Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2017-2023 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "ReweightBase.h" 23 : #include "core/ActionRegister.h" 24 : #include "tools/Communicator.h" 25 : 26 : //+PLUMEDOC REWEIGHTING REWEIGHT_WHAM 27 : /* 28 : Calculate the weights for configurations using the weighted histogram analysis method. 29 : 30 : Suppose that you have run multiple \f$N\f$ trajectories each of which was computed by integrating a different biased Hamiltonian. We can calculate the probability of observing 31 : the set of configurations during the \f$N\f$ trajectories that we ran using the product of multinomial distributions shown below: 32 : \f[ 33 : P( \vec{T} ) \propto \prod_{j=1}^M \prod_{k=1}^N (c_k w_{kj} p_j)^{t_{kj}} 34 : \label{eqn:wham1} 35 : \f] 36 : In this expression the second product runs over the biases that were used when calculating the \f$N\f$ trajectories. The first product then runs over the 37 : \f$M\f$ bins in our histogram. The \f$p_j\f$ variable that is inside this product is the quantity we wish to extract; namely, the unbiased probability of 38 : having a set of CV values that lie within the range for the \f$j\f$th bin. 39 : 40 : The quantity that we can easily extract from our simulations, \f$t_{kj}\f$, however, measures the number of frames from trajectory \f$k\f$ that are inside the \f$j\f$th bin. 41 : To interpret this quantity we must consider the bias that acts on each of the replicas so the \f$w_{kj}\f$ term is introduced. This quantity is calculated as: 42 : \f[ 43 : w_{kj} = 44 : \f] 45 : and is essentially the factor that we have to multiply the unbiased probability of being in the bin by in order to get the probability that we would be inside this same bin in 46 : the \f$k\f$th of our biased simulations. Obviously, these \f$w_{kj}\f$ values depend on the value that the CVs take and also on the particular trajectory that we are investigating 47 : all of which, remember, have different simulation biases. Finally, \f$c_k\f$ is a free parameter that ensures that, for each \f$k\f$, the biased probability is normalized. 48 : 49 : We can use the equation for the probability that was given above to find a set of values for \f$p_j\f$ that maximizes the likelihood of observing the trajectory. 50 : This constrained optimization must be performed using a set of Lagrange multipliers, \f$\lambda_k\f$, that ensure that each of the biased probability distributions 51 : are normalized, that is \f$\sum_j c_kw_{kj}p_j=1\f$. Furthermore, as the problem is made easier if the quantity in the equation above is replaced by its logarithm 52 : we actually chose to minimize 53 : \f[ 54 : \mathcal{L}= \sum_{j=1}^M \sum_{k=1}^N t_{kj} \ln c_k w_{kj} p_j + \sum_k\lambda_k \left( \sum_{j=1}^N c_k w_{kj} p_j - 1 \right) 55 : \f] 56 : After some manipulations the following (WHAM) equations emerge: 57 : \f[ 58 : \begin{aligned} 59 : p_j & \propto \frac{\sum_{k=1}^N t_{kj}}{\sum_k c_k w_{kj}} \\ 60 : c_k & =\frac{1}{\sum_{j=1}^M w_{kj} p_j} 61 : \end{aligned} 62 : \f] 63 : which can be solved by computing the \f$p_j\f$ values using the first of the two equations above with an initial guess for the \f$c_k\f$ values and by then refining 64 : these \f$p_j\f$ values using the \f$c_k\f$ values that are obtained by inserting the \f$p_j\f$ values obtained into the second of the two equations above. 65 : 66 : Notice that only \f$\sum_k t_{kj}\f$, which is the total number of configurations from all the replicas that enter the \f$j\f$th bin, enters the WHAM equations above. 67 : There is thus no need to record which replica generated each of the frames. One can thus simply gather the trajectories from all the replicas together at the outset. 68 : This observation is important as it is the basis of the binless formulation of WHAM that is implemented within PLUMED. 69 : 70 : \par Examples 71 : 72 : */ 73 : //+ENDPLUMEDOC 74 : 75 : namespace PLMD { 76 : namespace bias { 77 : 78 : class ReweightWham : public ReweightBase { 79 : private: 80 : double thresh; 81 : unsigned nreplicas; 82 : unsigned maxiter; 83 : bool weightsCalculated; 84 : std::vector<double> stored_biases; 85 : std::vector<double> final_weights; 86 : public: 87 : static void registerKeywords(Keywords&); 88 : explicit ReweightWham(const ActionOptions&ao); 89 12 : bool buildsWeightStore() const override { return true; } 90 : void calculateWeights( const unsigned& nframes ) override; 91 : void clearData() override; 92 : double getLogWeight() override; 93 : double getWeight( const unsigned& iweight ) const override; 94 : }; 95 : 96 10443 : PLUMED_REGISTER_ACTION(ReweightWham,"REWEIGHT_WHAM") 97 : 98 13 : void ReweightWham::registerKeywords(Keywords& keys ) { 99 13 : ReweightBase::registerKeywords( keys ); keys.remove("ARG"); 100 26 : keys.add("compulsory","ARG","*.bias","the biases that must be taken into account when reweighting"); 101 26 : keys.add("compulsory","MAXITER","1000","maximum number of iterations for WHAM algorithm"); 102 26 : keys.add("compulsory","WHAMTOL","1e-10","threshold for convergence of WHAM algorithm"); 103 13 : } 104 : 105 12 : ReweightWham::ReweightWham(const ActionOptions&ao): 106 : Action(ao), 107 : ReweightBase(ao), 108 12 : weightsCalculated(false) 109 : { 110 24 : parse("MAXITER",maxiter); parse("WHAMTOL",thresh); 111 12 : if(comm.Get_rank()==0) nreplicas=multi_sim_comm.Get_size(); 112 12 : comm.Bcast(nreplicas,0); 113 12 : } 114 : 115 4224 : double ReweightWham::getLogWeight() { 116 4224 : if( getStep()==0 ) return 1.0; // This is here as first step is ignored in all analyses 117 4212 : weightsCalculated=false; 118 8424 : double bias=0.0; for(unsigned i=0; i<getNumberOfArguments(); ++i) bias+=getArgument(i); 119 : 120 4212 : std::vector<double> biases(nreplicas,0.0); 121 4212 : if(comm.Get_rank()==0) multi_sim_comm.Allgather(bias,biases); 122 4212 : comm.Bcast(biases,0); 123 29484 : for(unsigned i=0; i<biases.size(); i++) stored_biases.push_back( biases[i] ); 124 : return 1.0; 125 : } 126 : 127 0 : void ReweightWham::clearData() { 128 0 : stored_biases.resize(0); 129 0 : } 130 : 131 2457 : double ReweightWham::getWeight( const unsigned& iweight ) const { 132 : plumed_dbg_assert( weightsCalculated && iweight<final_weights.size() ); 133 2457 : return final_weights[iweight]; 134 : } 135 : 136 7 : void ReweightWham::calculateWeights( const unsigned& nframes ) { 137 7 : if( stored_biases.size()!=nreplicas*nframes ) error("wrong number of weights stored"); 138 : // Get the minimum value of the bias 139 7 : double minv = *min_element(std::begin(stored_biases), std::end(stored_biases)); 140 : // Resize final weights array 141 7 : plumed_assert( stored_biases.size()%nreplicas==0 ); 142 7 : final_weights.resize( stored_biases.size() / nreplicas, 1.0 ); 143 : // Offset and exponential of the bias 144 7 : std::vector<double> expv( stored_biases.size() ); 145 14749 : for(unsigned i=0; i<expv.size(); ++i) expv[i] = std::exp( (-stored_biases[i]+minv) / simtemp ); 146 : // Initialize Z 147 7 : std::vector<double> Z( nreplicas, 1.0 ), oldZ( nreplicas ); 148 : // Now the iterative loop to calculate the WHAM weights 149 2674 : for(unsigned iter=0; iter<maxiter; ++iter) { 150 : // Store Z 151 18718 : for(unsigned j=0; j<Z.size(); ++j) oldZ[j]=Z[j]; 152 : // Recompute weights 153 : double norm=0; 154 941248 : for(unsigned j=0; j<final_weights.size(); ++j) { 155 : double ew=0; 156 6570018 : for(unsigned k=0; k<Z.size(); ++k) ew += expv[j*Z.size()+k] / Z[k]; 157 938574 : final_weights[j] = 1.0 / ew; norm += final_weights[j]; 158 : } 159 : // Normalize weights 160 941248 : for(unsigned j=0; j<final_weights.size(); ++j) final_weights[j] /= norm; 161 : // Recompute Z 162 18718 : for(unsigned j=0; j<Z.size(); ++j) Z[j] = 0.0; 163 941248 : for(unsigned j=0; j<final_weights.size(); ++j) { 164 6570018 : for(unsigned k=0; k<Z.size(); ++k) Z[k] += final_weights[j]*expv[j*Z.size()+k]; 165 : } 166 : // Normalize Z and compute change in Z 167 18718 : double change=0; norm=0; for(unsigned k=0; k<Z.size(); ++k) norm+=Z[k]; 168 18718 : for(unsigned k=0; k<Z.size(); ++k) { 169 16044 : Z[k] /= norm; double d = std::log( Z[k] / oldZ[k] ); change += d*d; 170 : } 171 2681 : if( change<thresh ) { weightsCalculated=true; return; } 172 : } 173 0 : error("Too many iterations in WHAM" ); 174 : } 175 : 176 : } 177 : }