Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2014-2023 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "ClusteringBase.h" 23 : #include "AdjacencyMatrixVessel.h" 24 : #include "core/ActionRegister.h" 25 : 26 : #ifdef __PLUMED_HAS_BOOST_GRAPH 27 : #include <boost/graph/adjacency_list.hpp> 28 : #include <boost/graph/connected_components.hpp> 29 : #include <boost/graph/graph_utility.hpp> 30 : #endif 31 : 32 : //+PLUMEDOC MATRIXF DFSCLUSTERING 33 : /* 34 : Find the connected components of the matrix using the depth first search clustering algorithm. 35 : 36 : As discussed in the section of the manual on \ref contactmatrix a useful tool for developing complex collective variables is the notion of the 37 : so called adjacency matrix. An adjacency matrix is an \f$N \times N\f$ matrix in which the \f$i\f$th, \f$j\f$th element tells you whether 38 : or not the \f$i\f$th and \f$j\f$th atoms/molecules from a set of \f$N\f$ atoms/molecules are adjacent or not. As detailed in \cite tribello-clustering 39 : these matrices provide a representation of a graph and can thus can be analyzed using tools from graph theory. This particular action performs 40 : a depth first search clustering to find the connected components of this graph. You can read more about depth first search here: 41 : 42 : https://en.wikipedia.org/wiki/Depth-first_search 43 : 44 : This action is useful if you are looking at a phenomenon such as nucleation where the aim is to detect the sizes of the crystalline nuclei that have formed 45 : in your simulation cell. 46 : 47 : \par Examples 48 : 49 : The input below calculates the coordination numbers of atoms 1-100 and then computes the an adjacency 50 : matrix whose elements measures whether atoms \f$i\f$ and \f$j\f$ are within 0.55 nm of each other. The action 51 : labelled dfs then treats the elements of this matrix as zero or ones and thus thinks of the matrix as defining 52 : a graph. This dfs action then finds the largest connected component in this graph. The sum of the coordination 53 : numbers for the atoms in this largest connected component are then computed and this quantity is output to a colvar 54 : file. The way this input can be used is described in detail in \cite tribello-clustering. 55 : 56 : \plumedfile 57 : lq: COORDINATIONNUMBER SPECIES=1-100 SWITCH={CUBIC D_0=0.45 D_MAX=0.55} LOWMEM 58 : cm: CONTACT_MATRIX ATOMS=lq SWITCH={CUBIC D_0=0.45 D_MAX=0.55} 59 : dfs: DFSCLUSTERING MATRIX=cm 60 : clust1: CLUSTER_PROPERTIES CLUSTERS=dfs CLUSTER=1 SUM 61 : PRINT ARG=clust1.* FILE=colvar 62 : \endplumedfile 63 : 64 : */ 65 : //+ENDPLUMEDOC 66 : 67 : namespace PLMD { 68 : namespace adjmat { 69 : 70 : class DFSClustering : public ClusteringBase { 71 : private: 72 : #ifdef __PLUMED_HAS_BOOST_GRAPH 73 : /// The list of edges in the graph 74 : std::vector<std::pair<unsigned,unsigned> > edge_list; 75 : #else 76 : /// The number of neighbors each atom has 77 : std::vector<unsigned> nneigh; 78 : /// The adjacency list 79 : Matrix<unsigned> adj_list; 80 : /// The color that tells us whether a node has been visited 81 : std::vector<unsigned> color; 82 : /// The recursive function at the heart of this method 83 : int explore( const unsigned& index ); 84 : #endif 85 : public: 86 : /// Create manual 87 : static void registerKeywords( Keywords& keys ); 88 : /// Constructor 89 : explicit DFSClustering(const ActionOptions&); 90 : /// Do the clustering 91 : void performClustering() override; 92 : }; 93 : 94 10449 : PLUMED_REGISTER_ACTION(DFSClustering,"DFSCLUSTERING") 95 : 96 16 : void DFSClustering::registerKeywords( Keywords& keys ) { 97 16 : ClusteringBase::registerKeywords( keys ); 98 32 : keys.add("compulsory","MAXCONNECT","0","maximum number of connections that can be formed by any given node in the graph. " 99 : "By default this is set equal to zero and the number of connections is set equal to the number " 100 : "of nodes. You only really need to set this if you are working with a very large system and " 101 : "memory is at a premium"); 102 16 : } 103 : 104 15 : DFSClustering::DFSClustering(const ActionOptions&ao): 105 : Action(ao), 106 15 : ClusteringBase(ao) 107 : { 108 15 : unsigned maxconnections; parse("MAXCONNECT",maxconnections); 109 : #ifdef __PLUMED_HAS_BOOST_GRAPH 110 : if( maxconnections>0 ) edge_list.resize( getNumberOfNodes()*maxconnections ); 111 : else edge_list.resize(0.5*getNumberOfNodes()*(getNumberOfNodes()-1)); 112 : #else 113 15 : nneigh.resize( getNumberOfNodes() ); color.resize(getNumberOfNodes()); 114 15 : if( maxconnections>0 ) adj_list.resize(getNumberOfNodes(),maxconnections); 115 15 : else adj_list.resize(getNumberOfNodes(),getNumberOfNodes()); 116 : #endif 117 15 : } 118 : 119 24 : void DFSClustering::performClustering() { 120 : #ifdef __PLUMED_HAS_BOOST_GRAPH 121 : // Get the list of edges 122 : unsigned nedges=0; getAdjacencyVessel()->retrieveEdgeList( nedges, edge_list ); 123 : 124 : // Build the graph using boost 125 : boost::adjacency_list<boost::vecS,boost::vecS,boost::undirectedS> sg(&edge_list[0],&edge_list[nedges],getNumberOfNodes()); 126 : 127 : // Find the connected components using boost (-1 here for compatibility with non-boost version) 128 : number_of_cluster=boost::connected_components(sg,&which_cluster[0]) - 1; 129 : 130 : // And work out the size of each cluster 131 : for(unsigned i=0; i<which_cluster.size(); ++i) cluster_sizes[which_cluster[i]].first++; 132 : #else 133 : // Get the adjacency matrix 134 24 : getAdjacencyVessel()->retrieveAdjacencyLists( nneigh, adj_list ); 135 : 136 : // Perform clustering 137 24 : number_of_cluster=-1; color.assign(color.size(),0); 138 8217 : for(unsigned i=0; i<getNumberOfNodes(); ++i) { 139 8193 : if( color[i]==0 ) { number_of_cluster++; color[i]=explore(i); } 140 : } 141 : #endif 142 24 : } 143 : 144 : #ifndef __PLUMED_HAS_BOOST_GRAPH 145 8193 : int DFSClustering::explore( const unsigned& index ) { 146 : 147 8193 : color[index]=1; 148 38219 : for(unsigned i=0; i<nneigh[index]; ++i) { 149 30026 : unsigned j=adj_list(index,i); 150 30026 : if( color[j]==0 ) color[j]=explore(j); 151 : } 152 : 153 : // Count the size of the cluster 154 8193 : cluster_sizes[number_of_cluster].first++; 155 8193 : which_cluster[index] = number_of_cluster; 156 8193 : return color[index]; 157 : } 158 : #endif 159 : 160 : } 161 : }