Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2014-2023 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "ManyRestraintsBase.h" 23 : #include "core/ActionRegister.h" 24 : 25 : namespace PLMD { 26 : namespace manyrestraints { 27 : 28 : //+PLUMEDOC MCOLVARB UWALLS 29 : /* 30 : Add \ref UPPER_WALLS restraints on all the multicolvar values 31 : 32 : This action takes the set of values calculated by the colvar specified by label in the DATA 33 : keyword and places a restraint on each quantity, \f$x\f$, with the following functional form: 34 : 35 : \f$ 36 : k((x-a+o)/s)^e 37 : \f$ 38 : 39 : \f$k\f$ (KAPPA) is an energy constant in internal unit of the code, \f$s\f$ (EPS) a rescaling factor and 40 : \f$e\f$ (EXP) the exponent determining the power law. By default: EXP = 2, EPS = 1.0, OFF = 0. 41 : 42 : \par Examples 43 : 44 : The following set of commands can be used to stop a cluster composed of 20 atoms subliming. The position of 45 : the center of mass of the cluster is calculated by the \ref COM command labelled c1. The \ref DISTANCES 46 : command labelled d1 is then used to calculate the distance between each of the 20 atoms in the cluster 47 : and the center of mass of the cluster. These distances are then passed to the UWALLS command, which adds 48 : a \ref UPPER_WALLS restraint on each of them and thereby prevents each of them from moving very far from the center 49 : of mass of the cluster. 50 : 51 : \plumedfile 52 : COM ATOMS=1-20 LABEL=c1 53 : DISTANCES GROUPA=c1 GROUPB=1-20 LABEL=d1 54 : UWALLS DATA=d1 AT=2.5 KAPPA=0.2 LABEL=sr 55 : \endplumedfile 56 : 57 : 58 : */ 59 : //+ENDPLUMEDOC 60 : 61 : 62 : class UWalls : public ManyRestraintsBase { 63 : private: 64 : double at; 65 : double kappa; 66 : double exp; 67 : double eps; 68 : double offset; 69 : public: 70 : static void registerKeywords( Keywords& keys ); 71 : explicit UWalls( const ActionOptions& ); 72 : double calcPotential( const double& val, double& df ) const override; 73 : }; 74 : 75 10423 : PLUMED_REGISTER_ACTION(UWalls,"UWALLS") 76 : 77 3 : void UWalls::registerKeywords( Keywords& keys ) { 78 3 : ManyRestraintsBase::registerKeywords( keys ); 79 6 : keys.add("compulsory","AT","the radius of the sphere"); 80 6 : keys.add("compulsory","KAPPA","the force constant for the wall. The k_i in the expression for a wall."); 81 6 : keys.add("compulsory","OFFSET","0.0","the offset for the start of the wall. The o_i in the expression for a wall."); 82 6 : keys.add("compulsory","EXP","2.0","the powers for the walls. The e_i in the expression for a wall."); 83 6 : keys.add("compulsory","EPS","1.0","the values for s_i in the expression for a wall"); 84 3 : } 85 : 86 2 : UWalls::UWalls(const ActionOptions& ao): 87 : Action(ao), 88 2 : ManyRestraintsBase(ao) 89 : { 90 2 : parse("AT",at); 91 2 : parse("OFFSET",offset); 92 2 : parse("EPS",eps); 93 2 : parse("EXP",exp); 94 2 : parse("KAPPA",kappa); 95 2 : checkRead(); 96 2 : } 97 : 98 14800 : double UWalls::calcPotential( const double& val, double& df ) const { 99 14800 : double uscale = (val - at + offset)/eps; 100 14800 : if( uscale > 0. ) { 101 1036 : double power = pow( uscale, exp ); 102 1036 : df = ( kappa / eps ) * exp * power / uscale; 103 : 104 1036 : return kappa*power; 105 : } 106 : 107 : return 0.0; 108 : } 109 : 110 : } 111 : } 112 :