Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2014-2023 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "CubicHarmonicBase.h" 23 : #include "core/ActionRegister.h" 24 : 25 : #include <string> 26 : #include <cmath> 27 : 28 : using namespace std; 29 : 30 : namespace PLMD { 31 : namespace crystallization { 32 : 33 : //+PLUMEDOC MCOLVAR TETRAHEDRAL 34 : /* 35 : Calculate the degree to which the environment about ions has a tetrahedral order. 36 : 37 : We can measure the degree to which the atoms in the first coordination shell around any atom, \f$i\f$ is 38 : is arranged like a tetrahedron using the following function. 39 : 40 : \f[ 41 : s(i) = \frac{1}{\sum_j \sigma( r_{ij} )} \sum_j \sigma( r_{ij} )\left[ \frac{(x_{ij} + y_{ij} + z_{ij})^3}{r_{ij}^3} + 42 : \frac{(x_{ij} - y_{ij} - z_{ij})^3}{r_{ij}^3} + 43 : \frac{(-x_{ij} + y_{ij} - z_{ij})^3}{r_{ij}^3} + 44 : \frac{(-x_{ij} - y_{ij} + z_{ij})^3}{r_{ij}^3} \right] 45 : \f] 46 : 47 : Here \f$r_{ij}\f$ is the magnitude of the vector connecting atom \f$i\f$ to atom \f$j\f$ and \f$x_{ij}\f$, \f$y_{ij}\f$ and \f$z_{ij}\f$ 48 : are its three components. The function \f$\sigma( r_{ij} )\f$ is a \ref switchingfunction that acts on the distance between 49 : atoms \f$i\f$ and \f$j\f$. The parameters of this function should be set so that the function is equal to one 50 : when atom \f$j\f$ is in the first coordination sphere of atom \f$i\f$ and is zero otherwise. 51 : 52 : \par Examples 53 : 54 : The following command calculates the average value of the TETRAHEDRAL parameter for a set of 64 atoms all of the same type 55 : and outputs this quantity to a file called colvar. 56 : 57 : \plumedfile 58 : tt: TETRAHEDRAL SPECIES=1-64 SWITCH={RATIONAL D_0=1.3 R_0=0.2} MEAN 59 : PRINT ARG=tt.mean FILE=colvar 60 : \endplumedfile 61 : 62 : The following command calculates the number of TETRAHEDRAL parameters that are greater than 0.8 in a set of 10 atoms. 63 : In this calculation it is assumed that there are two atom types A and B and that the first coordination sphere of the 64 : 10 atoms of type A contains atoms of type B. The formula above is thus calculated for ten different A atoms and within 65 : it the sum over \f$j\f$ runs over 40 atoms of type B that could be in the first coordination sphere. 66 : 67 : \plumedfile 68 : tt: TETRAHEDRAL SPECIESA=1-10 SPECIESB=11-40 SWITCH={RATIONAL D_0=1.3 R_0=0.2} MORE_THAN={RATIONAL R_0=0.8} 69 : PRINT ARG=tt.* FILE=colvar 70 : \endplumedfile 71 : 72 : */ 73 : //+ENDPLUMEDOC 74 : 75 : 76 : class Tetrahedral : public CubicHarmonicBase { 77 : public: 78 : static void registerKeywords( Keywords& keys ); 79 : explicit Tetrahedral(const ActionOptions&); 80 : double calculateCubicHarmonic( const Vector& distance, const double& d2, Vector& myder ) const override; 81 : }; 82 : 83 10421 : PLUMED_REGISTER_ACTION(Tetrahedral,"TETRAHEDRAL") 84 : 85 2 : void Tetrahedral::registerKeywords( Keywords& keys ) { 86 2 : CubicHarmonicBase::registerKeywords( keys ); 87 2 : } 88 : 89 1 : Tetrahedral::Tetrahedral(const ActionOptions&ao): 90 : Action(ao), 91 1 : CubicHarmonicBase(ao) 92 : { 93 1 : checkRead(); 94 1 : } 95 : 96 4032 : double Tetrahedral::calculateCubicHarmonic( const Vector& distance, const double& d2, Vector& myder ) const { 97 4032 : double sp1 = +distance[0]+distance[1]+distance[2]; 98 4032 : double sp2 = +distance[0]-distance[1]-distance[2]; 99 4032 : double sp3 = -distance[0]+distance[1]-distance[2]; 100 4032 : double sp4 = -distance[0]-distance[1]+distance[2]; 101 : 102 : double sp1c = pow( sp1, 3 ); 103 : double sp2c = pow( sp2, 3 ); 104 : double sp3c = pow( sp3, 3 ); 105 : double sp4c = pow( sp4, 3 ); 106 : 107 4032 : double d1 = distance.modulo(); 108 : double r3 = pow( d1, 3 ); 109 : double r5 = pow( d1, 5 ); 110 : 111 4032 : double tmp = sp1c/r3 + sp2c/r3 + sp3c/r3 + sp4c/r3; 112 : 113 4032 : double t1=(3*sp1c)/r5; double tt1=((3*sp1*sp1)/r3); 114 4032 : double t2=(3*sp2c)/r5; double tt2=((3*sp2*sp2)/r3); 115 4032 : double t3=(3*sp3c)/r5; double tt3=((3*sp3*sp3)/r3); 116 4032 : double t4=(3*sp4c)/r5; double tt4=((3*sp4*sp4)/r3); 117 : 118 4032 : myder[0] = (tt1-(distance[0]*t1)) + (tt2-(distance[0]*t2)) + (-tt3-(distance[0]*t3)) + (-tt4-(distance[0]*t4)); 119 4032 : myder[1] = (tt1-(distance[1]*t1)) + (-tt2-(distance[1]*t2)) + (tt3-(distance[1]*t3)) + (-tt4-(distance[1]*t4)); 120 4032 : myder[2] = (tt1-(distance[2]*t1)) + (-tt2-(distance[2]*t2)) + (-tt3-(distance[2]*t3)) + (tt4-(distance[2]*t4)); 121 : 122 4032 : return tmp; 123 : } 124 : 125 : } 126 : } 127 :