LCOV - code coverage report
Current view: top level - vatom - Ghost.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 79 79 100.0 %
Date: 2024-10-18 14:00:25 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2012-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "ActionWithVirtualAtom.h"
      23             : #include "core/ActionRegister.h"
      24             : #include "tools/Vector.h"
      25             : #include "tools/Exception.h"
      26             : #include <array>
      27             : 
      28             : namespace PLMD {
      29             : namespace vatom {
      30             : 
      31             : //+PLUMEDOC VATOM GHOST
      32             : /*
      33             : Calculate the absolute position of a ghost atom with fixed coordinates in the local reference frame formed by three atoms.
      34             : 
      35             : The computed ghost atom is stored as a virtual atom that can be accessed in
      36             :  an atom list through the the label for the GHOST action that creates it.
      37             : 
      38             : When running with periodic boundary conditions, the atoms should be
      39             : in the proper periodic image. This is done automatically since PLUMED 2.10,
      40             : by considering the ordered list of atoms and rebuilding the molecule using a procedure
      41             : that is equivalent to that done in \ref WHOLEMOLECULES . Notice that
      42             : rebuilding is local to this action. This is different from \ref WHOLEMOLECULES
      43             : which actually modifies the coordinates stored in PLUMED.
      44             : 
      45             : In case you want to recover the old behavior you should use the NOPBC flag.
      46             : In that case you need to take care that atoms are in the correct
      47             : periodic image.
      48             : 
      49             : \par Examples
      50             : 
      51             : The following input instructs plumed to print the distance between the
      52             : ghost atom and the center of mass for atoms 15,20:
      53             : \plumedfile
      54             : c1: GHOST ATOMS=1,5,10 COORDINATES=10.0,10.0,10.0
      55             : c2: COM ATOMS=15,20
      56             : d1: DISTANCE ATOMS=c1,c2
      57             : PRINT ARG=d1
      58             : \endplumedfile
      59             : 
      60             : */
      61             : //+ENDPLUMEDOC
      62             : 
      63             : 
      64             : class Ghost:
      65             :   public ActionWithVirtualAtom
      66             : {
      67             :   std::vector<double> coord;
      68             :   std::vector<Tensor> deriv;
      69             :   bool nopbc=false;
      70             : public:
      71             :   explicit Ghost(const ActionOptions&ao);
      72             :   void calculate() override;
      73             :   static void registerKeywords( Keywords& keys );
      74             : };
      75             : 
      76             : PLUMED_REGISTER_ACTION(Ghost,"GHOST")
      77             : 
      78         711 : void Ghost::registerKeywords(Keywords& keys) {
      79         711 :   ActionWithVirtualAtom::registerKeywords(keys);
      80        1422 :   keys.add("atoms","COORDINATES","coordinates of the ghost atom in the local reference frame");
      81        1422 :   keys.addFlag("NOPBC",false,"ignore the periodic boundary conditions when calculating distances");
      82         711 : }
      83             : 
      84         709 : Ghost::Ghost(const ActionOptions&ao):
      85             :   Action(ao),
      86         709 :   ActionWithVirtualAtom(ao)
      87             : {
      88             :   std::vector<AtomNumber> atoms;
      89        1418 :   parseAtomList("ATOMS",atoms);
      90         709 :   if(atoms.size()!=3) error("ATOMS should contain a list of three atoms");
      91             : 
      92        1418 :   parseVector("COORDINATES",coord);
      93         709 :   if(coord.size()!=3) error("COORDINATES should be a list of three real numbers");
      94             : 
      95         709 :   parseFlag("NOPBC",nopbc);
      96             : 
      97         709 :   checkRead();
      98         709 :   log.printf("  of atoms");
      99        2836 :   for(unsigned i=0; i<atoms.size(); ++i) log.printf(" %d",atoms[i].serial());
     100         709 :   log.printf("\n");
     101             : 
     102         709 :   if(nopbc) {
     103           4 :     log<<"  PBC will be ignored\n";
     104             :   } else {
     105         705 :     log<<"  broken molecules will be rebuilt assuming atoms are in the proper order\n";
     106             :   }
     107         709 :   requestAtoms(atoms);
     108         709 : }
     109             : 
     110        1413 : void Ghost::calculate() {
     111             : 
     112        1413 :   if(!nopbc) makeWhole();
     113             : 
     114        1413 :   Vector pos;
     115        1413 :   deriv.resize(getNumberOfAtoms());
     116        1413 :   std::array<Vector,3> n;
     117             : 
     118             : // first versor
     119        1413 :   Vector n01 = delta(getPosition(0), getPosition(1));
     120        1413 :   n[0]=n01/n01.modulo();
     121             : 
     122             : // auxiliary vector
     123        1413 :   Vector n02 = delta(getPosition(0), getPosition(2));
     124             : 
     125             : // second versor
     126        1413 :   Vector n03 = crossProduct(n[0],n02);
     127        1413 :   double n03_norm = n03.modulo();
     128        1413 :   n[1]=n03/n03_norm;
     129             : 
     130             : // third versor
     131        1413 :   n[2]=crossProduct(n[0],n[1]);
     132             : 
     133             : // origin of the reference system
     134        1413 :   pos = getPosition(0);
     135             : 
     136        5652 :   for(unsigned i=0; i<3; ++i) {
     137        4239 :     pos += coord[i] * n[i];
     138             :   }
     139             : 
     140        1413 :   setPosition(pos);
     141        1413 :   setMass(1.0);
     142        1413 :   setCharge(0.0);
     143             : 
     144             : // some useful tensors for derivatives
     145        1413 :   Tensor dn0d0  = (-Tensor::identity()+Tensor(n[0],n[0]))/n01.modulo();
     146        1413 :   Tensor dn0d1  = (+Tensor::identity()-Tensor(n[0],n[0]))/n01.modulo();
     147        1413 :   Tensor dn02d0 = -Tensor::identity();
     148        1413 :   Tensor dn02d2 =  Tensor::identity();
     149             : 
     150             : // derivative of n1 = n0 x n02
     151        1413 :   Tensor dn1d0, dn1d1, dn1d2;
     152        1413 :   Vector aux0, aux1, aux2;
     153             : 
     154        5652 :   for(unsigned j=0; j<3; ++j) {
     155             : // derivative of n0 x n02 with respect to point 0, coordinate j
     156        4239 :     Vector tmp00  = Vector( dn0d0(j,0),  dn0d0(j,1),  dn0d0(j,2));
     157        4239 :     Vector tmp020 = Vector(dn02d0(j,0), dn02d0(j,1), dn02d0(j,2));
     158        4239 :     Vector tmp0   = crossProduct(tmp00,n02) + crossProduct(n[0],tmp020);
     159        4239 :     aux0[j]       = dotProduct(tmp0,n[1]);
     160             : // derivative of n0 x n02 with respect to point 1, coordinate j
     161        4239 :     Vector tmp01  = Vector( dn0d1(j,0),  dn0d1(j,1),  dn0d1(j,2));
     162        4239 :     Vector tmp1   = crossProduct(tmp01,n02);
     163        4239 :     aux1[j]       = dotProduct(tmp1,n[1]);
     164             : // derivative of n0 x n02 with respect to point 2, coordinate j
     165        4239 :     Vector tmp022 = Vector(dn02d2(j,0), dn02d2(j,1), dn02d2(j,2));
     166        4239 :     Vector tmp2   = crossProduct(n[0],tmp022);
     167        4239 :     aux2[j]       = dotProduct(tmp2,n[1]);
     168             : // derivative of n1 = (n0 x n02) / || (n0 x n02) ||
     169       16956 :     for(unsigned i=0; i<3; ++i) {
     170       12717 :       dn1d0(j,i) = ( tmp0[i] - aux0[j] * n[1][i] ) / n03_norm;
     171       12717 :       dn1d1(j,i) = ( tmp1[i] - aux1[j] * n[1][i] ) / n03_norm;
     172       12717 :       dn1d2(j,i) = ( tmp2[i] - aux2[j] * n[1][i] ) / n03_norm;
     173             :     }
     174             :   }
     175             : 
     176             : // Derivative of the last versor n2 = n0 x n1 =  ( n0( n0 n02 ) - n02 ) / || n0 x n02 ||
     177             : // Scalar product and derivatives
     178        1413 :   double n0_n02 = dotProduct(n[0],n02);
     179        1413 :   Vector dn0_n02d0, dn0_n02d1, dn0_n02d2;
     180             : 
     181        5652 :   for(unsigned j=0; j<3; ++j) {
     182       16956 :     for(unsigned i=0; i<3; ++i) {
     183       12717 :       dn0_n02d0[j] += dn0d0(j,i)*n02[i] + n[0][i]*dn02d0(j,i);
     184       12717 :       dn0_n02d1[j] += dn0d1(j,i)*n02[i];
     185       12717 :       dn0_n02d2[j] +=                     n[0][i]*dn02d2(j,i);
     186             :     }
     187             :   }
     188             : 
     189        1413 :   Tensor dn2d0, dn2d1, dn2d2;
     190        5652 :   for(unsigned j=0; j<3; ++j) {
     191       16956 :     for(unsigned i=0; i<3; ++i) {
     192       12717 :       dn2d0(j,i) = ( dn0d0(j,i) * n0_n02 + n[0][i] * dn0_n02d0[j] - dn02d0(j,i) - ( n[0][i] * n0_n02 - n02[i] ) * aux0[j] / n03_norm ) / n03_norm;
     193       12717 :       dn2d1(j,i) = ( dn0d1(j,i) * n0_n02 + n[0][i] * dn0_n02d1[j]               - ( n[0][i] * n0_n02 - n02[i] ) * aux1[j] / n03_norm ) / n03_norm;
     194       12717 :       dn2d2(j,i) = (                       n[0][i] * dn0_n02d2[j] - dn02d2(j,i) - ( n[0][i] * n0_n02 - n02[i] ) * aux2[j] / n03_norm ) / n03_norm;
     195             :     }
     196             :   }
     197             : 
     198             : // Finally, the derivative tensor
     199        1413 :   deriv[0] = Tensor::identity() + coord[0]*dn0d0 + coord[1]*dn1d0 + coord[2]*dn2d0;
     200        1413 :   deriv[1] =                      coord[0]*dn0d1 + coord[1]*dn1d1 + coord[2]*dn2d1;
     201        1413 :   deriv[2] =                                       coord[1]*dn1d2 + coord[2]*dn2d2;
     202             : 
     203        1413 :   setAtomsDerivatives(deriv);
     204             : 
     205             : // Virial contribution
     206        1413 :   setBoxDerivativesNoPbc();
     207        1413 : }
     208             : 
     209             : }
     210             : }

Generated by: LCOV version 1.16