LCOV - code coverage report
Current view: top level - isdb - Rescale.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 22 190 11.6 %
Date: 2024-10-11 08:09:47 Functions: 3 15 20.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2017-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : /*
      23             : 
      24             : */
      25             : #include "bias/Bias.h"
      26             : #include "bias/ActionRegister.h"
      27             : #include "core/PlumedMain.h"
      28             : #include "core/Atoms.h"
      29             : #include "core/Value.h"
      30             : #include "tools/File.h"
      31             : #include "tools/Random.h"
      32             : #include <ctime>
      33             : 
      34             : namespace PLMD {
      35             : namespace isdb {
      36             : 
      37             : //+PLUMEDOC ISDB_BIAS RESCALE
      38             : /*
      39             : Scales the value of an another action, being a Collective Variable or a Bias.
      40             : 
      41             : The rescaling factor is determined by a parameter defined on a logarithmic grid of dimension NBIN in the range
      42             : from 1 to MAX_RESCALE. The current value of the rescaling parameter is stored and shared across
      43             : other actions using a \ref SELECTOR. A Monte Carlo procedure is used to update the value
      44             : of the rescaling factor every MC_STRIDE steps of molecular dynamics. Well-tempered metadynamics, defined by the
      45             : parameters W0 and BIASFACTOR, is used to enhance the sampling in the space of the rescaling factor.
      46             : The well-tempered metadynamics bias potential is written to the file BFILE every BSTRIDE steps and read
      47             : when restarting the simulation using the directive \ref RESTART.
      48             : 
      49             : \note
      50             : Additional arguments not to be scaled, one for each bin in the rescaling parameter ladder, can be
      51             : provided at the end of the ARG list. The number of such arguments is specified by the option NOT_RESCALED.
      52             : These arguments will be not be scaled, but they will be
      53             : considered as bias potentials and used in the computation of the Metropolis
      54             : acceptance probability when proposing a move in the rescaling parameter. See example below.
      55             : 
      56             : \note
      57             : If PLUMED is running in a multiple-replica framework (for example using the -multi option in GROMACS),
      58             : the arguments will be summed across replicas, unless the NOT_SHARED option is used. Also, the value of the
      59             : \ref SELECTOR will be shared and thus will be the same in all replicas.
      60             : 
      61             : \par Examples
      62             : 
      63             : In this example we use \ref RESCALE to implement a simulated-tempering like approach.
      64             : The total potential energy of the system is scaled by a parameter defined on a logarithmic grid
      65             : of 5 bins in the range from 1 to 1.5.
      66             : A well-tempered metadynamics bias potential is used to ensure diffusion in the space of the rescaling
      67             : parameter.
      68             : 
      69             : \plumedfile
      70             : ene: ENERGY
      71             : 
      72             : SELECTOR NAME=GAMMA VALUE=0
      73             : 
      74             : RESCALE ...
      75             : LABEL=res ARG=ene TEMP=300
      76             : SELECTOR=GAMMA MAX_RESCALE=1.5 NBIN=5
      77             : W0=1000 BIASFACTOR=100.0 BSTRIDE=2000 BFILE=bias.dat
      78             : ...
      79             : 
      80             : PRINT FILE=COLVAR ARG=* STRIDE=100
      81             : \endplumedfile
      82             : 
      83             : In this second example, we add to the simulated-tempering approach introduced above
      84             : one Parallel Bias metadynamics simulation (see \ref PBMETAD) for each value of the rescaling parameter.
      85             : At each moment of the simulation, only one of the \ref PBMETAD
      86             : actions is activated, based on the current value of the associated \ref SELECTOR.
      87             : The \ref PBMETAD bias potentials are not scaled, but just used in the calculation of
      88             : the Metropolis acceptance probability when proposing a move in the rescaling parameter.
      89             : 
      90             : \plumedfile
      91             : ene: ENERGY
      92             : d: DISTANCE ATOMS=1,2
      93             : 
      94             : SELECTOR NAME=GAMMA VALUE=0
      95             : 
      96             : pbmetad0: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=0 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.0
      97             : pbmetad1: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=1 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.1
      98             : pbmetad2: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=2 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.2
      99             : pbmetad3: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=3 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.3
     100             : pbmetad4: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=4 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.4
     101             : 
     102             : RESCALE ...
     103             : LABEL=res TEMP=300
     104             : ARG=ene,pbmetad0.bias,pbmetad1.bias,pbmetad2.bias,pbmetad3.bias,pbmetad4.bias
     105             : SELECTOR=GAMMA MAX_RESCALE=1.5 NOT_RESCALED=5 NBIN=5
     106             : W0=1000 BIASFACTOR=100.0 BSTRIDE=2000 BFILE=bias.dat
     107             : ...
     108             : 
     109             : PRINT FILE=COLVAR ARG=* STRIDE=100
     110             : \endplumedfile
     111             : 
     112             : 
     113             : 
     114             : */
     115             : //+ENDPLUMEDOC
     116             : 
     117             : class Rescale : public bias::Bias
     118             : {
     119             :   // gamma parameter
     120             :   std::vector<double> gamma_;
     121             :   double         w0_;
     122             :   double         biasf_;
     123             :   std::vector<double> bias_;
     124             :   std::vector<double> expo_;
     125             :   std::vector<unsigned> shared_;
     126             :   unsigned nores_;
     127             :   // bias
     128             :   unsigned int   Biasstride_;
     129             :   unsigned int   Biaspace_;
     130             :   std::string         Biasfilename_;
     131             :   bool           first_bias_;
     132             :   OFile          Biasfile_;
     133             :   // temperature in kbt
     134             :   double kbt_;
     135             :   // Monte Carlo stuff
     136             :   unsigned MCsteps_;
     137             :   unsigned MCstride_;
     138             :   long int MCfirst_;
     139             :   long unsigned MCaccgamma_;
     140             :   // replica stuff
     141             :   unsigned nrep_;
     142             :   unsigned replica_;
     143             :   // selector
     144             :   std::string selector_;
     145             : 
     146             :   // Monte Carlo
     147             :   void doMonteCarlo(unsigned igamma, double oldE, std::vector<double> args, std::vector<double> bargs);
     148             :   unsigned proposeMove(unsigned x, unsigned xmin, unsigned xmax);
     149             :   bool doAccept(double oldE, double newE);
     150             :   // read and print bias
     151             :   void read_bias();
     152             :   void print_bias(long int step);
     153             : 
     154             : public:
     155             :   explicit Rescale(const ActionOptions&);
     156             :   ~Rescale();
     157             :   void calculate();
     158             :   static void registerKeywords(Keywords& keys);
     159             : };
     160             : 
     161             : 
     162       10419 : PLUMED_REGISTER_ACTION(Rescale,"RESCALE")
     163             : 
     164           1 : void Rescale::registerKeywords(Keywords& keys) {
     165           1 :   Bias::registerKeywords(keys);
     166           1 :   keys.use("ARG");
     167           2 :   keys.add("compulsory","TEMP","temperature");
     168           2 :   keys.add("compulsory","SELECTOR", "name of the SELECTOR used for rescaling");
     169           2 :   keys.add("compulsory","MAX_RESCALE","maximum values for rescaling");
     170           2 :   keys.add("compulsory","NBIN","number of bins for gamma grid");
     171           2 :   keys.add("compulsory","W0", "initial bias height");
     172           2 :   keys.add("compulsory","BIASFACTOR", "bias factor");
     173           2 :   keys.add("compulsory","BSTRIDE", "stride for writing bias");
     174           2 :   keys.add("compulsory","BFILE", "file name for bias");
     175           2 :   keys.add("optional","NOT_SHARED",   "list of arguments (from 1 to N) not summed across replicas");
     176           2 :   keys.add("optional","NOT_RESCALED", "these last N arguments will not be scaled");
     177           2 :   keys.add("optional","MC_STEPS","number of MC steps");
     178           2 :   keys.add("optional","MC_STRIDE","MC stride");
     179           2 :   keys.add("optional","PACE", "Pace for adding bias, in MC stride unit");
     180           1 :   componentsAreNotOptional(keys);
     181           2 :   keys.addOutputComponent("igamma",  "default","gamma parameter");
     182           2 :   keys.addOutputComponent("accgamma","default","MC acceptance for gamma");
     183           2 :   keys.addOutputComponent("wtbias",  "default","well-tempered bias");
     184           1 : }
     185             : 
     186           0 : Rescale::Rescale(const ActionOptions&ao):
     187             :   PLUMED_BIAS_INIT(ao),
     188           0 :   nores_(0), Biaspace_(1), first_bias_(true),
     189           0 :   MCsteps_(1), MCstride_(1), MCfirst_(-1), MCaccgamma_(0)
     190             : {
     191             :   // set up replica stuff
     192           0 :   if(comm.Get_rank()==0) {
     193           0 :     nrep_    = multi_sim_comm.Get_size();
     194           0 :     replica_ = multi_sim_comm.Get_rank();
     195             :   } else {
     196           0 :     nrep_    = 0;
     197           0 :     replica_ = 0;
     198             :   }
     199           0 :   comm.Sum(&nrep_,1);
     200           0 :   comm.Sum(&replica_,1);
     201             : 
     202             :   // wt-parameters
     203           0 :   parse("W0", w0_);
     204           0 :   parse("BIASFACTOR", biasf_);
     205             : 
     206             :   // selector name
     207           0 :   parse("SELECTOR", selector_);
     208             : 
     209             :   // number of bins for gamma ladder
     210             :   unsigned nbin;
     211           0 :   parse("NBIN", nbin);
     212             : 
     213             :   // number of bias
     214           0 :   parse("NOT_RESCALED", nores_);
     215           0 :   if(nores_>0 && nores_!=nbin) error("The number of non scaled arguments must be equal to either 0 or the number of bins");
     216             : 
     217             :   // maximum value of rescale
     218             :   std::vector<double> max_rescale;
     219           0 :   parseVector("MAX_RESCALE", max_rescale);
     220             :   // check dimension of max_rescale
     221           0 :   if(max_rescale.size()!=(getNumberOfArguments()-nores_))
     222           0 :     error("Size of MAX_RESCALE array must be equal to the number of arguments that will to be scaled");
     223             : 
     224             :   // calculate exponents
     225           0 :   double igamma_max = static_cast<double>(nbin);
     226           0 :   for(unsigned i=0; i<max_rescale.size(); ++i)
     227           0 :     expo_.push_back(std::log(max_rescale[i])/std::log(igamma_max));
     228             : 
     229             :   // allocate gamma grid and set bias to zero
     230           0 :   for(unsigned i=0; i<nbin; ++i) {
     231             :     // bias grid
     232           0 :     bias_.push_back(0.0);
     233             :     // gamma ladder
     234           0 :     double gamma = std::exp( static_cast<double>(i) / static_cast<double>(nbin-1) * std::log(igamma_max) );
     235           0 :     gamma_.push_back(gamma);
     236             :   }
     237             :   // print bias to file
     238           0 :   parse("BSTRIDE", Biasstride_);
     239           0 :   parse("BFILE",   Biasfilename_);
     240             : 
     241             :   // create vectors of shared arguments
     242             :   // by default they are all shared
     243           0 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) shared_.push_back(1);
     244             :   // share across replicas or not
     245             :   std::vector<unsigned> not_shared;
     246           0 :   parseVector("NOT_SHARED", not_shared);
     247             :   // and change the non-shared
     248           0 :   for(unsigned i=0; i<not_shared.size(); ++i) {
     249           0 :     if((not_shared[i]-1)>=(getNumberOfArguments()-nores_) && nrep_>1)
     250           0 :       error("NOT_RESCALED args must always be shared when using multiple replicas");
     251           0 :     if((not_shared[i]-1)>=getNumberOfArguments())
     252           0 :       error("NOT_SHARED args should be lower than total number of arguments");
     253           0 :     shared_[not_shared[i]-1] = 0;
     254             :   }
     255             : 
     256             :   // monte carlo stuff
     257           0 :   parse("MC_STEPS",MCsteps_);
     258           0 :   parse("MC_STRIDE",MCstride_);
     259             :   // adjust for multiple-time steps
     260           0 :   MCstride_ *= getStride();
     261             :   // read bias deposition pace
     262           0 :   parse("PACE", Biaspace_);
     263             :   // multiply by MCstride
     264           0 :   Biaspace_ *= MCstride_;
     265             : 
     266             :   // get temperature
     267           0 :   double temp=0.0;
     268           0 :   parse("TEMP",temp);
     269           0 :   if(temp>0.0) kbt_=plumed.getAtoms().getKBoltzmann()*temp;
     270           0 :   else kbt_=plumed.getAtoms().getKbT();
     271             : 
     272           0 :   checkRead();
     273             : 
     274           0 :   log.printf("  temperature of the system in energy unit %f\n",kbt_);
     275           0 :   log.printf("  name of the SELECTOR use for this action %s\n",selector_.c_str());
     276           0 :   log.printf("  number of bins in grid %u\n",nbin);
     277           0 :   log.printf("  number of arguments that will not be scaled %u\n",nores_);
     278           0 :   if(nrep_>1) log<<"  number of arguments that will not be summed across replicas "<<not_shared.size()<<"\n";
     279           0 :   log.printf("  biasfactor %f\n",biasf_);
     280           0 :   log.printf("  initial hills height %f\n",w0_);
     281           0 :   log.printf("  stride to write bias to file %u\n",Biasstride_);
     282           0 :   log.printf("  write bias to file : %s\n",Biasfilename_.c_str());
     283           0 :   log.printf("  number of replicas %u\n",nrep_);
     284           0 :   log.printf("  number of MC steps %d\n",MCsteps_);
     285           0 :   log.printf("  do MC every %d steps\n", MCstride_);
     286           0 :   log.printf("\n");
     287             : 
     288           0 :   log << " Bibliography" << plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)") << "\n";
     289             : 
     290             : 
     291             :   // add components
     292           0 :   addComponent("igamma");   componentIsNotPeriodic("igamma");
     293           0 :   addComponent("accgamma"); componentIsNotPeriodic("accgamma");
     294           0 :   addComponent("wtbias");   componentIsNotPeriodic("wtbias");
     295             : 
     296             :   // initialize random seed
     297           0 :   srand (time(NULL));
     298             : 
     299             :   // read bias if restarting
     300           0 :   if(getRestart()) read_bias();
     301           0 : }
     302             : 
     303           0 : Rescale::~Rescale()
     304             : {
     305           0 :   Biasfile_.close();
     306           0 : }
     307             : 
     308           0 : void Rescale::read_bias()
     309             : {
     310             : // open file
     311           0 :   auto ifile=Tools::make_unique<IFile>();
     312           0 :   ifile->link(*this);
     313           0 :   if(ifile->FileExist(Biasfilename_)) {
     314           0 :     ifile->open(Biasfilename_);
     315             :     // read all the lines, store last value of bias
     316             :     double MDtime;
     317           0 :     while(ifile->scanField("MD_time",MDtime)) {
     318           0 :       for(unsigned i=0; i<bias_.size(); ++i) {
     319             :         // convert i to string
     320           0 :         std::stringstream ss;
     321             :         ss << i;
     322             :         // label
     323           0 :         std::string label = "b" + ss.str();
     324             :         // read entry
     325           0 :         ifile->scanField(label, bias_[i]);
     326           0 :       }
     327             :       // new line
     328           0 :       ifile->scanField();
     329             :     }
     330           0 :     ifile->close();
     331             :   } else {
     332           0 :     error("Cannot find bias file "+Biasfilename_+"\n");
     333             :   }
     334           0 : }
     335             : 
     336           0 : unsigned Rescale::proposeMove(unsigned x, unsigned xmin, unsigned xmax)
     337             : {
     338           0 :   int xmin_i = static_cast<int>(xmin);
     339           0 :   int xmax_i = static_cast<int>(xmax);
     340             :   int dx;
     341           0 :   int r = rand() % 2;
     342           0 :   if( r % 2 == 0 ) dx = +1;
     343             :   else             dx = -1;
     344             : // new index, integer
     345           0 :   int x_new = static_cast<int>(x) + dx;
     346             : // check boundaries
     347           0 :   if(x_new >= xmax_i) x_new = xmax_i-1;
     348             :   if(x_new <  xmin_i) x_new = xmin_i;
     349           0 :   return static_cast<unsigned>(x_new);
     350             : }
     351             : 
     352           0 : bool Rescale::doAccept(double oldE, double newE)
     353             : {
     354             :   bool accept = false;
     355             :   // calculate delta energy
     356           0 :   double delta = ( newE - oldE ) / kbt_;
     357             :   // if delta is negative always accept move
     358           0 :   if( delta < 0.0 ) {
     359             :     accept = true;
     360             :   } else {
     361             :     // otherwise extract random number
     362           0 :     double s = static_cast<double>(rand()) / RAND_MAX;
     363           0 :     if( s < std::exp(-delta) ) { accept = true; }
     364             :   }
     365           0 :   return accept;
     366             : }
     367             : 
     368           0 : void Rescale::doMonteCarlo(unsigned igamma, double oldE,
     369             :                            std::vector<double> args, std::vector<double> bargs)
     370             : {
     371             :   double oldB, newB;
     372             : 
     373             : // cycle on MC steps
     374           0 :   for(unsigned i=0; i<MCsteps_; ++i) {
     375             :     // propose move in igamma
     376           0 :     unsigned new_igamma = proposeMove(igamma, 0, gamma_.size());
     377             :     // calculate new energy
     378             :     double newE = 0.0;
     379           0 :     for(unsigned j=0; j<args.size(); ++j) {
     380             :       // calculate energy term
     381           0 :       double fact = 1.0/pow(gamma_[new_igamma], expo_[j]) - 1.0;
     382           0 :       newE += args[j] * fact;
     383             :     }
     384             :     // calculate contributions from non-rescaled terms
     385           0 :     if(bargs.size()>0) {
     386           0 :       oldB = bias_[igamma]+bargs[igamma];
     387           0 :       newB = bias_[new_igamma]+bargs[new_igamma];
     388             :     } else {
     389           0 :       oldB = bias_[igamma];
     390           0 :       newB = bias_[new_igamma];
     391             :     }
     392             :     // accept or reject
     393           0 :     bool accept = doAccept(oldE+oldB, newE+newB);
     394           0 :     if(accept) {
     395           0 :       igamma = new_igamma;
     396             :       oldE = newE;
     397           0 :       MCaccgamma_++;
     398             :     }
     399             :   }
     400             : // send values of gamma to all replicas
     401           0 :   if(comm.Get_rank()==0) {
     402           0 :     if(multi_sim_comm.Get_rank()!=0) igamma = 0;
     403           0 :     multi_sim_comm.Sum(&igamma, 1);
     404             :   } else {
     405           0 :     igamma = 0;
     406             :   }
     407             : // local communication
     408           0 :   comm.Sum(&igamma, 1);
     409             : 
     410             : // set the value of gamma into passMap
     411           0 :   plumed.passMap[selector_]=static_cast<double>(igamma);
     412           0 : }
     413             : 
     414           0 : void Rescale::print_bias(long int step)
     415             : {
     416             : // if first time open the file
     417           0 :   if(first_bias_) {
     418           0 :     first_bias_ = false;
     419           0 :     Biasfile_.link(*this);
     420           0 :     Biasfile_.open(Biasfilename_);
     421             :     Biasfile_.setHeavyFlush();
     422           0 :     Biasfile_.fmtField("%30.5f");
     423             :   }
     424             : 
     425             : // write fields
     426           0 :   double MDtime = static_cast<double>(step)*getTimeStep();
     427           0 :   Biasfile_.printField("MD_time", MDtime);
     428           0 :   for(unsigned i=0; i<bias_.size(); ++i) {
     429             :     // convert i to string
     430           0 :     std::stringstream ss;
     431             :     ss << i;
     432             :     // label
     433           0 :     std::string label = "b" + ss.str();
     434             :     // print entry
     435           0 :     Biasfile_.printField(label, bias_[i]);
     436           0 :   }
     437           0 :   Biasfile_.printField();
     438           0 : }
     439             : 
     440           0 : void Rescale::calculate()
     441             : {
     442             :   // get the current value of the selector
     443           0 :   unsigned igamma = static_cast<unsigned>(plumed.passMap[selector_]);
     444             : 
     445             :   // collect data from other replicas
     446           0 :   std::vector<double> all_args(getNumberOfArguments(), 0.0);
     447             :   // first calculate arguments
     448           0 :   for(unsigned i=0; i<all_args.size(); ++i) {
     449           0 :     double arg = getArgument(i);
     450             :     // sum shared arguments across replicas
     451           0 :     if(shared_[i]==1) {
     452           0 :       if(comm.Get_rank()==0) multi_sim_comm.Sum(arg);
     453           0 :       else                   arg = 0.0;
     454           0 :       if(comm.Get_size()>1)  comm.Sum(arg);
     455             :     }
     456             :     // put into all_args
     457           0 :     all_args[i] = arg;
     458             :   }
     459             : 
     460             :   // now separate terms that should be rescaled
     461             :   std::vector<double> args;
     462           0 :   if(getNumberOfArguments()-nores_>0) args.resize(getNumberOfArguments()-nores_);
     463           0 :   for(unsigned i=0; i<args.size(); ++i)  args[i]  = all_args[i];
     464             :   // and terms that should not
     465             :   std::vector<double> bargs;
     466           0 :   if(nores_>0) bargs.resize(nores_);
     467           0 :   for(unsigned i=0; i<bargs.size(); ++i) bargs[i] = all_args[i+args.size()];
     468             : 
     469             :   // calculate energy and forces, only on rescaled terms
     470             :   double ene = 0.0;
     471           0 :   for(unsigned i=0; i<args.size(); ++i) {
     472             :     // calculate energy term
     473           0 :     double fact = 1.0/pow(gamma_[igamma], expo_[i]) - 1.0;
     474           0 :     ene += args[i] * fact;
     475             :     // add force
     476           0 :     setOutputForce(i, -fact);
     477             :   }
     478             : 
     479             :   // set to zero on the others
     480           0 :   for(unsigned i=0; i<bargs.size(); ++i) setOutputForce(i+args.size(), 0.0);
     481             : 
     482             :   // set value of the bias
     483             :   setBias(ene);
     484             :   // set value of the wt-bias
     485           0 :   getPntrToComponent("wtbias")->set(bias_[igamma]);
     486             :   // set values of gamma
     487           0 :   getPntrToComponent("igamma")->set(igamma);
     488             :   // get time step
     489           0 :   long int step = getStep();
     490           0 :   if(MCfirst_==-1) MCfirst_=step;
     491             :   // calculate gamma acceptance
     492           0 :   double MCtrials = std::floor(static_cast<double>(step-MCfirst_) / static_cast<double>(MCstride_))+1.0;
     493           0 :   double accgamma = static_cast<double>(MCaccgamma_) / static_cast<double>(MCsteps_) / MCtrials;
     494           0 :   getPntrToComponent("accgamma")->set(accgamma);
     495             : 
     496             :   // do MC at the right time step
     497           0 :   if(step%MCstride_==0&&!getExchangeStep()) doMonteCarlo(igamma, ene, args, bargs);
     498             : 
     499             :   // add well-tempered like bias
     500           0 :   if(step%Biaspace_==0) {
     501             :     // get updated igamma
     502           0 :     unsigned igamma = static_cast<unsigned>(plumed.passMap[selector_]);
     503             :     // add "Gaussian"
     504           0 :     double kbDT = kbt_ * ( biasf_ - 1.0 );
     505           0 :     bias_[igamma] += w0_ * std::exp(-bias_[igamma] / kbDT);
     506             :   }
     507             : 
     508             :   // print bias
     509           0 :   if(step%Biasstride_==0) print_bias(step);
     510             : 
     511           0 : }
     512             : 
     513             : 
     514             : }
     515             : }
     516             : 

Generated by: LCOV version 1.15