LCOV - code coverage report
Current view: top level - isdb - Caliber.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 115 146 78.8 %
Date: 2024-10-11 08:09:47 Functions: 8 11 72.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2018-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "bias/Bias.h"
      23             : #include "bias/ActionRegister.h"
      24             : #include "core/Atoms.h"
      25             : #include "core/PlumedMain.h"
      26             : #include <fstream>
      27             : 
      28             : namespace PLMD {
      29             : namespace isdb {
      30             : 
      31             : //+PLUMEDOC ISDB_BIAS CALIBER
      32             : /*
      33             : Add a time-dependent, harmonic restraint on one or more variables.
      34             : 
      35             : This allows implementing a maximum caliber restraint on one or more experimental time series by replica-averaged restrained simulations.
      36             : See \cite Capelli:2018jt .
      37             : 
      38             : The time resolved experiments are read from a text file and intermediate values are obtained by splines.
      39             : 
      40             : \par Examples
      41             : 
      42             : In the following example a restraint is applied on the time evolution of a saxs spectrum
      43             : 
      44             : \plumedfile
      45             : MOLINFO STRUCTURE=first.pdb
      46             : 
      47             : # Define saxs variable
      48             : SAXS ...
      49             : LABEL=saxs
      50             : ATOMISTIC
      51             : ATOMS=1-436
      52             : QVALUE1=0.02 # Q-value at which calculate the scattering
      53             : QVALUE2=0.0808
      54             : QVALUE3=0.1264
      55             : QVALUE4=0.1568
      56             : QVALUE5=0.172
      57             : QVALUE6=0.1872
      58             : QVALUE7=0.2176
      59             : QVALUE8=0.2328
      60             : QVALUE9=0.248
      61             : QVALUE10=0.2632
      62             : QVALUE11=0.2936
      63             : QVALUE12=0.3088
      64             : QVALUE13=0.324
      65             : QVALUE14=0.3544
      66             : QVALUE15=0.4
      67             : ... SAXS
      68             : 
      69             : 
      70             : #define the caliber restraint
      71             : CALIBER ...
      72             :   ARG=(saxs\.q_.*)
      73             :   FILE=expsaxs.dat
      74             :   KAPPA=10
      75             :   LABEL=cal0
      76             :   STRIDE=10
      77             :   REGRES_ZERO=200
      78             :   AVERAGING=200
      79             : ... CALIBER
      80             : \endplumedfile
      81             : 
      82             : In particular the file expsaxs.dat contains the time traces for the 15 intensities at the selected scattering lengths, organized as time, q_1, etc.
      83             : The strength of the bias is automatically evaluated from the standard error of the mean over AVERAGING steps and multiplied by KAPPA. This is useful when working with multiple experimental data
      84             : Because \ref SAXS is usually defined in a manner that is irrespective of a scaling factor the scaling is evaluated from a linear fit every REGRES_ZERO step. Alternatively it can be given as a fixed constant as SCALE.
      85             : The bias is here applied every tenth step.
      86             : 
      87             : */
      88             : //+ENDPLUMEDOC
      89             : 
      90             : 
      91             : class Caliber : public bias::Bias {
      92             : public:
      93             :   explicit Caliber(const ActionOptions&);
      94             :   void calculate();
      95             :   static void registerKeywords( Keywords& keys );
      96             : private:
      97             :   std::vector<double> time;
      98             :   std::vector< std::vector<double> > var;
      99             :   std::vector< std::vector<double> > dvar;
     100             :   double   mult;
     101             :   double   scale_;
     102             :   bool     master;
     103             :   unsigned replica_;
     104             :   unsigned nrep_;
     105             :   // scale and offset regression
     106             :   bool doregres_zero_;
     107             :   int  nregres_zero_;
     108             :   // force constant
     109             :   unsigned optsigmamean_stride_;
     110             :   std::vector<double> sigma_mean2_;
     111             :   std::vector< std::vector<double> > sigma_mean2_last_;
     112             :   std::vector<Value*> x0comp;
     113             :   std::vector<Value*> kcomp;
     114             :   std::vector<Value*> mcomp;
     115             :   Value* valueScale;
     116             : 
     117             :   void get_sigma_mean(const double fact, const std::vector<double> &mean);
     118             :   void replica_averaging(const double fact, std::vector<double> &mean);
     119             :   double getSpline(const unsigned iarg);
     120             :   void do_regression_zero(const std::vector<double> &mean);
     121             : };
     122             : 
     123       10427 : PLUMED_REGISTER_ACTION(Caliber,"CALIBER")
     124             : 
     125           5 : void Caliber::registerKeywords( Keywords& keys ) {
     126           5 :   Bias::registerKeywords(keys);
     127           5 :   keys.use("ARG");
     128          10 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
     129          10 :   keys.add("compulsory","FILE","the name of the file containing the time-resolved values");
     130          10 :   keys.add("compulsory","KAPPA","a force constant, this can be use to scale a constant estimated on-the-fly using AVERAGING");
     131          10 :   keys.add("optional","AVERAGING", "Stride for calculation of the optimum kappa, if 0 only KAPPA is used.");
     132          10 :   keys.add("compulsory","TSCALE","1.0","Apply a time scaling on the experimental time scale");
     133          10 :   keys.add("compulsory","SCALE","1.0","Apply a constant scaling on the data provided as arguments");
     134          10 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
     135          10 :   keys.addOutputComponent("x0","default","the instantaneous value of the center of the potential");
     136          10 :   keys.addOutputComponent("mean","default","the current average value of the calculated observable");
     137          10 :   keys.addOutputComponent("kappa","default","the current force constant");
     138          10 :   keys.addOutputComponent("scale","REGRES_ZERO","the current scaling constant");
     139           5 : }
     140             : 
     141           4 : Caliber::Caliber(const ActionOptions&ao):
     142             :   PLUMED_BIAS_INIT(ao),
     143           4 :   mult(0),
     144           4 :   scale_(1),
     145           4 :   doregres_zero_(false),
     146           4 :   nregres_zero_(0),
     147           4 :   optsigmamean_stride_(0)
     148             : {
     149           8 :   parse("KAPPA",mult);
     150             :   std::string filename;
     151           8 :   parse("FILE",filename);
     152           4 :   if( filename.length()==0 ) error("No external variable file was specified");
     153           4 :   unsigned averaging=0;
     154           4 :   parse("AVERAGING", averaging);
     155           4 :   if(averaging>0) optsigmamean_stride_ = averaging;
     156           4 :   double tscale=1.0;
     157           4 :   parse("TSCALE", tscale);
     158           4 :   if(tscale<=0.) error("The time scale factor must be greater than 0.");
     159           4 :   parse("SCALE", scale_);
     160           4 :   if(scale_==0.) error("The time scale factor cannot be 0.");
     161             :   // regression with zero intercept
     162           4 :   parse("REGRES_ZERO", nregres_zero_);
     163           4 :   if(nregres_zero_>0) {
     164             :     // set flag
     165           0 :     doregres_zero_=true;
     166           0 :     log.printf("  doing regression with zero intercept with stride: %d\n", nregres_zero_);
     167             :   }
     168             : 
     169             : 
     170           4 :   bool noensemble = false;
     171           4 :   parseFlag("NOENSEMBLE", noensemble);
     172             : 
     173           4 :   checkRead();
     174             : 
     175             :   // set up replica stuff
     176           4 :   master = (comm.Get_rank()==0);
     177           4 :   if(master) {
     178           4 :     nrep_    = multi_sim_comm.Get_size();
     179           4 :     replica_ = multi_sim_comm.Get_rank();
     180           4 :     if(noensemble) nrep_ = 1;
     181             :   } else {
     182           0 :     nrep_    = 0;
     183           0 :     replica_ = 0;
     184             :   }
     185           4 :   comm.Sum(&nrep_,1);
     186           4 :   comm.Sum(&replica_,1);
     187             : 
     188             :   const unsigned narg = getNumberOfArguments();
     189           4 :   sigma_mean2_.resize(narg,1);
     190           4 :   sigma_mean2_last_.resize(narg);
     191           8 :   for(unsigned j=0; j<narg; j++) sigma_mean2_last_[j].push_back(0.000001);
     192             : 
     193           4 :   log.printf("  Time resolved data from file %s\n",filename.c_str());
     194           4 :   std::ifstream varfile(filename.c_str());
     195           4 :   if(varfile.fail()) error("Cannot open "+filename);
     196           4 :   var.resize(narg);
     197           4 :   dvar.resize(narg);
     198        2012 :   while (!varfile.eof()) {
     199             :     double tempT, tempVar;
     200             :     varfile >> tempT;
     201        2008 :     time.push_back(tempT/tscale);
     202        4016 :     for(unsigned i=0; i<narg; i++) {
     203             :       varfile >> tempVar;
     204        2008 :       var[i].push_back(tempVar);
     205             :     }
     206             :   }
     207           4 :   varfile.close();
     208             : 
     209           4 :   const double deltat = time[1] - time[0];
     210           8 :   for(unsigned i=0; i<narg; i++) {
     211        2012 :     for(unsigned j=0; j<var[i].size(); j++) {
     212        2008 :       if(j==0) dvar[i].push_back((var[i][j+1] - var[i][j])/(deltat));
     213        2004 :       else if(j==var[i].size()-1) dvar[i].push_back((var[i][j] - var[i][j-1])/(deltat));
     214        2000 :       else dvar[i].push_back((var[i][j+1] - var[i][j-1])/(2.*deltat));
     215             :     }
     216             :   }
     217             : 
     218           8 :   for(unsigned i=0; i<narg; i++) {
     219           4 :     std::string num; Tools::convert(i,num);
     220          12 :     addComponent("x0-"+num); componentIsNotPeriodic("x0-"+num); x0comp.push_back(getPntrToComponent("x0-"+num));
     221          12 :     addComponent("kappa-"+num); componentIsNotPeriodic("kappa-"+num); kcomp.push_back(getPntrToComponent("kappa-"+num));
     222          12 :     addComponent("mean-"+num); componentIsNotPeriodic("mean-"+num); mcomp.push_back(getPntrToComponent("mean-"+num));
     223             :   }
     224             : 
     225           4 :   if(doregres_zero_) {
     226           0 :     addComponent("scale");
     227           0 :     componentIsNotPeriodic("scale");
     228           0 :     valueScale=getPntrToComponent("scale");
     229             :   }
     230             : 
     231           8 :   log<<"  Bibliography "<<plumed.cite("Capelli, Tiana, Camilloni, J Chem Phys, 148, 184114");
     232           8 : }
     233             : 
     234           0 : void Caliber::get_sigma_mean(const double fact, const std::vector<double> &mean)
     235             : {
     236           0 :   const unsigned narg = getNumberOfArguments();
     237           0 :   const double dnrep = static_cast<double>(nrep_);
     238             : 
     239           0 :   if(sigma_mean2_last_[0].size()==optsigmamean_stride_) for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[i].erase(sigma_mean2_last_[i].begin());
     240           0 :   std::vector<double> sigma_mean2_now(narg,0);
     241           0 :   if(master) {
     242           0 :     for(unsigned i=0; i<narg; ++i) {
     243           0 :       double tmp = getArgument(i)-mean[i];
     244           0 :       sigma_mean2_now[i] = fact*tmp*tmp;
     245             :     }
     246           0 :     if(nrep_>1) multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
     247             :   }
     248           0 :   comm.Sum(&sigma_mean2_now[0], narg);
     249             : 
     250           0 :   for(unsigned i=0; i<narg; ++i) {
     251           0 :     sigma_mean2_last_[i].push_back(sigma_mean2_now[i]/dnrep);
     252           0 :     sigma_mean2_[i] = *max_element(sigma_mean2_last_[i].begin(), sigma_mean2_last_[i].end());
     253             :   }
     254           0 : }
     255             : 
     256        2004 : void Caliber::replica_averaging(const double fact, std::vector<double> &mean)
     257             : {
     258        2004 :   const unsigned narg = getNumberOfArguments();
     259        2004 :   if(master) {
     260        4008 :     for(unsigned i=0; i<narg; ++i) mean[i] = fact*getArgument(i);
     261        2004 :     if(nrep_>1) multi_sim_comm.Sum(&mean[0], narg);
     262             :   }
     263        2004 :   comm.Sum(&mean[0], narg);
     264        2004 : }
     265             : 
     266        2004 : double Caliber::getSpline(const unsigned iarg)
     267             : {
     268        2004 :   const double deltat = time[1] - time[0];
     269        2004 :   const int tindex = static_cast<int>(getTime()/deltat);
     270             : 
     271             :   unsigned start, end;
     272        2004 :   start=tindex;
     273        2004 :   if(tindex+1<var[iarg].size()) end=tindex+2;
     274           0 :   else end=var[iarg].size();
     275             : 
     276             :   double value=0;
     277        6012 :   for(unsigned ipoint=start; ipoint<end; ++ipoint) {
     278        4008 :     double grid=var[iarg][ipoint];
     279        4008 :     double dder=dvar[iarg][ipoint];
     280             :     double yy=0.;
     281        4008 :     if(std::abs(grid)>0.0000001) yy=-dder/grid;
     282             : 
     283             :     int x0=1;
     284        4008 :     if(ipoint==tindex) x0=0;
     285             : 
     286        4008 :     double X=std::abs((getTime()-time[tindex])/deltat-(double)x0);
     287        4008 :     double X2=X*X;
     288        4008 :     double X3=X2*X;
     289        4008 :     double C=(1.0-3.0*X2+2.0*X3) - (x0?-1.0:1.0)*yy*(X-2.0*X2+X3)*deltat;
     290             : 
     291        4008 :     value+=grid*C;
     292             :   }
     293        2004 :   return value;
     294             : }
     295             : 
     296           0 : void Caliber::do_regression_zero(const std::vector<double> &mean)
     297             : {
     298             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
     299             :   double num = 0.0;
     300             :   double den = 0.0;
     301           0 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) {
     302           0 :     num += mean[i] * getSpline(i);
     303           0 :     den += mean[i] * mean[i];
     304             :   }
     305           0 :   if(den>0) {
     306           0 :     scale_ = num / den;
     307             :   } else {
     308           0 :     scale_ = 1.0;
     309             :   }
     310           0 : }
     311             : 
     312        2004 : void Caliber::calculate()
     313             : {
     314        2004 :   const unsigned narg = getNumberOfArguments();
     315        2004 :   const double dnrep = static_cast<double>(nrep_);
     316        2004 :   const double fact = 1.0/dnrep;
     317             : 
     318        2004 :   std::vector<double> mean(narg,0);
     319        2004 :   std::vector<double> dmean_x(narg,fact);
     320        2004 :   replica_averaging(fact, mean);
     321        2004 :   if(optsigmamean_stride_>0) get_sigma_mean(fact, mean);
     322             : 
     323             :   // in case of regression with zero intercept, calculate scale
     324        2004 :   if(doregres_zero_ && getStep()%nregres_zero_==0) do_regression_zero(mean);
     325             : 
     326             :   double ene=0;
     327        4008 :   for(unsigned i=0; i<narg; ++i) {
     328        2004 :     const double x0 = getSpline(i);
     329        2004 :     const double kappa = mult*dnrep/sigma_mean2_[i];
     330        2004 :     const double cv=difference(i,x0,scale_*mean[i]);
     331        2004 :     const double f=-kappa*cv*dmean_x[i]/scale_;
     332             :     setOutputForce(i,f);
     333        2004 :     ene+=0.5*kappa*cv*cv;
     334        2004 :     x0comp[i]->set(x0);
     335        2004 :     kcomp[i]->set(kappa);
     336        2004 :     mcomp[i]->set(mean[i]);
     337             :   }
     338             : 
     339        2004 :   if(doregres_zero_) valueScale->set(scale_);
     340             : 
     341             :   setBias(ene);
     342        2004 : }
     343             : 
     344             : }
     345             : }
     346             : 
     347             : 

Generated by: LCOV version 1.15