrapore(const ActionOptions& ao);
     129             :   ~VolumeTetrapore();
     130             :   void setupRegions() override;
     131             :   void update() override;
     132             :   double calculateNumberInside( const Vector& cpos, Vector& derivatives, Tensor& vir, std::vector<Vector>& refders ) const override;
     133             : };
     134             : 
     135       10419 : PLUMED_REGISTER_ACTION(VolumeTetrapore,"TETRAHEDRALPORE")
     136             : 
     137           1 : void VolumeTetrapore::registerKeywords( Keywords& keys ) {
     138           1 :   ActionVolume::registerKeywords( keys );
     139           2 :   keys.add("atoms","ATOMS","the positions of four atoms that define spatial extent of the cavity");
     140           2 :   keys.addFlag("PRINT_BOX",false,"write out the positions of the corners of the box to an xyz file");
     141           2 :   keys.add("optional","FILE","the file on which to write out the box coordinates");
     142           2 :   keys.add("optional","UNITS","( default=nm ) the units in which to write out the corners of the box");
     143           1 : }
     144             : 
     145           0 : VolumeTetrapore::VolumeTetrapore(const ActionOptions& ao):
     146             :   Action(ao),
     147             :   ActionVolume(ao),
     148           0 :   boxout(false),
     149           0 :   lenunit(1.0),
     150           0 :   dlbi(4),
     151           0 :   dlcross(4),
     152           0 :   dlperp(4),
     153           0 :   dbi(3),
     154           0 :   dcross(3),
     155           0 :   dperp(3)
     156             : {
     157             :   std::vector<AtomNumber> atoms;
     158           0 :   parseAtomList("ATOMS",atoms);
     159           0 :   if( atoms.size()!=4 ) error("number of atoms should be equal to four");
     160             : 
     161           0 :   log.printf("  boundaries for region are calculated based on positions of atoms : ");
     162           0 :   for(unsigned i=0; i<atoms.size(); ++i) log.printf("%d ",atoms[i].serial() );
     163           0 :   log.printf("\n");
     164             : 
     165           0 :   boxout=false; parseFlag("PRINT_BOX",boxout);
     166           0 :   if(boxout) {
     167           0 :     std::string boxfname; parse("FILE",boxfname);
     168           0 :     if(boxfname.length()==0) error("no name for box file specified");
     169           0 :     std::string unitname; parse("UNITS",unitname);
     170           0 :     if ( unitname.length()>0 ) {
     171           0 :       Units u; u.setLength(unitname);
     172           0 :       lenunit=plumed.getAtoms().getUnits().getLength()/u.getLength();
     173           0 :     } else {
     174             :       unitname="nm";
     175             :     }
     176           0 :     boxfile.link(*this);
     177           0 :     boxfile.open( boxfname );
     178           0 :     log.printf("  printing box coordinates on file named %s in %s \n",boxfname.c_str(), unitname.c_str() );
     179             :   }
     180             : 
     181           0 :   checkRead();
     182           0 :   requestAtoms(atoms);
     183             :   // We have to readd the dependency because requestAtoms removes it
     184           0 :   addDependency( getPntrToMultiColvar() );
     185           0 : }
     186             : 
     187           0 : VolumeTetrapore::~VolumeTetrapore() {
     188           0 : }
     189             : 
     190           0 : void VolumeTetrapore::setupRegions() {
     191             :   // Make some space for things
     192           0 :   Vector d1, d2, d3;
     193             : 
     194             :   // Retrieve the sigma value
     195           0 :   sigma=getSigma();
     196             :   // Set the position of the origin
     197           0 :   origin=getPosition(0);
     198             : 
     199             :   // Get two vectors
     200           0 :   d1 = pbcDistance(origin,getPosition(1));
     201           0 :   d2 = pbcDistance(origin,getPosition(2));
     202             : 
     203             :   // Find the vector connecting the origin to the top corner of
     204             :   // the subregion
     205           0 :   d3 = pbcDistance(origin,getPosition(3));
     206             : 
     207             :   // Create a set of unit vectors
     208           0 :   Vector bisector = d1 + d2; double bmod=bisector.modulo(); bisector=bisector/bmod;
     209             : 
     210             :   // bi = d1 / d1l; len_bi=dotProduct( d3, bi );
     211           0 :   cross = crossProduct( d1, d2 ); double crossmod=cross.modulo();
     212           0 :   cross = cross / crossmod; len_cross=dotProduct( d3, cross );
     213           0 :   Vector truep = crossProduct( cross, bisector );
     214             : 
     215             :   // These are our true vectors 45 degrees from bisector
     216           0 :   bi = std::cos(pi/4.0)*bisector + std::sin(pi/4.0)*truep;
     217           0 :   perp = std::cos(pi/4.0)*bisector - std::sin(pi/4.0)*truep;
     218             : 
     219             :   // And the lengths of the various parts average distance to opposite corners of tetetrahedron
     220           0 :   len_bi = dotProduct( d1, bi ); double len_bi2 = dotProduct( d2, bi ); unsigned lbi=1;
     221           0 :   if( len_bi2>len_bi ) { len_bi=len_bi2; lbi=2; }
     222           0 :   len_perp = dotProduct( d1, perp ); double len_perp2 = dotProduct( d2, perp ); unsigned lpi=1;
     223           0 :   if( len_perp2>len_perp ) { len_perp=len_perp2; lpi=2; }
     224           0 :   plumed_assert( lbi!=lpi );
     225             : 
     226           0 :   Tensor tcderiv; double cmod3=crossmod*crossmod*crossmod; Vector ucross=crossmod*cross;
     227           0 :   tcderiv.setCol( 0, crossProduct( d1, Vector(-1.0,0.0,0.0) ) + crossProduct( Vector(-1.0,0.0,0.0), d2 ) );
     228           0 :   tcderiv.setCol( 1, crossProduct( d1, Vector(0.0,-1.0,0.0) ) + crossProduct( Vector(0.0,-1.0,0.0), d2 ) );
     229           0 :   tcderiv.setCol( 2, crossProduct( d1, Vector(0.0,0.0,-1.0) ) + crossProduct( Vector(0.0,0.0,-1.0), d2 ) );
     230           0 :   dcross[0](0,0)=( tcderiv(0,0)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dx/dx
     231           0 :   dcross[0](0,1)=( tcderiv(0,1)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dx/dy
     232           0 :   dcross[0](0,2)=( tcderiv(0,2)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dx/dz
     233           0 :   dcross[0](1,0)=( tcderiv(1,0)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dy/dx
     234           0 :   dcross[0](1,1)=( tcderiv(1,1)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dy/dy
     235           0 :   dcross[0](1,2)=( tcderiv(1,2)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dy/dz
     236           0 :   dcross[0](2,0)=( tcderiv(2,0)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dz/dx
     237           0 :   dcross[0](2,1)=( tcderiv(2,1)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dz/dy
     238           0 :   dcross[0](2,2)=( tcderiv(2,2)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dz/dz
     239             : 
     240           0 :   tcderiv.setCol( 0, crossProduct( Vector(1.0,0.0,0.0), d2 ) );
     241           0 :   tcderiv.setCol( 1, crossProduct( Vector(0.0,1.0,0.0), d2 ) );
     242           0 :   tcderiv.setCol( 2, crossProduct( Vector(0.0,0.0,1.0), d2 ) );
     243           0 :   dcross[1](0,0)=( tcderiv(0,0)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dx/dx
     244           0 :   dcross[1](0,1)=( tcderiv(0,1)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dx/dy
     245           0 :   dcross[1](0,2)=( tcderiv(0,2)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dx/dz
     246           0 :   dcross[1](1,0)=( tcderiv(1,0)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dy/dx
     247           0 :   dcross[1](1,1)=( tcderiv(1,1)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dy/dy
     248           0 :   dcross[1](1,2)=( tcderiv(1,2)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dy/dz
     249           0 :   dcross[1](2,0)=( tcderiv(2,0)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dz/dx
     250           0 :   dcross[1](2,1)=( tcderiv(2,1)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dz/dy
     251           0 :   dcross[1](2,2)=( tcderiv(2,2)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dz/dz
     252             : 
     253           0 :   tcderiv.setCol( 0, crossProduct( d1, Vector(1.0,0.0,0.0) ) );
     254           0 :   tcderiv.setCol( 1, crossProduct( d1, Vector(0.0,1.0,0.0) ) );
     255           0 :   tcderiv.setCol( 2, crossProduct( d1, Vector(0.0,0.0,1.0) ) );
     256           0 :   dcross[2](0,0)=( tcderiv(0,0)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dx/dx
     257           0 :   dcross[2](0,1)=( tcderiv(0,1)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dx/dy
     258           0 :   dcross[2](0,2)=( tcderiv(0,2)/crossmod - ucross[0]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dx/dz
     259           0 :   dcross[2](1,0)=( tcderiv(1,0)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dy/dx
     260           0 :   dcross[2](1,1)=( tcderiv(1,1)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dy/dy
     261           0 :   dcross[2](1,2)=( tcderiv(1,2)/crossmod - ucross[1]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dy/dz
     262           0 :   dcross[2](2,0)=( tcderiv(2,0)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,0) + ucross[1]*tcderiv(1,0) + ucross[2]*tcderiv(2,0))/cmod3 );    // dz/dx
     263           0 :   dcross[2](2,1)=( tcderiv(2,1)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,1) + ucross[1]*tcderiv(1,1) + ucross[2]*tcderiv(2,1))/cmod3 );    // dz/dy
     264           0 :   dcross[2](2,2)=( tcderiv(2,2)/crossmod - ucross[2]*(ucross[0]*tcderiv(0,2) + ucross[1]*tcderiv(1,2) + ucross[2]*tcderiv(2,2))/cmod3 );    // dz/dz
     265             : 
     266           0 :   std::vector<Tensor> dbisector(3);
     267           0 :   double bmod3=bmod*bmod*bmod; Vector ubisector=bmod*bisector;
     268           0 :   dbisector[0](0,0)= -2.0/bmod + 2*ubisector[0]*ubisector[0]/bmod3;
     269           0 :   dbisector[0](0,1)= 2*ubisector[0]*ubisector[1]/bmod3;
     270           0 :   dbisector[0](0,2)= 2*ubisector[0]*ubisector[2]/bmod3;
     271           0 :   dbisector[0](1,0)= 2*ubisector[1]*ubisector[0]/bmod3;
     272           0 :   dbisector[0](1,1)= -2.0/bmod + 2*ubisector[1]*ubisector[1]/bmod3;
     273           0 :   dbisector[0](1,2)= 2*ubisector[1]*ubisector[2]/bmod3;
     274           0 :   dbisector[0](2,0)= 2*ubisector[2]*ubisector[0]/bmod3;
     275           0 :   dbisector[0](2,1)= 2*ubisector[2]*ubisector[1]/bmod3;
     276           0 :   dbisector[0](2,2)= -2.0/bmod + 2*ubisector[2]*ubisector[2]/bmod3;
     277             : 
     278           0 :   dbisector[1](0,0)= 1.0/bmod - ubisector[0]*ubisector[0]/bmod3;
     279           0 :   dbisector[1](0,1)= -ubisector[0]*ubisector[1]/bmod3;
     280           0 :   dbisector[1](0,2)= -ubisector[0]*ubisector[2]/bmod3;
     281           0 :   dbisector[1](1,0)= -ubisector[1]*ubisector[0]/bmod3;
     282           0 :   dbisector[1](1,1)= 1.0/bmod - ubisector[1]*ubisector[1]/bmod3;
     283           0 :   dbisector[1](1,2)= -ubisector[1]*ubisector[2]/bmod3;
     284           0 :   dbisector[1](2,0)= -ubisector[2]*ubisector[0]/bmod3;
     285           0 :   dbisector[1](2,1)= -ubisector[2]*ubisector[1]/bmod3;
     286           0 :   dbisector[1](2,2)=1.0/bmod - ubisector[2]*ubisector[2]/bmod3;
     287             : 
     288           0 :   dbisector[2](0,0)=1.0/bmod - ubisector[0]*ubisector[0]/bmod3;
     289           0 :   dbisector[2](0,1)= -ubisector[0]*ubisector[1]/bmod3;
     290           0 :   dbisector[2](0,2)= -ubisector[0]*ubisector[2]/bmod3;
     291           0 :   dbisector[2](1,0)= -ubisector[1]*ubisector[0]/bmod3;
     292           0 :   dbisector[2](1,1)=1.0/bmod - ubisector[1]*ubisector[1]/bmod3;
     293           0 :   dbisector[2](1,2)= -ubisector[1]*ubisector[2]/bmod3;
     294           0 :   dbisector[2](2,0)= -ubisector[2]*ubisector[0]/bmod3;
     295           0 :   dbisector[2](2,1)= -ubisector[2]*ubisector[1]/bmod3;
     296           0 :   dbisector[2](2,2)=1.0/bmod - ubisector[2]*ubisector[2]/bmod3;
     297             : 
     298           0 :   std::vector<Tensor> dtruep(3);
     299           0 :   dtruep[0].setCol( 0, ( crossProduct( dcross[0].getCol(0), bisector ) + crossProduct( cross, dbisector[0].getCol(0) ) ) );
     300           0 :   dtruep[0].setCol( 1, ( crossProduct( dcross[0].getCol(1), bisector ) + crossProduct( cross, dbisector[0].getCol(1) ) ) );
     301           0 :   dtruep[0].setCol( 2, ( crossProduct( dcross[0].getCol(2), bisector ) + crossProduct( cross, dbisector[0].getCol(2) ) ) );
     302             : 
     303           0 :   dtruep[1].setCol( 0, ( crossProduct( dcross[1].getCol(0), bisector ) + crossProduct( cross, dbisector[1].getCol(0) ) ) );
     304           0 :   dtruep[1].setCol( 1, ( crossProduct( dcross[1].getCol(1), bisector ) + crossProduct( cross, dbisector[1].getCol(1) ) ) );
     305           0 :   dtruep[1].setCol( 2, ( crossProduct( dcross[1].getCol(2), bisector ) + crossProduct( cross, dbisector[1].getCol(2) ) ) );
     306             : 
     307           0 :   dtruep[2].setCol( 0, ( crossProduct( dcross[2].getCol(0), bisector ) + crossProduct( cross, dbisector[2].getCol(0) ) ) );
     308           0 :   dtruep[2].setCol( 1, ( crossProduct( dcross[2].getCol(1), bisector ) + crossProduct( cross, dbisector[2].getCol(1) ) ) );
     309           0 :   dtruep[2].setCol( 2, ( crossProduct( dcross[2].getCol(2), bisector ) + crossProduct( cross, dbisector[2].getCol(2) ) ) );
     310             : 
     311             :   // Now convert these to the derivatives of the true axis
     312           0 :   for(unsigned i=0; i<3; ++i) {
     313           0 :     dbi[i] = std::cos(pi/4.0)*dbisector[i] + std::sin(pi/4.0)*dtruep[i];
     314           0 :     dperp[i] = std::cos(pi/4.0)*dbisector[i] - std::sin(pi/4.0)*dtruep[i];
     315             :   }
     316             : 
     317             :   // Ensure that all lengths are positive
     318           0 :   if( len_bi<0 ) {
     319           0 :     bi=-bi; len_bi=-len_bi;
     320           0 :     for(unsigned i=0; i<3; ++i) dbi[i]*=-1.0;
     321             :   }
     322           0 :   if( len_cross<0 ) {
     323           0 :     cross=-cross; len_cross=-len_cross;
     324           0 :     for(unsigned i=0; i<3; ++i) dcross[i]*=-1.0;
     325             :   }
     326           0 :   if( len_perp<0 ) {
     327           0 :     perp=-perp; len_perp=-len_perp;
     328           0 :     for(unsigned i=0; i<3; ++i) dperp[i]*=-1.0;
     329             :   }
     330           0 :   if( len_bi<=0 || len_cross<=0 || len_bi<=0 ) plumed_merror("Invalid box coordinates");
     331             : 
     332             :   // Now derivatives of lengths
     333           0 :   Tensor dd3( Tensor::identity() ); Vector ddb2=d1; if( lbi==2 ) ddb2=d2;
     334           0 :   dlbi[1].zero(); dlbi[2].zero(); dlbi[3].zero();
     335           0 :   dlbi[0] = matmul(ddb2,dbi[0]) - matmul(bi,dd3);
     336           0 :   dlbi[lbi] = matmul(ddb2,dbi[lbi]) + matmul(bi,dd3);  // Derivative wrt d1
     337             : 
     338           0 :   dlcross[0] = matmul(d3,dcross[0]) - matmul(cross,dd3);
     339           0 :   dlcross[1] = matmul(d3,dcross[1]);
     340           0 :   dlcross[2] = matmul(d3,dcross[2]);
     341           0 :   dlcross[3] = matmul(cross,dd3);
     342             : 
     343           0 :   ddb2=d1; if( lpi==2 ) ddb2=d2;
     344           0 :   dlperp[1].zero(); dlperp[2].zero(); dlperp[3].zero();
     345           0 :   dlperp[0] = matmul(ddb2,dperp[0]) - matmul( perp, dd3 );
     346           0 :   dlperp[lpi] = matmul(ddb2,dperp[lpi]) + matmul(perp, dd3);
     347             : 
     348             :   // Need to calculate the jacobian
     349           0 :   Tensor jacob;
     350           0 :   jacob(0,0)=bi[0]; jacob(1,0)=bi[1]; jacob(2,0)=bi[2];
     351           0 :   jacob(0,1)=cross[0]; jacob(1,1)=cross[1]; jacob(2,1)=cross[2];
     352           0 :   jacob(0,2)=perp[0]; jacob(1,2)=perp[1]; jacob(2,2)=perp[2];
     353           0 :   jacob_det = std::fabs( jacob.determinant() );
     354           0 : }
     355             : 
     356           0 : void VolumeTetrapore::update() {
     357           0 :   if(boxout) {
     358           0 :     boxfile.printf("%d\n",8);
     359           0 :     const Tensor & t(getPbc().getBox());
     360           0 :     if(getPbc().isOrthorombic()) {
     361           0 :       boxfile.printf(" %f %f %f\n",lenunit*t(0,0),lenunit*t(1,1),lenunit*t(2,2));
     362             :     } else {
     363           0 :       boxfile.printf(" %f %f %f %f %f %f %f %f %f\n",
     364           0 :                      lenunit*t(0,0),lenunit*t(0,1),lenunit*t(0,2),
     365           0 :                      lenunit*t(1,0),lenunit*t(1,1),lenunit*t(1,2),
     366           0 :                      lenunit*t(2,0),lenunit*t(2,1),lenunit*t(2,2)
     367             :                     );
     368             :     }
     369           0 :     boxfile.printf("AR %f %f %f \n",lenunit*origin[0],lenunit*origin[1],lenunit*origin[2]);
     370           0 :     Vector ut, vt, wt;
     371           0 :     ut = origin + len_bi*bi;
     372           0 :     vt = origin + len_cross*cross;
     373           0 :     wt = origin + len_perp*perp;
     374           0 :     boxfile.printf("AR %f %f %f \n",lenunit*(ut[0]), lenunit*(ut[1]), lenunit*(ut[2]) );
     375           0 :     boxfile.printf("AR %f %f %f \n",lenunit*(vt[0]), lenunit*(vt[1]), lenunit*(vt[2]) );
     376           0 :     boxfile.printf("AR %f %f %f \n",lenunit*(wt[0]), lenunit*(wt[1]), lenunit*(wt[2]) );
     377           0 :     boxfile.printf("AR %f %f %f \n",lenunit*(vt[0]+len_bi*bi[0]),
     378           0 :                    lenunit*(vt[1]+len_bi*bi[1]),
     379           0 :                    lenunit*(vt[2]+len_bi*bi[2]) );
     380           0 :     boxfile.printf("AR %f %f %f \n",lenunit*(ut[0]+len_perp*perp[0]),
     381           0 :                    lenunit*(ut[1]+len_perp*perp[1]),
     382           0 :                    lenunit*(ut[2]+len_perp*perp[2]) );
     383           0 :     boxfile.printf("AR %f %f %f \n",lenunit*(vt[0]+len_perp*perp[0]),
     384           0 :                    lenunit*(vt[1]+len_perp*perp[1]),
     385           0 :                    lenunit*(vt[2]+len_perp*perp[2]) );
     386           0 :     boxfile.printf("AR %f %f %f \n",lenunit*(vt[0]+len_perp*perp[0]+len_bi*bi[0]),
     387           0 :                    lenunit*(vt[1]+len_perp*perp[1]+len_bi*bi[1]),
     388           0 :                    lenunit*(vt[2]+len_perp*perp[2]+len_bi*bi[2]) );
     389             :   }
     390           0 : }
     391             : 
     392           0 : double VolumeTetrapore::calculateNumberInside( const Vector& cpos, Vector& derivatives, Tensor& vir, std::vector<Vector>& rderiv ) const {
     393             :   // Setup the histogram bead
     394           0 :   HistogramBead bead; bead.isNotPeriodic(); bead.setKernelType( getKernelType() );
     395             : 
     396             :   // Calculate distance of atom from origin of new coordinate frame
     397           0 :   Vector datom=pbcDistance( origin, cpos );
     398             :   double ucontr, uder, vcontr, vder, wcontr, wder;
     399             : 
     400             :   // Calculate contribution from integral along bi
     401           0 :   bead.set( 0, len_bi, sigma );
     402           0 :   double upos=dotProduct( datom, bi );
     403           0 :   ucontr=bead.calculate( upos, uder );
     404           0 :   double udlen=bead.uboundDerivative( upos );
     405           0 :   double uder2 = bead.lboundDerivative( upos ) - udlen;
     406             : 
     407             :   // Calculate contribution from integral along cross
     408           0 :   bead.set( 0, len_cross, sigma );
     409           0 :   double vpos=dotProduct( datom, cross );
     410           0 :   vcontr=bead.calculate( vpos, vder );
     411           0 :   double vdlen=bead.uboundDerivative( vpos );
     412           0 :   double vder2 = bead.lboundDerivative( vpos ) - vdlen;
     413             : 
     414             :   // Calculate contribution from integral along perp
     415           0 :   bead.set( 0, len_perp, sigma );
     416           0 :   double wpos=dotProduct( datom, perp );
     417           0 :   wcontr=bead.calculate( wpos, wder );
     418           0 :   double wdlen=bead.uboundDerivative( wpos );
     419           0 :   double wder2 = bead.lboundDerivative( wpos ) - wdlen;
     420             : 
     421           0 :   Vector dfd; dfd[0]=uder*vcontr*wcontr; dfd[1]=ucontr*vder*wcontr; dfd[2]=ucontr*vcontr*wder;
     422           0 :   derivatives[0] = (dfd[0]*bi[0]+dfd[1]*cross[0]+dfd[2]*perp[0]);
     423           0 :   derivatives[1] = (dfd[0]*bi[1]+dfd[1]*cross[1]+dfd[2]*perp[1]);
     424           0 :   derivatives[2] = (dfd[0]*bi[2]+dfd[1]*cross[2]+dfd[2]*perp[2]);
     425           0 :   double tot = ucontr*vcontr*wcontr*jacob_det;
     426             : 
     427             :   // Add reference atom derivatives
     428           0 :   dfd[0]=uder2*vcontr*wcontr; dfd[1]=ucontr*vder2*wcontr; dfd[2]=ucontr*vcontr*wder2;
     429           0 :   Vector dfld; dfld[0]=udlen*vcontr*wcontr; dfld[1]=ucontr*vdlen*wcontr; dfld[2]=ucontr*vcontr*wdlen;
     430           0 :   rderiv[0] = dfd[0]*matmul(datom,dbi[0]) + dfd[1]*matmul(datom,dcross[0]) + dfd[2]*matmul(datom,dperp[0]) +
     431           0 :               dfld[0]*dlbi[0] + dfld[1]*dlcross[0] + dfld[2]*dlperp[0] - derivatives;
     432           0 :   rderiv[1] = dfd[0]*matmul(datom,dbi[1]) + dfd[1]*matmul(datom,dcross[1]) + dfd[2]*matmul(datom,dperp[1]) +
     433           0 :               dfld[0]*dlbi[1] + dfld[1]*dlcross[1] + dfld[2]*dlperp[1];
     434           0 :   rderiv[2] = dfd[0]*matmul(datom,dbi[2]) + dfd[1]*matmul(datom,dcross[2]) + dfd[2]*matmul(datom,dperp[2]) +
     435           0 :               dfld[0]*dlbi[2] + dfld[1]*dlcross[2] + dfld[2]*dlperp[2];
     436           0 :   rderiv[3] = dfld[0]*dlbi[3] + dfld[1]*dlcross[3] + dfld[2]*dlperp[3];
     437             : 
     438           0 :   vir.zero(); vir-=Tensor( cpos,derivatives );
     439           0 :   for(unsigned i=0; i<4; ++i) {
     440           0 :     vir -= Tensor( getPosition(i), rderiv[i] );
     441             :   }
     442             : 
     443           0 :   return tot;
     444             : }
     445             : 
     446             : }
     447             : }

Generated by: LCOV version 1.15