LCOV - code coverage report
Current view: top level - isdb - Metainference.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 739 877 84.3 %
Date: 2024-10-18 14:00:25 Functions: 24 27 88.9 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "bias/Bias.h"
      24             : #include "core/ActionRegister.h"
      25             : #include "core/PlumedMain.h"
      26             : #include "core/Value.h"
      27             : #include "tools/File.h"
      28             : #include "tools/OpenMP.h"
      29             : #include "tools/Random.h"
      30             : #include "tools/Communicator.h"
      31             : #include <chrono>
      32             : #include <numeric>
      33             : 
      34             : #ifndef M_PI
      35             : #define M_PI           3.14159265358979323846
      36             : #endif
      37             : 
      38             : namespace PLMD {
      39             : namespace isdb {
      40             : 
      41             : //+PLUMEDOC ISDB_BIAS METAINFERENCE
      42             : /*
      43             : Calculates the Metainference energy for a set of experimental data.
      44             : 
      45             : Metainference \cite Bonomi:2016ip is a Bayesian framework
      46             : to model heterogeneous systems by integrating prior information with noisy, ensemble-averaged data.
      47             : Metainference models a system and quantifies the level of noise in the data by considering a set of replicas of the system.
      48             : 
      49             : Calculated experimental data are given in input as ARG while reference experimental values
      50             : can be given either from fixed components of other actions using PARARG or as numbers using
      51             : PARAMETERS. The default behavior is that of averaging the data over the available replicas,
      52             : if this is not wanted the keyword NOENSEMBLE prevent this averaging.
      53             : 
      54             : Metadynamics Metainference \cite Bonomi:2016ge or more in general biased Metainference requires the knowledge of
      55             : biasing potential in order to calculate the weighted average. In this case the value of the bias
      56             : can be provided as the last argument in ARG and adding the keyword REWEIGHT. To avoid the noise
      57             : resulting from the instantaneous value of the bias the weight of each replica can be averaged
      58             : over a give time using the keyword AVERAGING.
      59             : 
      60             : The data can be averaged by using multiple replicas and weighted for a bias if present.
      61             : The functional form of Metainference can be chosen among four variants selected
      62             : with NOISE=GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC which correspond to modelling the noise for
      63             : the arguments as a single gaussian common to all the data points, a gaussian per data
      64             : point, a single long-tailed gaussian common to all the data points, a log-tailed
      65             :  gaussian per data point or using two distinct noises as for the most general formulation of Metainference.
      66             : In this latter case the noise of the replica-averaging is gaussian (one per data point) and the noise for
      67             : the comparison with the experimental data can chosen using the keyword LIKELIHOOD
      68             : between gaussian or log-normal (one per data point), furthermore the evolution of the estimated average
      69             : over an infinite number of replicas is driven by DFTILDE.
      70             : 
      71             : As for Metainference theory there are two sigma values: SIGMA_MEAN0 represent the
      72             : error of calculating an average quantity using a finite set of replica and should
      73             : be set as small as possible following the guidelines for replica-averaged simulations
      74             : in the framework of the Maximum Entropy Principle. Alternatively, this can be obtained
      75             : automatically using the internal sigma mean optimization as introduced in \cite Lohr:2017gc
      76             : (OPTSIGMAMEAN=SEM), in this second case sigma_mean is estimated from the maximum standard error
      77             : of the mean either over the simulation or over a defined time using the keyword AVERAGING.
      78             : SIGMA_BIAS is an uncertainty parameter, sampled by a MC algorithm in the bounded interval
      79             : defined by SIGMA_MIN and SIGMA_MAX. The initial value is set at SIGMA0. The MC move is a
      80             : random displacement of maximum value equal to DSIGMA. If the number of data point is
      81             : too large and the acceptance rate drops it is possible to make the MC move over mutually
      82             : exclusive, random subset of size MC_CHUNKSIZE and run more than one move setting MC_STEPS
      83             : in such a way that MC_CHUNKSIZE*MC_STEPS will cover all the data points.
      84             : 
      85             : Calculated and experimental data can be compared modulo a scaling factor and/or an offset
      86             : using SCALEDATA and/or ADDOFFSET, the sampling is obtained by a MC algorithm either using
      87             : a flat or a gaussian prior setting it with SCALE_PRIOR or OFFSET_PRIOR.
      88             : 
      89             : \par Examples
      90             : 
      91             : In the following example we calculate a set of \ref RDC, take the replica-average of
      92             : them and comparing them with a set of experimental values. RDCs are compared with
      93             : the experimental data but for a multiplication factor SCALE that is also sampled by
      94             : MC on-the-fly
      95             : 
      96             : \plumedfile
      97             : RDC ...
      98             : LABEL=rdc
      99             : SCALE=0.0001
     100             : GYROM=-72.5388
     101             : ATOMS1=22,23
     102             : ATOMS2=25,27
     103             : ATOMS3=29,31
     104             : ATOMS4=33,34
     105             : ... RDC
     106             : 
     107             : METAINFERENCE ...
     108             : ARG=rdc.*
     109             : NOISETYPE=MGAUSS
     110             : PARAMETERS=1.9190,2.9190,3.9190,4.9190
     111             : SCALEDATA SCALE0=1 SCALE_MIN=0.1 SCALE_MAX=3 DSCALE=0.01
     112             : SIGMA0=0.01 SIGMA_MIN=0.00001 SIGMA_MAX=3 DSIGMA=0.01
     113             : SIGMA_MEAN0=0.001
     114             : LABEL=spe
     115             : ... METAINFERENCE
     116             : 
     117             : PRINT ARG=spe.bias FILE=BIAS STRIDE=1
     118             : \endplumedfile
     119             : 
     120             : in the following example instead of using one uncertainty parameter per data point we use
     121             : a single uncertainty value in a long-tailed gaussian to take into account for outliers, furthermore
     122             : the data are weighted for the bias applied to other variables of the system.
     123             : 
     124             : \plumedfile
     125             : RDC ...
     126             : LABEL=rdc
     127             : SCALE=0.0001
     128             : GYROM=-72.5388
     129             : ATOMS1=22,23
     130             : ATOMS2=25,27
     131             : ATOMS3=29,31
     132             : ATOMS4=33,34
     133             : ... RDC
     134             : 
     135             : cv1: TORSION ATOMS=1,2,3,4
     136             : cv2: TORSION ATOMS=2,3,4,5
     137             : mm: METAD ARG=cv1,cv2 HEIGHT=0.5 SIGMA=0.3,0.3 PACE=200 BIASFACTOR=8 WALKERS_MPI
     138             : 
     139             : METAINFERENCE ...
     140             : #SETTINGS NREPLICAS=2
     141             : ARG=rdc.*,mm.bias
     142             : REWEIGHT
     143             : NOISETYPE=OUTLIERS
     144             : PARAMETERS=1.9190,2.9190,3.9190,4.9190
     145             : SCALEDATA SCALE0=1 SCALE_MIN=0.1 SCALE_MAX=3 DSCALE=0.01
     146             : SIGMA0=0.01 SIGMA_MIN=0.00001 SIGMA_MAX=3 DSIGMA=0.01
     147             : SIGMA_MEAN0=0.001
     148             : LABEL=spe
     149             : ... METAINFERENCE
     150             : \endplumedfile
     151             : 
     152             : (See also \ref RDC, \ref PBMETAD).
     153             : 
     154             : */
     155             : //+ENDPLUMEDOC
     156             : 
     157             : class Metainference : public bias::Bias
     158             : {
     159             :   // experimental values
     160             :   std::vector<double> parameters;
     161             :   // noise type
     162             :   unsigned noise_type_;
     163             :   enum { GAUSS, MGAUSS, OUTLIERS, MOUTLIERS, GENERIC };
     164             :   unsigned gen_likelihood_;
     165             :   enum { LIKE_GAUSS, LIKE_LOGN };
     166             :   // scale is data scaling factor
     167             :   // noise type
     168             :   unsigned scale_prior_;
     169             :   enum { SC_GAUSS, SC_FLAT };
     170             :   bool   doscale_;
     171             :   double scale_;
     172             :   double scale_mu_;
     173             :   double scale_min_;
     174             :   double scale_max_;
     175             :   double Dscale_;
     176             :   // scale is data scaling factor
     177             :   // noise type
     178             :   unsigned offset_prior_;
     179             :   bool   dooffset_;
     180             :   double offset_;
     181             :   double offset_mu_;
     182             :   double offset_min_;
     183             :   double offset_max_;
     184             :   double Doffset_;
     185             :   // scale and offset regression
     186             :   bool doregres_zero_;
     187             :   int  nregres_zero_;
     188             :   // sigma is data uncertainty
     189             :   std::vector<double> sigma_;
     190             :   std::vector<double> sigma_min_;
     191             :   std::vector<double> sigma_max_;
     192             :   std::vector<double> Dsigma_;
     193             :   // sigma_mean is uncertainty in the mean estimate
     194             :   std::vector<double> sigma_mean2_;
     195             :   // this is the estimator of the mean value per replica for generic metainference
     196             :   std::vector<double> ftilde_;
     197             :   double Dftilde_;
     198             : 
     199             :   // temperature in kbt
     200             :   double   kbt_;
     201             : 
     202             :   // Monte Carlo stuff
     203             :   std::vector<Random> random;
     204             :   unsigned MCsteps_;
     205             :   long long unsigned MCaccept_;
     206             :   long long unsigned MCacceptScale_;
     207             :   long long unsigned MCacceptFT_;
     208             :   long long unsigned MCtrial_;
     209             :   unsigned MCchunksize_;
     210             : 
     211             :   // output
     212             :   Value*   valueScale;
     213             :   Value*   valueOffset;
     214             :   Value*   valueAccept;
     215             :   Value*   valueAcceptScale;
     216             :   Value*   valueAcceptFT;
     217             :   std::vector<Value*> valueSigma;
     218             :   std::vector<Value*> valueSigmaMean;
     219             :   std::vector<Value*> valueFtilde;
     220             : 
     221             :   // restart
     222             :   unsigned write_stride_;
     223             :   OFile    sfile_;
     224             : 
     225             :   // others
     226             :   bool         firstTime;
     227             :   std::vector<bool> firstTimeW;
     228             :   bool     master;
     229             :   bool     do_reweight_;
     230             :   unsigned do_optsigmamean_;
     231             :   unsigned nrep_;
     232             :   unsigned replica_;
     233             :   unsigned narg;
     234             : 
     235             :   // selector
     236             :   std::string selector_;
     237             : 
     238             :   // optimize sigma mean
     239             :   std::vector< std::vector < std::vector <double> > > sigma_mean2_last_;
     240             :   unsigned optsigmamean_stride_;
     241             :   // optimize sigma max
     242             :   unsigned N_optimized_step_;
     243             :   unsigned optimized_step_;
     244             :   bool sigmamax_opt_done_;
     245             :   std::vector<double> sigma_max_est_;
     246             : 
     247             :   // average weights
     248             :   unsigned                   average_weights_stride_;
     249             :   std::vector< std::vector <double> >  average_weights_;
     250             : 
     251             :   double getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
     252             :                         const double scale, const double offset);
     253             :   double getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
     254             :                      const double scale, const double offset);
     255             :   double getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
     256             :                       const double scale, const double offset);
     257             :   double getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
     258             :                      const double scale, const double offset);
     259             :   double getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
     260             :                       const double scale, const double offset);
     261             :   void moveTilde(const std::vector<double> &mean_, double &old_energy);
     262             :   void moveScaleOffset(const std::vector<double> &mean_, double &old_energy);
     263             :   void moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow);
     264             :   double doMonteCarlo(const std::vector<double> &mean);
     265             :   void getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     266             :   void getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     267             :   void getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     268             :   void getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     269             :   void getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     270             :   void get_weights(const unsigned iselect, double &weight, double &norm, double &neff);
     271             :   void replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b);
     272             :   void get_sigma_mean(const unsigned iselect, const double weight, const double norm, const double neff, const std::vector<double> &mean);
     273             :   void writeStatus();
     274             :   void do_regression_zero(const std::vector<double> &mean);
     275             : 
     276             : public:
     277             :   explicit Metainference(const ActionOptions&);
     278             :   ~Metainference();
     279             :   void calculate() override;
     280             :   void update() override;
     281             :   static void registerKeywords(Keywords& keys);
     282             : };
     283             : 
     284             : 
     285             : PLUMED_REGISTER_ACTION(Metainference,"METAINFERENCE")
     286             : 
     287          21 : void Metainference::registerKeywords(Keywords& keys) {
     288          21 :   Bias::registerKeywords(keys);
     289          21 :   keys.use("ARG");
     290          42 :   keys.add("optional","PARARG","reference values for the experimental data, these can be provided as arguments without derivatives");
     291          42 :   keys.add("optional","PARAMETERS","reference values for the experimental data");
     292          42 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
     293          42 :   keys.addFlag("REWEIGHT",false,"simple REWEIGHT using the latest ARG as energy");
     294          42 :   keys.add("optional","AVERAGING", "Stride for calculation of averaged weights and sigma_mean");
     295          42 :   keys.add("compulsory","NOISETYPE","MGAUSS","functional form of the noise (GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC)");
     296          42 :   keys.add("compulsory","LIKELIHOOD","GAUSS","the likelihood for the GENERIC metainference model, GAUSS or LOGN");
     297          42 :   keys.add("compulsory","DFTILDE","0.1","fraction of sigma_mean used to evolve ftilde");
     298          42 :   keys.addFlag("SCALEDATA",false,"Set to TRUE if you want to sample a scaling factor common to all values and replicas");
     299          42 :   keys.add("compulsory","SCALE0","1.0","initial value of the scaling factor");
     300          42 :   keys.add("compulsory","SCALE_PRIOR","FLAT","either FLAT or GAUSSIAN");
     301          42 :   keys.add("optional","SCALE_MIN","minimum value of the scaling factor");
     302          42 :   keys.add("optional","SCALE_MAX","maximum value of the scaling factor");
     303          42 :   keys.add("optional","DSCALE","maximum MC move of the scaling factor");
     304          42 :   keys.addFlag("ADDOFFSET",false,"Set to TRUE if you want to sample an offset common to all values and replicas");
     305          42 :   keys.add("compulsory","OFFSET0","0.0","initial value of the offset");
     306          42 :   keys.add("compulsory","OFFSET_PRIOR","FLAT","either FLAT or GAUSSIAN");
     307          42 :   keys.add("optional","OFFSET_MIN","minimum value of the offset");
     308          42 :   keys.add("optional","OFFSET_MAX","maximum value of the offset");
     309          42 :   keys.add("optional","DOFFSET","maximum MC move of the offset");
     310          42 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
     311          42 :   keys.add("compulsory","SIGMA0","1.0","initial value of the uncertainty parameter");
     312          42 :   keys.add("compulsory","SIGMA_MIN","0.0","minimum value of the uncertainty parameter");
     313          42 :   keys.add("compulsory","SIGMA_MAX","10.","maximum value of the uncertainty parameter");
     314          42 :   keys.add("optional","DSIGMA","maximum MC move of the uncertainty parameter");
     315          42 :   keys.add("compulsory","OPTSIGMAMEAN","NONE","Set to NONE/SEM to manually set sigma mean, or to estimate it on the fly");
     316          42 :   keys.add("optional","SIGMA_MEAN0","starting value for the uncertainty in the mean estimate");
     317          42 :   keys.add("optional","SIGMA_MAX_STEPS", "Number of steps used to optimise SIGMA_MAX, before that the SIGMA_MAX value is used");
     318          42 :   keys.add("optional","TEMP","the system temperature - this is only needed if code doesn't pass the temperature to plumed");
     319          42 :   keys.add("optional","MC_STEPS","number of MC steps");
     320          42 :   keys.add("optional","MC_CHUNKSIZE","MC chunksize");
     321          42 :   keys.add("optional","STATUS_FILE","write a file with all the data useful for restart/continuation of Metainference");
     322          42 :   keys.add("compulsory","WRITE_STRIDE","10000","write the status to a file every N steps, this can be used for restart/continuation");
     323          42 :   keys.add("optional","SELECTOR","name of selector");
     324          42 :   keys.add("optional","NSELECT","range of values for selector [0, N-1]");
     325          21 :   keys.use("RESTART");
     326          42 :   keys.addOutputComponent("sigma",        "default",      "uncertainty parameter");
     327          42 :   keys.addOutputComponent("sigmaMean",    "default",      "uncertainty in the mean estimate");
     328          42 :   keys.addOutputComponent("neff",         "default",      "effective number of replicas");
     329          42 :   keys.addOutputComponent("acceptSigma",  "default",      "MC acceptance for sigma values");
     330          42 :   keys.addOutputComponent("acceptScale",  "SCALEDATA",    "MC acceptance for scale value");
     331          42 :   keys.addOutputComponent("acceptFT",     "GENERIC",      "MC acceptance for general metainference f tilde value");
     332          42 :   keys.addOutputComponent("weight",       "REWEIGHT",     "weights of the weighted average");
     333          42 :   keys.addOutputComponent("biasDer",      "REWEIGHT",     "derivatives with respect to the bias");
     334          42 :   keys.addOutputComponent("scale",        "SCALEDATA",    "scale parameter");
     335          42 :   keys.addOutputComponent("offset",       "ADDOFFSET",    "offset parameter");
     336          42 :   keys.addOutputComponent("ftilde",       "GENERIC",      "ensemble average estimator");
     337          21 : }
     338             : 
     339          19 : Metainference::Metainference(const ActionOptions&ao):
     340             :   PLUMED_BIAS_INIT(ao),
     341          19 :   doscale_(false),
     342          19 :   scale_(1.),
     343          19 :   scale_mu_(0),
     344          19 :   scale_min_(1),
     345          19 :   scale_max_(-1),
     346          19 :   Dscale_(-1),
     347          19 :   dooffset_(false),
     348          19 :   offset_(0.),
     349          19 :   offset_mu_(0),
     350          19 :   offset_min_(1),
     351          19 :   offset_max_(-1),
     352          19 :   Doffset_(-1),
     353          19 :   doregres_zero_(false),
     354          19 :   nregres_zero_(0),
     355          19 :   Dftilde_(0.1),
     356          19 :   random(3),
     357          19 :   MCsteps_(1),
     358          19 :   MCaccept_(0),
     359          19 :   MCacceptScale_(0),
     360          19 :   MCacceptFT_(0),
     361          19 :   MCtrial_(0),
     362          19 :   MCchunksize_(0),
     363          19 :   write_stride_(0),
     364          19 :   firstTime(true),
     365          19 :   do_reweight_(false),
     366          19 :   do_optsigmamean_(0),
     367          19 :   optsigmamean_stride_(0),
     368          19 :   N_optimized_step_(0),
     369          19 :   optimized_step_(0),
     370          19 :   sigmamax_opt_done_(false),
     371          19 :   average_weights_stride_(1)
     372             : {
     373          19 :   bool noensemble = false;
     374          19 :   parseFlag("NOENSEMBLE", noensemble);
     375             : 
     376             :   // set up replica stuff
     377          19 :   master = (comm.Get_rank()==0);
     378          19 :   if(master) {
     379          11 :     nrep_    = multi_sim_comm.Get_size();
     380          11 :     replica_ = multi_sim_comm.Get_rank();
     381          11 :     if(noensemble) nrep_ = 1;
     382             :   } else {
     383           8 :     nrep_    = 0;
     384           8 :     replica_ = 0;
     385             :   }
     386          19 :   comm.Sum(&nrep_,1);
     387          19 :   comm.Sum(&replica_,1);
     388             : 
     389          19 :   unsigned nsel = 1;
     390          19 :   parse("SELECTOR", selector_);
     391          38 :   parse("NSELECT", nsel);
     392             :   // do checks
     393          19 :   if(selector_.length()>0 && nsel<=1) error("With SELECTOR active, NSELECT must be greater than 1");
     394          19 :   if(selector_.length()==0 && nsel>1) error("With NSELECT greater than 1, you must specify SELECTOR");
     395             : 
     396             :   // initialise firstTimeW
     397          19 :   firstTimeW.resize(nsel, true);
     398             : 
     399             :   // reweight implies a different number of arguments (the latest one must always be the bias)
     400          19 :   parseFlag("REWEIGHT", do_reweight_);
     401          19 :   if(do_reweight_&&nrep_<2) error("REWEIGHT can only be used in parallel with 2 or more replicas");
     402          34 :   if(!getRestart()) average_weights_.resize(nsel, std::vector<double> (nrep_, 1./static_cast<double>(nrep_)));
     403           8 :   else average_weights_.resize(nsel, std::vector<double> (nrep_, 0.));
     404          19 :   narg = getNumberOfArguments();
     405          19 :   if(do_reweight_) narg--;
     406             : 
     407          19 :   unsigned averaging=0;
     408          19 :   parse("AVERAGING", averaging);
     409          19 :   if(averaging>0) {
     410           0 :     average_weights_stride_ = averaging;
     411           0 :     optsigmamean_stride_    = averaging;
     412             :   }
     413             : 
     414          38 :   parseVector("PARAMETERS",parameters);
     415          19 :   if(parameters.size()!=static_cast<unsigned>(narg)&&!parameters.empty())
     416           0 :     error("Size of PARAMETERS array should be either 0 or the same as of the number of arguments in ARG1");
     417             : 
     418             :   std::vector<Value*> arg2;
     419          38 :   parseArgumentList("PARARG",arg2);
     420          19 :   if(!arg2.empty()) {
     421           4 :     if(parameters.size()>0) error("It is not possible to use PARARG and PARAMETERS together");
     422           4 :     if(arg2.size()!=narg) error("Size of PARARG array should be the same as number for arguments in ARG");
     423        2360 :     for(unsigned i=0; i<arg2.size(); i++) {
     424        2356 :       parameters.push_back(arg2[i]->get());
     425        2356 :       if(arg2[i]->hasDerivatives()==true) error("PARARG can only accept arguments without derivatives");
     426             :     }
     427             :   }
     428             : 
     429          19 :   if(parameters.size()!=narg)
     430           0 :     error("PARARG or PARAMETERS arrays should include the same number of elements as the arguments in ARG");
     431             : 
     432             :   std::string stringa_noise;
     433          38 :   parse("NOISETYPE",stringa_noise);
     434          19 :   if(stringa_noise=="GAUSS")           noise_type_ = GAUSS;
     435          18 :   else if(stringa_noise=="MGAUSS")     noise_type_ = MGAUSS;
     436          10 :   else if(stringa_noise=="OUTLIERS")   noise_type_ = OUTLIERS;
     437           5 :   else if(stringa_noise=="MOUTLIERS")  noise_type_ = MOUTLIERS;
     438           1 :   else if(stringa_noise=="GENERIC")    noise_type_ = GENERIC;
     439           0 :   else error("Unknown noise type!");
     440             : 
     441          19 :   if(noise_type_== GENERIC) {
     442             :     std::string stringa_like;
     443           2 :     parse("LIKELIHOOD",stringa_like);
     444           1 :     if(stringa_like=="GAUSS") gen_likelihood_ = LIKE_GAUSS;
     445           0 :     else if(stringa_like=="LOGN") gen_likelihood_ = LIKE_LOGN;
     446           0 :     else error("Unknown likelihood type!");
     447             : 
     448           2 :     parse("DFTILDE",Dftilde_);
     449             :   }
     450             : 
     451          38 :   parse("WRITE_STRIDE",write_stride_);
     452             :   std::string status_file_name_;
     453          38 :   parse("STATUS_FILE",status_file_name_);
     454          38 :   if(status_file_name_=="") status_file_name_ = "MISTATUS"+getLabel();
     455           0 :   else                      status_file_name_ = status_file_name_+getLabel();
     456             : 
     457             :   std::string stringa_optsigma;
     458          38 :   parse("OPTSIGMAMEAN", stringa_optsigma);
     459          19 :   if(stringa_optsigma=="NONE")      do_optsigmamean_=0;
     460           0 :   else if(stringa_optsigma=="SEM")  do_optsigmamean_=1;
     461           0 :   else if(stringa_optsigma=="SEM_MAX")  do_optsigmamean_=2;
     462             : 
     463          19 :   unsigned aver_max_steps=0;
     464          19 :   parse("SIGMA_MAX_STEPS", aver_max_steps);
     465          19 :   if(aver_max_steps==0&&do_optsigmamean_==2) aver_max_steps=averaging*2000;
     466          19 :   if(aver_max_steps>0&&do_optsigmamean_<2) error("SIGMA_MAX_STEPS can only be used together with OPTSIGMAMEAN=SEM_MAX");
     467          19 :   if(aver_max_steps>0&&do_optsigmamean_==2) N_optimized_step_=aver_max_steps;
     468          19 :   if(aver_max_steps>0&&aver_max_steps<averaging) error("SIGMA_MAX_STEPS must be greater than AVERAGING");
     469             : 
     470             :   // resize std::vector for sigma_mean history
     471          19 :   sigma_mean2_last_.resize(nsel);
     472          38 :   for(unsigned i=0; i<nsel; i++) sigma_mean2_last_[i].resize(narg);
     473             : 
     474             :   std::vector<double> read_sigma_mean_;
     475          19 :   parseVector("SIGMA_MEAN0",read_sigma_mean_);
     476          19 :   if(do_optsigmamean_==0 && read_sigma_mean_.size()==0 && !getRestart())
     477           0 :     error("If you don't use OPTSIGMAMEAN and you are not RESTARTING then you MUST SET SIGMA_MEAN0");
     478             : 
     479          19 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     480          13 :     if(read_sigma_mean_.size()==narg) {
     481           0 :       sigma_mean2_.resize(narg);
     482           0 :       for(unsigned i=0; i<narg; i++) sigma_mean2_[i]=read_sigma_mean_[i]*read_sigma_mean_[i];
     483          13 :     } else if(read_sigma_mean_.size()==1) {
     484          13 :       sigma_mean2_.resize(narg,read_sigma_mean_[0]*read_sigma_mean_[0]);
     485           0 :     } else if(read_sigma_mean_.size()==0) {
     486           0 :       sigma_mean2_.resize(narg,0.000001);
     487             :     } else {
     488           0 :       error("SIGMA_MEAN0 can accept either one single value or as many values as the arguments (with NOISETYPE=MGAUSS|MOUTLIERS)");
     489             :     }
     490             :     // set the initial value for the history
     491        2416 :     for(unsigned i=0; i<nsel; i++) for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j].push_back(sigma_mean2_[j]);
     492             :   } else {
     493           6 :     if(read_sigma_mean_.size()==1) {
     494           6 :       sigma_mean2_.resize(1, read_sigma_mean_[0]*read_sigma_mean_[0]);
     495           0 :     } else if(read_sigma_mean_.size()==0) {
     496           0 :       sigma_mean2_.resize(1, 0.000001);
     497             :     } else {
     498           0 :       error("If you want to use more than one SIGMA_MEAN0 you should use NOISETYPE=MGAUSS|MOUTLIERS");
     499             :     }
     500             :     // set the initial value for the history
     501          37 :     for(unsigned i=0; i<nsel; i++) for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j].push_back(sigma_mean2_[0]);
     502             :   }
     503             : 
     504          19 :   parseFlag("SCALEDATA", doscale_);
     505          19 :   if(doscale_) {
     506             :     std::string stringa_noise;
     507          24 :     parse("SCALE_PRIOR",stringa_noise);
     508          12 :     if(stringa_noise=="GAUSSIAN")  scale_prior_ = SC_GAUSS;
     509          12 :     else if(stringa_noise=="FLAT") scale_prior_ = SC_FLAT;
     510           0 :     else error("Unknown SCALE_PRIOR type!");
     511          12 :     parse("SCALE0",scale_);
     512          12 :     parse("DSCALE",Dscale_);
     513          12 :     if(Dscale_<0.) error("DSCALE must be set when using SCALEDATA");
     514          12 :     if(scale_prior_==SC_GAUSS) {
     515           0 :       scale_mu_=scale_;
     516             :     } else {
     517          12 :       parse("SCALE_MIN",scale_min_);
     518          12 :       parse("SCALE_MAX",scale_max_);
     519          12 :       if(scale_max_<scale_min_) error("SCALE_MAX and SCALE_MIN must be set when using SCALE_PRIOR=FLAT");
     520             :     }
     521             :   }
     522             : 
     523          19 :   parseFlag("ADDOFFSET", dooffset_);
     524          19 :   if(dooffset_) {
     525             :     std::string stringa_noise;
     526           4 :     parse("OFFSET_PRIOR",stringa_noise);
     527           2 :     if(stringa_noise=="GAUSSIAN")  offset_prior_ = SC_GAUSS;
     528           2 :     else if(stringa_noise=="FLAT") offset_prior_ = SC_FLAT;
     529           0 :     else error("Unknown OFFSET_PRIOR type!");
     530           2 :     parse("OFFSET0",offset_);
     531           2 :     parse("DOFFSET",Doffset_);
     532           2 :     if(offset_prior_==SC_GAUSS) {
     533           0 :       offset_mu_=offset_;
     534           0 :       if(Doffset_<0.) error("DOFFSET must be set when using OFFSET_PRIOR=GAUSS");
     535             :     } else {
     536           2 :       parse("OFFSET_MIN",offset_min_);
     537           2 :       parse("OFFSET_MAX",offset_max_);
     538           2 :       if(Doffset_<0) Doffset_ = 0.05*(offset_max_ - offset_min_);
     539           2 :       if(offset_max_<offset_min_) error("OFFSET_MAX and OFFSET_MIN must be set when using OFFSET_PRIOR=FLAT");
     540             :     }
     541             :   }
     542             : 
     543             :   // regression with zero intercept
     544          19 :   parse("REGRES_ZERO", nregres_zero_);
     545          19 :   if(nregres_zero_>0) {
     546             :     // set flag
     547           0 :     doregres_zero_=true;
     548             :     // check if already sampling scale and offset
     549           0 :     if(doscale_)  error("REGRES_ZERO and SCALEDATA are mutually exclusive");
     550           0 :     if(dooffset_) error("REGRES_ZERO and ADDOFFSET are mutually exclusive");
     551             :   }
     552             : 
     553             :   std::vector<double> readsigma;
     554          19 :   parseVector("SIGMA0",readsigma);
     555          19 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma.size()>1)
     556           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     557          19 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     558          13 :     sigma_.resize(readsigma.size());
     559          13 :     sigma_=readsigma;
     560           6 :   } else sigma_.resize(1, readsigma[0]);
     561             : 
     562             :   std::vector<double> readsigma_min;
     563          19 :   parseVector("SIGMA_MIN",readsigma_min);
     564          19 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_min.size()>1)
     565           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     566          19 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     567          13 :     sigma_min_.resize(readsigma_min.size());
     568          13 :     sigma_min_=readsigma_min;
     569           6 :   } else sigma_min_.resize(1, readsigma_min[0]);
     570             : 
     571             :   std::vector<double> readsigma_max;
     572          19 :   parseVector("SIGMA_MAX",readsigma_max);
     573          19 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1)
     574           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     575          19 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     576          13 :     sigma_max_.resize(readsigma_max.size());
     577          13 :     sigma_max_=readsigma_max;
     578           6 :   } else sigma_max_.resize(1, readsigma_max[0]);
     579             : 
     580          19 :   if(sigma_max_.size()!=sigma_min_.size()) error("The number of values for SIGMA_MIN and SIGMA_MAX must be the same");
     581             : 
     582             :   std::vector<double> read_dsigma;
     583          19 :   parseVector("DSIGMA",read_dsigma);
     584          19 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1)
     585           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     586          19 :   if(read_dsigma.size()>0) {
     587          19 :     Dsigma_.resize(read_dsigma.size());
     588          19 :     Dsigma_=read_dsigma;
     589             :   } else {
     590           0 :     Dsigma_.resize(sigma_max_.size(), -1.);
     591             :     /* in this case Dsigma is initialised after reading the restart file if present */
     592             :   }
     593             : 
     594             :   // monte carlo stuff
     595          19 :   parse("MC_STEPS",MCsteps_);
     596          19 :   parse("MC_CHUNKSIZE", MCchunksize_);
     597             :   // get temperature
     598          19 :   kbt_ = getkBT();
     599          19 :   if(kbt_==0.0) error("Unless the MD engine passes the temperature to plumed, you must specify it using TEMP");
     600             : 
     601          19 :   checkRead();
     602             : 
     603             :   // set sigma_bias
     604          19 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     605          13 :     if(sigma_.size()==1) {
     606          13 :       double tmp = sigma_[0];
     607          13 :       sigma_.resize(narg, tmp);
     608           0 :     } else if(sigma_.size()>1&&sigma_.size()!=narg) {
     609           0 :       error("SIGMA0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     610             :     }
     611          13 :     if(sigma_min_.size()==1) {
     612          13 :       double tmp = sigma_min_[0];
     613          13 :       sigma_min_.resize(narg, tmp);
     614           0 :     } else if(sigma_min_.size()>1&&sigma_min_.size()!=narg) {
     615           0 :       error("SIGMA_MIN can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     616             :     }
     617          13 :     if(sigma_max_.size()==1) {
     618          13 :       double tmp = sigma_max_[0];
     619          13 :       sigma_max_.resize(narg, tmp);
     620           0 :     } else if(sigma_max_.size()>1&&sigma_max_.size()!=narg) {
     621           0 :       error("SIGMA_MAX can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     622             :     }
     623          13 :     if(Dsigma_.size()==1) {
     624          13 :       double tmp = Dsigma_[0];
     625          13 :       Dsigma_.resize(narg, tmp);
     626           0 :     } else if(Dsigma_.size()>1&&Dsigma_.size()!=narg) {
     627           0 :       error("DSIGMA can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     628             :     }
     629             :   }
     630             : 
     631          19 :   sigma_max_est_.resize(sigma_max_.size(), 0.);
     632             : 
     633          19 :   IFile restart_sfile;
     634          19 :   restart_sfile.link(*this);
     635          19 :   if(getRestart()&&restart_sfile.FileExist(status_file_name_)) {
     636           4 :     firstTime = false;
     637           8 :     for(unsigned i=0; i<nsel; i++) firstTimeW[i] = false;
     638           4 :     restart_sfile.open(status_file_name_);
     639           4 :     log.printf("  Restarting from %s\n", status_file_name_.c_str());
     640             :     double dummy;
     641           8 :     if(restart_sfile.scanField("time",dummy)) {
     642             :       // check for syncronisation
     643           4 :       std::vector<double> dummy_time(nrep_,0);
     644           4 :       if(master&&nrep_>1) {
     645           2 :         dummy_time[replica_] = dummy;
     646           2 :         multi_sim_comm.Sum(dummy_time);
     647             :       }
     648           4 :       comm.Sum(dummy_time);
     649           8 :       for(unsigned i=1; i<nrep_; i++) {
     650           4 :         std::string msg = "METAINFERENCE restart files " + status_file_name_ + "  are not in sync";
     651           4 :         if(dummy_time[i]!=dummy_time[0]) plumed_merror(msg);
     652             :       }
     653             :       // nsel
     654           8 :       for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
     655             :         std::string msg_i;
     656           4 :         Tools::convert(i,msg_i);
     657             :         // narg
     658           4 :         if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     659          20 :           for(unsigned j=0; j<narg; ++j) {
     660             :             std::string msg_j;
     661          16 :             Tools::convert(j,msg_j);
     662          16 :             std::string msg = msg_i+"_"+msg_j;
     663             :             double read_sm;
     664          16 :             restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     665          16 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     666             :           }
     667             :         }
     668           4 :         if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
     669             :           double read_sm;
     670             :           std::string msg_j;
     671           0 :           Tools::convert(0,msg_j);
     672           0 :           std::string msg = msg_i+"_"+msg_j;
     673           0 :           restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     674           0 :           for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     675             :         }
     676             :       }
     677             : 
     678          20 :       for(unsigned i=0; i<sigma_.size(); ++i) {
     679             :         std::string msg;
     680          16 :         Tools::convert(i,msg);
     681          32 :         restart_sfile.scanField("sigma_"+msg,sigma_[i]);
     682             :       }
     683          20 :       for(unsigned i=0; i<sigma_max_.size(); ++i) {
     684             :         std::string msg;
     685          16 :         Tools::convert(i,msg);
     686          16 :         restart_sfile.scanField("sigma_max_"+msg,sigma_max_[i]);
     687          16 :         sigmamax_opt_done_=true;
     688             :       }
     689           4 :       if(noise_type_==GENERIC) {
     690           0 :         for(unsigned i=0; i<ftilde_.size(); ++i) {
     691             :           std::string msg;
     692           0 :           Tools::convert(i,msg);
     693           0 :           restart_sfile.scanField("ftilde_"+msg,ftilde_[i]);
     694             :         }
     695             :       }
     696           4 :       restart_sfile.scanField("scale0_",scale_);
     697           4 :       restart_sfile.scanField("offset0_",offset_);
     698             : 
     699           8 :       for(unsigned i=0; i<nsel; i++) {
     700             :         std::string msg;
     701           4 :         Tools::convert(i,msg);
     702             :         double tmp_w;
     703           4 :         restart_sfile.scanField("weight_"+msg,tmp_w);
     704           4 :         if(master) {
     705           2 :           average_weights_[i][replica_] = tmp_w;
     706           2 :           if(nrep_>1) multi_sim_comm.Sum(&average_weights_[i][0], nrep_);
     707             :         }
     708           4 :         comm.Sum(&average_weights_[i][0], nrep_);
     709             :       }
     710             : 
     711             :     }
     712           4 :     restart_sfile.scanField();
     713           4 :     restart_sfile.close();
     714             :   }
     715             : 
     716             :   /* If DSIGMA is not yet initialised do it now */
     717        2415 :   for(unsigned i=0; i<sigma_max_.size(); i++) if(Dsigma_[i]==-1) Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
     718             : 
     719          19 :   switch(noise_type_) {
     720           1 :   case GENERIC:
     721           1 :     log.printf("  with general metainference ");
     722           1 :     if(gen_likelihood_==LIKE_GAUSS) log.printf(" and a gaussian likelihood\n");
     723           0 :     else if(gen_likelihood_==LIKE_LOGN) log.printf(" and a log-normal likelihood\n");
     724           1 :     log.printf("  ensemble average parameter sampled with a step %lf of sigma_mean\n", Dftilde_);
     725             :     break;
     726           1 :   case GAUSS:
     727           1 :     log.printf("  with gaussian noise and a single noise parameter for all the data\n");
     728             :     break;
     729           8 :   case MGAUSS:
     730           8 :     log.printf("  with gaussian noise and a noise parameter for each data point\n");
     731             :     break;
     732           5 :   case OUTLIERS:
     733           5 :     log.printf("  with long tailed gaussian noise and a single noise parameter for all the data\n");
     734             :     break;
     735           4 :   case MOUTLIERS:
     736           4 :     log.printf("  with long tailed gaussian noise and a noise parameter for each data point\n");
     737             :     break;
     738             :   }
     739             : 
     740          19 :   if(doscale_) {
     741             :     // check that the scale value is the same for all replicas
     742          12 :     std::vector<double> dummy_scale(nrep_,0);
     743          12 :     if(master&&nrep_>1) {
     744           6 :       dummy_scale[replica_] = scale_;
     745           6 :       multi_sim_comm.Sum(dummy_scale);
     746             :     }
     747          12 :     comm.Sum(dummy_scale);
     748          24 :     for(unsigned i=1; i<nrep_; i++) {
     749          12 :       std::string msg = "The SCALE value must be the same for all replicas: check your input or restart file";
     750          12 :       if(dummy_scale[i]!=dummy_scale[0]) plumed_merror(msg);
     751             :     }
     752          12 :     log.printf("  sampling a common scaling factor with:\n");
     753          12 :     log.printf("    initial scale parameter %f\n",scale_);
     754          12 :     if(scale_prior_==SC_GAUSS) {
     755           0 :       log.printf("    gaussian prior with mean %f and width %f\n",scale_mu_,Dscale_);
     756             :     }
     757          12 :     if(scale_prior_==SC_FLAT) {
     758          12 :       log.printf("    flat prior between %f - %f\n",scale_min_,scale_max_);
     759          12 :       log.printf("    maximum MC move of scale parameter %f\n",Dscale_);
     760             :     }
     761             :   }
     762             : 
     763          19 :   if(dooffset_) {
     764             :     // check that the offset value is the same for all replicas
     765           2 :     std::vector<double> dummy_offset(nrep_,0);
     766           2 :     if(master&&nrep_>1) {
     767           0 :       dummy_offset[replica_] = offset_;
     768           0 :       multi_sim_comm.Sum(dummy_offset);
     769             :     }
     770           2 :     comm.Sum(dummy_offset);
     771           2 :     for(unsigned i=1; i<nrep_; i++) {
     772           0 :       std::string msg = "The OFFSET value must be the same for all replicas: check your input or restart file";
     773           0 :       if(dummy_offset[i]!=dummy_offset[0]) plumed_merror(msg);
     774             :     }
     775           2 :     log.printf("  sampling a common offset with:\n");
     776           2 :     log.printf("    initial offset parameter %f\n",offset_);
     777           2 :     if(offset_prior_==SC_GAUSS) {
     778           0 :       log.printf("    gaussian prior with mean %f and width %f\n",offset_mu_,Doffset_);
     779             :     }
     780           2 :     if(offset_prior_==SC_FLAT) {
     781           2 :       log.printf("    flat prior between %f - %f\n",offset_min_,offset_max_);
     782           2 :       log.printf("    maximum MC move of offset parameter %f\n",Doffset_);
     783             :     }
     784             :   }
     785             : 
     786          19 :   if(doregres_zero_)
     787           0 :     log.printf("  doing regression with zero intercept with stride: %d\n", nregres_zero_);
     788             : 
     789          19 :   log.printf("  number of experimental data points %u\n",narg);
     790          19 :   log.printf("  number of replicas %u\n",nrep_);
     791          19 :   log.printf("  initial data uncertainties");
     792        2415 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f", sigma_[i]);
     793          19 :   log.printf("\n");
     794          19 :   log.printf("  minimum data uncertainties");
     795        2415 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",sigma_min_[i]);
     796          19 :   log.printf("\n");
     797          19 :   log.printf("  maximum data uncertainties");
     798        2415 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",sigma_max_[i]);
     799          19 :   log.printf("\n");
     800          19 :   log.printf("  maximum MC move of data uncertainties");
     801        2415 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",Dsigma_[i]);
     802          19 :   log.printf("\n");
     803          19 :   log.printf("  temperature of the system %f\n",kbt_);
     804          19 :   log.printf("  MC steps %u\n",MCsteps_);
     805          19 :   log.printf("  initial standard errors of the mean");
     806        2415 :   for(unsigned i=0; i<sigma_mean2_.size(); ++i) log.printf(" %f", std::sqrt(sigma_mean2_[i]));
     807          19 :   log.printf("\n");
     808             : 
     809          19 :   if(do_reweight_) {
     810          32 :     addComponent("biasDer");
     811          32 :     componentIsNotPeriodic("biasDer");
     812          32 :     addComponent("weight");
     813          32 :     componentIsNotPeriodic("weight");
     814             :   }
     815             : 
     816          38 :   addComponent("neff");
     817          19 :   componentIsNotPeriodic("neff");
     818             : 
     819          19 :   if(doscale_ || doregres_zero_) {
     820          24 :     addComponent("scale");
     821          12 :     componentIsNotPeriodic("scale");
     822          12 :     valueScale=getPntrToComponent("scale");
     823             :   }
     824             : 
     825          19 :   if(dooffset_) {
     826           4 :     addComponent("offset");
     827           2 :     componentIsNotPeriodic("offset");
     828           2 :     valueOffset=getPntrToComponent("offset");
     829             :   }
     830             : 
     831          19 :   if(dooffset_||doscale_) {
     832          28 :     addComponent("acceptScale");
     833          14 :     componentIsNotPeriodic("acceptScale");
     834          14 :     valueAcceptScale=getPntrToComponent("acceptScale");
     835             :   }
     836             : 
     837          19 :   if(noise_type_==GENERIC) {
     838           2 :     addComponent("acceptFT");
     839           1 :     componentIsNotPeriodic("acceptFT");
     840           1 :     valueAcceptFT=getPntrToComponent("acceptFT");
     841             :   }
     842             : 
     843          38 :   addComponent("acceptSigma");
     844          19 :   componentIsNotPeriodic("acceptSigma");
     845          19 :   valueAccept=getPntrToComponent("acceptSigma");
     846             : 
     847          19 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     848        2403 :     for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     849        2390 :       std::string num; Tools::convert(i,num);
     850        4780 :       addComponent("sigmaMean-"+num); componentIsNotPeriodic("sigmaMean-"+num);
     851        2390 :       valueSigmaMean.push_back(getPntrToComponent("sigmaMean-"+num));
     852        4780 :       getPntrToComponent("sigmaMean-"+num)->set(std::sqrt(sigma_mean2_[i]));
     853        4780 :       addComponent("sigma-"+num); componentIsNotPeriodic("sigma-"+num);
     854        2390 :       valueSigma.push_back(getPntrToComponent("sigma-"+num));
     855        2390 :       getPntrToComponent("sigma-"+num)->set(sigma_[i]);
     856        2390 :       if(noise_type_==GENERIC) {
     857           4 :         addComponent("ftilde-"+num); componentIsNotPeriodic("ftilde-"+num);
     858           2 :         valueFtilde.push_back(getPntrToComponent("ftilde-"+num));
     859             :       }
     860             :     }
     861          13 :   } else {
     862          12 :     addComponent("sigmaMean"); componentIsNotPeriodic("sigmaMean");
     863           6 :     valueSigmaMean.push_back(getPntrToComponent("sigmaMean"));
     864          12 :     getPntrToComponent("sigmaMean")->set(std::sqrt(sigma_mean2_[0]));
     865          12 :     addComponent("sigma"); componentIsNotPeriodic("sigma");
     866           6 :     valueSigma.push_back(getPntrToComponent("sigma"));
     867          12 :     getPntrToComponent("sigma")->set(sigma_[0]);
     868             :   }
     869             : 
     870             :   // initialize random seed
     871             :   unsigned iseed;
     872          19 :   if(master) {
     873          11 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     874          11 :     iseed = static_cast<unsigned>(ts)+replica_;
     875             :   } else {
     876           8 :     iseed = 0;
     877             :   }
     878          19 :   comm.Sum(&iseed, 1);
     879             :   // this is used for ftilde and sigma both the move and the acceptance
     880             :   // this is different for each replica
     881          19 :   random[0].setSeed(-iseed);
     882          19 :   if(doscale_||dooffset_) {
     883             :     // in this case we want the same seed everywhere
     884          14 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     885          14 :     iseed = static_cast<unsigned>(ts);
     886          14 :     if(master&&nrep_>1) multi_sim_comm.Bcast(iseed,0);
     887          14 :     comm.Bcast(iseed,0);
     888             :     // this is used for scale and offset sampling and acceptance
     889          14 :     random[1].setSeed(-iseed);
     890             :   }
     891             :   // this is used for random chunk of sigmas, and it is different for each replica
     892          19 :   if(master) {
     893          11 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     894          11 :     iseed = static_cast<unsigned>(ts)+replica_;
     895             :   } else {
     896           8 :     iseed = 0;
     897             :   }
     898          19 :   comm.Sum(&iseed, 1);
     899          19 :   random[2].setSeed(-iseed);
     900             : 
     901             :   // outfile stuff
     902          19 :   if(write_stride_>0) {
     903          19 :     sfile_.link(*this);
     904          19 :     sfile_.open(status_file_name_);
     905             :   }
     906             : 
     907          38 :   log<<"  Bibliography "<<plumed.cite("Bonomi, Camilloni, Cavalli, Vendruscolo, Sci. Adv. 2, e150117 (2016)");
     908          35 :   if(do_reweight_) log<<plumed.cite("Bonomi, Camilloni, Vendruscolo, Sci. Rep. 6, 31232 (2016)");
     909          19 :   if(do_optsigmamean_>0) log<<plumed.cite("Loehr, Jussupow, Camilloni, J. Chem. Phys. 146, 165102 (2017)");
     910          38 :   log<<plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)");
     911          19 :   log<<"\n";
     912          38 : }
     913             : 
     914          38 : Metainference::~Metainference()
     915             : {
     916          19 :   if(sfile_.isOpen()) sfile_.close();
     917         114 : }
     918             : 
     919         156 : double Metainference::getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
     920             :                                   const double scale, const double offset)
     921             : {
     922         156 :   const double scale2 = scale*scale;
     923         156 :   const double sm2    = sigma_mean2_[0];
     924         156 :   const double ss2    = sigma[0]*sigma[0] + scale2*sm2;
     925         156 :   const double sss    = sigma[0]*sigma[0] + sm2;
     926             : 
     927             :   double ene = 0.0;
     928         156 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     929             :   {
     930             :     #pragma omp for reduction( + : ene)
     931             :     for(unsigned i=0; i<narg; ++i) {
     932             :       const double dev = scale*mean[i]-parameters[i]+offset;
     933             :       const double a2 = 0.5*dev*dev + ss2;
     934             :       if(sm2 > 0.0) {
     935             :         ene += std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
     936             :       }
     937             :       else {
     938             :         ene += std::log(2.0*a2);
     939             :       }
     940             :     }
     941             :   }
     942             :   // add one single Jeffrey's prior and one normalisation per data point
     943         156 :   ene += 0.5*std::log(sss) + static_cast<double>(narg)*0.5*std::log(0.5*M_PI*M_PI/ss2);
     944         156 :   if(doscale_ || doregres_zero_) ene += 0.5*std::log(sss);
     945         156 :   if(dooffset_) ene += 0.5*std::log(sss);
     946         156 :   return kbt_ * ene;
     947             : }
     948             : 
     949         144 : double Metainference::getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
     950             :                                    const double scale, const double offset)
     951             : {
     952         144 :   const double scale2 = scale*scale;
     953             :   double ene = 0.0;
     954         144 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     955             :   {
     956             :     #pragma omp for reduction( + : ene)
     957             :     for(unsigned i=0; i<narg; ++i) {
     958             :       const double sm2 = sigma_mean2_[i];
     959             :       const double ss2 = sigma[i]*sigma[i] + scale2*sm2;
     960             :       const double sss = sigma[i]*sigma[i] + sm2;
     961             :       const double dev = scale*mean[i]-parameters[i]+offset;
     962             :       const double a2  = 0.5*dev*dev + ss2;
     963             :       if(sm2 > 0.0) {
     964             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
     965             :       }
     966             :       else {
     967             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2);
     968             :       }
     969             :       if(doscale_ || doregres_zero_)  ene += 0.5*std::log(sss);
     970             :       if(dooffset_) ene += 0.5*std::log(sss);
     971             :     }
     972             :   }
     973         144 :   return kbt_ * ene;
     974             : }
     975             : 
     976          48 : double Metainference::getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
     977             :                                      const double scale, const double offset)
     978             : {
     979             :   double ene = 0.0;
     980          48 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     981             :   {
     982             :     #pragma omp for reduction( + : ene)
     983             :     for(unsigned i=0; i<narg; ++i) {
     984             :       const double inv_sb2  = 1./(sigma[i]*sigma[i]);
     985             :       const double inv_sm2  = 1./sigma_mean2_[i];
     986             :       double devb = 0;
     987             :       if(gen_likelihood_==LIKE_GAUSS)     devb = scale*ftilde[i]-parameters[i]+offset;
     988             :       else if(gen_likelihood_==LIKE_LOGN) devb = std::log(scale*ftilde[i]/parameters[i]);
     989             :       double devm = mean[i] - ftilde[i];
     990             :       // deviation + normalisation + jeffrey
     991             :       double normb = 0.;
     992             :       if(gen_likelihood_==LIKE_GAUSS)     normb = -0.5*std::log(0.5/M_PI*inv_sb2);
     993             :       else if(gen_likelihood_==LIKE_LOGN) normb = -0.5*std::log(0.5/M_PI*inv_sb2/(parameters[i]*parameters[i]));
     994             :       const double normm         = -0.5*std::log(0.5/M_PI*inv_sm2);
     995             :       const double jeffreys      = -0.5*std::log(2.*inv_sb2);
     996             :       ene += 0.5*devb*devb*inv_sb2 + 0.5*devm*devm*inv_sm2 + normb + normm + jeffreys;
     997             :       if(doscale_ || doregres_zero_)  ene += jeffreys;
     998             :       if(dooffset_) ene += jeffreys;
     999             :     }
    1000             :   }
    1001          48 :   return kbt_ * ene;
    1002             : }
    1003             : 
    1004          36 : double Metainference::getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
    1005             :                                   const double scale, const double offset)
    1006             : {
    1007          36 :   const double scale2  = scale*scale;
    1008          36 :   const double inv_s2  = 1./(sigma[0]*sigma[0] + scale2*sigma_mean2_[0]);
    1009          36 :   const double inv_sss = 1./(sigma[0]*sigma[0] + sigma_mean2_[0]);
    1010             : 
    1011             :   double ene = 0.0;
    1012          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1013             :   {
    1014             :     #pragma omp for reduction( + : ene)
    1015             :     for(unsigned i=0; i<narg; ++i) {
    1016             :       double dev = scale*mean[i]-parameters[i]+offset;
    1017             :       ene += 0.5*dev*dev*inv_s2;
    1018             :     }
    1019             :   }
    1020          36 :   const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
    1021          36 :   const double jeffreys = -0.5*std::log(2.*inv_sss);
    1022             :   // add Jeffrey's prior in case one sigma for all data points + one normalisation per datapoint
    1023          36 :   ene += jeffreys + static_cast<double>(narg)*normalisation;
    1024          36 :   if(doscale_ || doregres_zero_)  ene += jeffreys;
    1025          36 :   if(dooffset_) ene += jeffreys;
    1026             : 
    1027          36 :   return kbt_ * ene;
    1028             : }
    1029             : 
    1030         152 : double Metainference::getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
    1031             :                                    const double scale, const double offset)
    1032             : {
    1033         152 :   const double scale2 = scale*scale;
    1034             : 
    1035             :   double ene = 0.0;
    1036         152 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1037             :   {
    1038             :     #pragma omp for reduction( + : ene)
    1039             :     for(unsigned i=0; i<narg; ++i) {
    1040             :       const double inv_s2  = 1./(sigma[i]*sigma[i] + scale2*sigma_mean2_[i]);
    1041             :       const double inv_sss = 1./(sigma[i]*sigma[i] + sigma_mean2_[i]);
    1042             :       double dev = scale*mean[i]-parameters[i]+offset;
    1043             :       // deviation + normalisation + jeffrey
    1044             :       const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
    1045             :       const double jeffreys      = -0.5*std::log(2.*inv_sss);
    1046             :       ene += 0.5*dev*dev*inv_s2 + normalisation + jeffreys;
    1047             :       if(doscale_ || doregres_zero_)  ene += jeffreys;
    1048             :       if(dooffset_) ene += jeffreys;
    1049             :     }
    1050             :   }
    1051         152 :   return kbt_ * ene;
    1052             : }
    1053             : 
    1054          12 : void Metainference::moveTilde(const std::vector<double> &mean_, double &old_energy)
    1055             : {
    1056          12 :   std::vector<double> new_ftilde(sigma_.size());
    1057          12 :   new_ftilde = ftilde_;
    1058             : 
    1059             :   // change all tildes
    1060          36 :   for(unsigned j=0; j<sigma_.size(); j++) {
    1061          24 :     const double r3 = random[0].Gaussian();
    1062          24 :     const double ds3 = Dftilde_*std::sqrt(sigma_mean2_[j])*r3;
    1063          24 :     new_ftilde[j] = ftilde_[j] + ds3;
    1064             :   }
    1065             :   // calculate new energy
    1066          12 :   double new_energy = getEnergyMIGEN(mean_,new_ftilde,sigma_,scale_,offset_);
    1067             : 
    1068             :   // accept or reject
    1069          12 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1070             :   // if delta is negative always accept move
    1071          12 :   if( delta <= 0.0 ) {
    1072          12 :     old_energy = new_energy;
    1073          12 :     ftilde_ = new_ftilde;
    1074          12 :     MCacceptFT_++;
    1075             :     // otherwise extract random number
    1076             :   } else {
    1077           0 :     const double s = random[0].RandU01();
    1078           0 :     if( s < std::exp(-delta) ) {
    1079           0 :       old_energy = new_energy;
    1080           0 :       ftilde_ = new_ftilde;
    1081           0 :       MCacceptFT_++;
    1082             :     }
    1083             :   }
    1084          12 : }
    1085             : 
    1086         168 : void Metainference::moveScaleOffset(const std::vector<double> &mean_, double &old_energy)
    1087             : {
    1088         168 :   double new_scale = scale_;
    1089             : 
    1090         168 :   if(doscale_) {
    1091         144 :     if(scale_prior_==SC_FLAT) {
    1092         144 :       const double r1 = random[1].Gaussian();
    1093         144 :       const double ds1 = Dscale_*r1;
    1094         144 :       new_scale += ds1;
    1095             :       // check boundaries
    1096         144 :       if(new_scale > scale_max_) {new_scale = 2.0 * scale_max_ - new_scale;}
    1097         144 :       if(new_scale < scale_min_) {new_scale = 2.0 * scale_min_ - new_scale;}
    1098             :     } else {
    1099           0 :       const double r1 = random[1].Gaussian();
    1100           0 :       const double ds1 = 0.5*(scale_mu_-new_scale)+Dscale_*std::exp(1)/M_PI*r1;
    1101           0 :       new_scale += ds1;
    1102             :     }
    1103             :   }
    1104             : 
    1105         168 :   double new_offset = offset_;
    1106             : 
    1107         168 :   if(dooffset_) {
    1108          24 :     if(offset_prior_==SC_FLAT) {
    1109          24 :       const double r1 = random[1].Gaussian();
    1110          24 :       const double ds1 = Doffset_*r1;
    1111          24 :       new_offset += ds1;
    1112             :       // check boundaries
    1113          24 :       if(new_offset > offset_max_) {new_offset = 2.0 * offset_max_ - new_offset;}
    1114          24 :       if(new_offset < offset_min_) {new_offset = 2.0 * offset_min_ - new_offset;}
    1115             :     } else {
    1116           0 :       const double r1 = random[1].Gaussian();
    1117           0 :       const double ds1 = 0.5*(offset_mu_-new_offset)+Doffset_*std::exp(1)/M_PI*r1;
    1118           0 :       new_offset += ds1;
    1119             :     }
    1120             :   }
    1121             : 
    1122             :   // calculate new energy
    1123             :   double new_energy = 0.;
    1124             : 
    1125         168 :   switch(noise_type_) {
    1126          12 :   case GAUSS:
    1127          12 :     new_energy = getEnergyGJ(mean_,sigma_,new_scale,new_offset);
    1128             :     break;
    1129          48 :   case MGAUSS:
    1130          48 :     new_energy = getEnergyGJE(mean_,sigma_,new_scale,new_offset);
    1131             :     break;
    1132          48 :   case OUTLIERS:
    1133          48 :     new_energy = getEnergySP(mean_,sigma_,new_scale,new_offset);
    1134             :     break;
    1135          48 :   case MOUTLIERS:
    1136          48 :     new_energy = getEnergySPE(mean_,sigma_,new_scale,new_offset);
    1137             :     break;
    1138          12 :   case GENERIC:
    1139          12 :     new_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,new_scale,new_offset);
    1140             :     break;
    1141             :   }
    1142             : 
    1143             :   // for the scale/offset we need to consider the total energy
    1144         168 :   std::vector<double> totenergies(2);
    1145         168 :   if(master) {
    1146          96 :     totenergies[0] = old_energy;
    1147          96 :     totenergies[1] = new_energy;
    1148          96 :     if(nrep_>1) multi_sim_comm.Sum(totenergies);
    1149             :   } else {
    1150          72 :     totenergies[0] = 0;
    1151          72 :     totenergies[1] = 0;
    1152             :   }
    1153         168 :   comm.Sum(totenergies);
    1154             : 
    1155             :   // accept or reject
    1156         168 :   const double delta = ( totenergies[1] - totenergies[0] ) / kbt_;
    1157             :   // if delta is negative always accept move
    1158         168 :   if( delta <= 0.0 ) {
    1159         168 :     old_energy = new_energy;
    1160         168 :     scale_ = new_scale;
    1161         168 :     offset_ = new_offset;
    1162         168 :     MCacceptScale_++;
    1163             :     // otherwise extract random number
    1164             :   } else {
    1165           0 :     double s = random[1].RandU01();
    1166           0 :     if( s < std::exp(-delta) ) {
    1167           0 :       old_energy = new_energy;
    1168           0 :       scale_ = new_scale;
    1169           0 :       offset_ = new_offset;
    1170           0 :       MCacceptScale_++;
    1171             :     }
    1172             :   }
    1173         168 : }
    1174             : 
    1175         178 : void Metainference::moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow)
    1176             : {
    1177         178 :   std::vector<double> new_sigma(sigma_.size());
    1178         178 :   new_sigma = sigma_;
    1179             : 
    1180             :   // change MCchunksize_ sigmas
    1181         178 :   if (MCchunksize_ > 0) {
    1182           0 :     if ((MCchunksize_ * i) >= sigma_.size()) {
    1183             :       // This means we are not moving any sigma, so we should break immediately
    1184           0 :       breaknow = true;
    1185             :     }
    1186             : 
    1187             :     // change random sigmas
    1188           0 :     for(unsigned j=0; j<MCchunksize_; j++) {
    1189           0 :       const unsigned shuffle_index = j + MCchunksize_ * i;
    1190           0 :       if (shuffle_index >= sigma_.size()) {
    1191             :         // Going any further will segfault but we should still evaluate the sigmas we changed
    1192             :         break;
    1193             :       }
    1194           0 :       const unsigned index = indices[shuffle_index];
    1195           0 :       const double r2 = random[0].Gaussian();
    1196           0 :       const double ds2 = Dsigma_[index]*r2;
    1197           0 :       new_sigma[index] = sigma_[index] + ds2;
    1198             :       // check boundaries
    1199           0 :       if(new_sigma[index] > sigma_max_[index]) {new_sigma[index] = 2.0 * sigma_max_[index] - new_sigma[index];}
    1200           0 :       if(new_sigma[index] < sigma_min_[index]) {new_sigma[index] = 2.0 * sigma_min_[index] - new_sigma[index];}
    1201             :     }
    1202             :   } else {
    1203             :     // change all sigmas
    1204        3008 :     for(unsigned j=0; j<sigma_.size(); j++) {
    1205        2830 :       const double r2 = random[0].Gaussian();
    1206        2830 :       const double ds2 = Dsigma_[j]*r2;
    1207        2830 :       new_sigma[j] = sigma_[j] + ds2;
    1208             :       // check boundaries
    1209        2830 :       if(new_sigma[j] > sigma_max_[j]) {new_sigma[j] = 2.0 * sigma_max_[j] - new_sigma[j];}
    1210        2830 :       if(new_sigma[j] < sigma_min_[j]) {new_sigma[j] = 2.0 * sigma_min_[j] - new_sigma[j];}
    1211             :     }
    1212             :   }
    1213             : 
    1214         178 :   if (breaknow) {
    1215             :     // We didnt move any sigmas, so no sense in evaluating anything
    1216             :     return;
    1217             :   }
    1218             : 
    1219             :   // calculate new energy
    1220             :   double new_energy = 0.;
    1221         178 :   switch(noise_type_) {
    1222          12 :   case GAUSS:
    1223          12 :     new_energy = getEnergyGJ(mean_,new_sigma,scale_,offset_);
    1224             :     break;
    1225          52 :   case MGAUSS:
    1226          52 :     new_energy = getEnergyGJE(mean_,new_sigma,scale_,offset_);
    1227             :     break;
    1228          54 :   case OUTLIERS:
    1229          54 :     new_energy = getEnergySP(mean_,new_sigma,scale_,offset_);
    1230             :     break;
    1231          48 :   case MOUTLIERS:
    1232          48 :     new_energy = getEnergySPE(mean_,new_sigma,scale_,offset_);
    1233             :     break;
    1234          12 :   case GENERIC:
    1235          12 :     new_energy = getEnergyMIGEN(mean_,ftilde_,new_sigma,scale_,offset_);
    1236             :     break;
    1237             :   }
    1238             : 
    1239             :   // accept or reject
    1240         178 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1241             :   // if delta is negative always accept move
    1242         178 :   if( delta <= 0.0 ) {
    1243         178 :     old_energy = new_energy;
    1244         178 :     sigma_ = new_sigma;
    1245         178 :     MCaccept_++;
    1246             :     // otherwise extract random number
    1247             :   } else {
    1248           0 :     const double s = random[0].RandU01();
    1249           0 :     if( s < std::exp(-delta) ) {
    1250           0 :       old_energy = new_energy;
    1251           0 :       sigma_ = new_sigma;
    1252           0 :       MCaccept_++;
    1253             :     }
    1254             :   }
    1255             : }
    1256             : 
    1257         178 : double Metainference::doMonteCarlo(const std::vector<double> &mean_)
    1258             : {
    1259             :   // calculate old energy with the updated coordinates
    1260         178 :   double old_energy=0.;
    1261             : 
    1262         178 :   switch(noise_type_) {
    1263          12 :   case GAUSS:
    1264          12 :     old_energy = getEnergyGJ(mean_,sigma_,scale_,offset_);
    1265          12 :     break;
    1266          52 :   case MGAUSS:
    1267          52 :     old_energy = getEnergyGJE(mean_,sigma_,scale_,offset_);
    1268          52 :     break;
    1269          54 :   case OUTLIERS:
    1270          54 :     old_energy = getEnergySP(mean_,sigma_,scale_,offset_);
    1271          54 :     break;
    1272          48 :   case MOUTLIERS:
    1273          48 :     old_energy = getEnergySPE(mean_,sigma_,scale_,offset_);
    1274          48 :     break;
    1275          12 :   case GENERIC:
    1276          12 :     old_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,scale_,offset_);
    1277          12 :     break;
    1278             :   }
    1279             : 
    1280             :   // do not run MC if this is a replica-exchange trial
    1281         178 :   if(!getExchangeStep()) {
    1282             : 
    1283             :     // Create std::vector of random sigma indices
    1284             :     std::vector<unsigned> indices;
    1285         178 :     if (MCchunksize_ > 0) {
    1286           0 :       for (unsigned j=0; j<sigma_.size(); j++) {
    1287           0 :         indices.push_back(j);
    1288             :       }
    1289           0 :       random[2].Shuffle(indices);
    1290             :     }
    1291         178 :     bool breaknow = false;
    1292             : 
    1293             :     // cycle on MC steps
    1294         356 :     for(unsigned i=0; i<MCsteps_; ++i) {
    1295         178 :       MCtrial_++;
    1296             :       // propose move for ftilde
    1297         178 :       if(noise_type_==GENERIC) moveTilde(mean_, old_energy);
    1298             :       // propose move for scale and/or offset
    1299         178 :       if(doscale_||dooffset_) moveScaleOffset(mean_, old_energy);
    1300             :       // propose move for sigma
    1301         178 :       moveSigmas(mean_, old_energy, i, indices, breaknow);
    1302             :       // exit from the loop if this is the case
    1303         178 :       if(breaknow) break;
    1304             :     }
    1305             : 
    1306             :     /* save the result of the sampling */
    1307             :     /* ftilde */
    1308         178 :     if(noise_type_==GENERIC) {
    1309          12 :       double accept = static_cast<double>(MCacceptFT_) / static_cast<double>(MCtrial_);
    1310          12 :       valueAcceptFT->set(accept);
    1311          36 :       for(unsigned i=0; i<sigma_.size(); i++) valueFtilde[i]->set(ftilde_[i]);
    1312             :     }
    1313             :     /* scale and offset */
    1314         178 :     if(doscale_ || doregres_zero_) valueScale->set(scale_);
    1315         178 :     if(dooffset_) valueOffset->set(offset_);
    1316         178 :     if(doscale_||dooffset_) {
    1317         168 :       double accept = static_cast<double>(MCacceptScale_) / static_cast<double>(MCtrial_);
    1318         168 :       valueAcceptScale->set(accept);
    1319             :     }
    1320             :     /* sigmas */
    1321        3008 :     for(unsigned i=0; i<sigma_.size(); i++) valueSigma[i]->set(sigma_[i]);
    1322         178 :     double accept = static_cast<double>(MCaccept_) / static_cast<double>(MCtrial_);
    1323         178 :     valueAccept->set(accept);
    1324             :   }
    1325             : 
    1326             :   // here we sum the score over the replicas to get the full metainference score that we save as a bias
    1327         178 :   if(master) {
    1328         104 :     if(nrep_>1) multi_sim_comm.Sum(old_energy);
    1329             :   } else {
    1330          74 :     old_energy=0;
    1331             :   }
    1332         178 :   comm.Sum(old_energy);
    1333             : 
    1334             :   // this is the energy with current coordinates and parameters
    1335         178 :   return old_energy;
    1336             : }
    1337             : 
    1338             : /*
    1339             :    In the following energy-force functions we don't add the normalisation and the jeffreys priors
    1340             :    because they are not needed for the forces, the correct MetaInference energy is the one calculated
    1341             :    in the Monte-Carlo
    1342             : */
    1343             : 
    1344          54 : void Metainference::getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1345             :                                      const std::vector<double> &dmean_b)
    1346             : {
    1347          54 :   const double scale2 = scale_*scale_;
    1348          54 :   const double sm2    = sigma_mean2_[0];
    1349          54 :   const double ss2    = sigma_[0]*sigma_[0] + scale2*sm2;
    1350          54 :   std::vector<double> f(narg,0);
    1351             : 
    1352          54 :   if(master) {
    1353          30 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1354             :     {
    1355             :       #pragma omp for
    1356             :       for(unsigned i=0; i<narg; ++i) {
    1357             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1358             :         const double a2 = 0.5*dev*dev + ss2;
    1359             :         if(sm2 > 0.0) {
    1360             :           const double t = std::exp(-a2/sm2);
    1361             :           const double dt = 1./t;
    1362             :           const double dit = 1./(1.-dt);
    1363             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1364             :         }
    1365             :         else {
    1366             :           f[i] = -scale_*dev*(1./a2);
    1367             :         }
    1368             :       }
    1369             :     }
    1370             :     // collect contribution to forces and energy from other replicas
    1371          30 :     if(nrep_>1) multi_sim_comm.Sum(&f[0],narg);
    1372             :   }
    1373             :   // intra-replica summation
    1374          54 :   comm.Sum(&f[0],narg);
    1375             : 
    1376             :   double w_tmp = 0.;
    1377         288 :   for(unsigned i=0; i<narg; ++i) {
    1378         234 :     setOutputForce(i, kbt_*f[i]*dmean_x[i]);
    1379         234 :     w_tmp += kbt_*f[i]*dmean_b[i];
    1380             :   }
    1381             : 
    1382          54 :   if(do_reweight_) {
    1383          48 :     setOutputForce(narg, w_tmp);
    1384          96 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1385             :   }
    1386          54 : }
    1387             : 
    1388          48 : void Metainference::getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1389             :                                       const std::vector<double> &dmean_b)
    1390             : {
    1391          48 :   const double scale2 = scale_*scale_;
    1392          48 :   std::vector<double> f(narg,0);
    1393             : 
    1394          48 :   if(master) {
    1395          24 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1396             :     {
    1397             :       #pragma omp for
    1398             :       for(unsigned i=0; i<narg; ++i) {
    1399             :         const double sm2 = sigma_mean2_[i];
    1400             :         const double ss2 = sigma_[i]*sigma_[i] + scale2*sm2;
    1401             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1402             :         const double a2  = 0.5*dev*dev + ss2;
    1403             :         if(sm2 > 0.0) {
    1404             :           const double t   = std::exp(-a2/sm2);
    1405             :           const double dt  = 1./t;
    1406             :           const double dit = 1./(1.-dt);
    1407             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1408             :         }
    1409             :         else {
    1410             :           f[i] = -scale_*dev*(1./a2);
    1411             :         }
    1412             :       }
    1413             :     }
    1414             :     // collect contribution to forces and energy from other replicas
    1415          24 :     if(nrep_>1) multi_sim_comm.Sum(&f[0],narg);
    1416             :   }
    1417          48 :   comm.Sum(&f[0],narg);
    1418             : 
    1419             :   double w_tmp = 0.;
    1420         240 :   for(unsigned i=0; i<narg; ++i) {
    1421         192 :     setOutputForce(i, kbt_ * dmean_x[i] * f[i]);
    1422         192 :     w_tmp += kbt_ * dmean_b[i] *f[i];
    1423             :   }
    1424             : 
    1425          48 :   if(do_reweight_) {
    1426          48 :     setOutputForce(narg, w_tmp);
    1427          96 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1428             :   }
    1429          48 : }
    1430             : 
    1431          12 : void Metainference::getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1432             :                                      const std::vector<double> &dmean_b)
    1433             : {
    1434          12 :   const double scale2 = scale_*scale_;
    1435          12 :   double inv_s2=0.;
    1436             : 
    1437          12 :   if(master) {
    1438          12 :     inv_s2 = 1./(sigma_[0]*sigma_[0] + scale2*sigma_mean2_[0]);
    1439          12 :     if(nrep_>1) multi_sim_comm.Sum(inv_s2);
    1440             :   }
    1441          12 :   comm.Sum(inv_s2);
    1442             : 
    1443             :   double w_tmp = 0.;
    1444          12 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1445             :   {
    1446             :     #pragma omp for reduction( + : w_tmp)
    1447             :     for(unsigned i=0; i<narg; ++i) {
    1448             :       const double dev = scale_*mean[i]-parameters[i]+offset_;
    1449             :       const double mult = dev*scale_*inv_s2;
    1450             :       setOutputForce(i, -kbt_*dmean_x[i]*mult);
    1451             :       w_tmp += kbt_*dmean_b[i]*mult;
    1452             :     }
    1453             :   }
    1454             : 
    1455          12 :   if(do_reweight_) {
    1456           0 :     setOutputForce(narg, -w_tmp);
    1457           0 :     getPntrToComponent("biasDer")->set(w_tmp);
    1458             :   }
    1459          12 : }
    1460             : 
    1461          52 : void Metainference::getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1462             :                                       const std::vector<double> &dmean_b)
    1463             : {
    1464          52 :   const double scale2 = scale_*scale_;
    1465          52 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1466             : 
    1467          52 :   if(master) {
    1468        1300 :     for(unsigned i=0; i<sigma_.size(); ++i) inv_s2[i] = 1./(sigma_[i]*sigma_[i] + scale2*sigma_mean2_[i]);
    1469          26 :     if(nrep_>1) multi_sim_comm.Sum(&inv_s2[0],sigma_.size());
    1470             :   }
    1471          52 :   comm.Sum(&inv_s2[0],sigma_.size());
    1472             : 
    1473             :   double w_tmp = 0.;
    1474          52 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1475             :   {
    1476             :     #pragma omp for reduction( + : w_tmp)
    1477             :     for(unsigned i=0; i<narg; ++i) {
    1478             :       const double dev  = scale_*mean[i]-parameters[i]+offset_;
    1479             :       const double mult = dev*scale_*inv_s2[i];
    1480             :       setOutputForce(i, -kbt_*dmean_x[i]*mult);
    1481             :       w_tmp += kbt_*dmean_b[i]*mult;
    1482             :     }
    1483             :   }
    1484             : 
    1485          52 :   if(do_reweight_) {
    1486          52 :     setOutputForce(narg, -w_tmp);
    1487         104 :     getPntrToComponent("biasDer")->set(w_tmp);
    1488             :   }
    1489          52 : }
    1490             : 
    1491          12 : void Metainference::getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b)
    1492             : {
    1493          12 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1494          12 :   std::vector<double> dev(sigma_.size(),0.);
    1495          12 :   std::vector<double> dev2(sigma_.size(),0.);
    1496             : 
    1497          36 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1498          24 :     inv_s2[i]   = 1./sigma_mean2_[i];
    1499          24 :     if(master) {
    1500          24 :       dev[i]  = (mean[i]-ftilde_[i]);
    1501          24 :       dev2[i] = dev[i]*dev[i];
    1502             :     }
    1503             :   }
    1504          12 :   if(master&&nrep_>1) {
    1505           0 :     multi_sim_comm.Sum(&dev[0],dev.size());
    1506           0 :     multi_sim_comm.Sum(&dev2[0],dev2.size());
    1507             :   }
    1508          12 :   comm.Sum(&dev[0],dev.size());
    1509          12 :   comm.Sum(&dev2[0],dev2.size());
    1510             : 
    1511             :   double dene_b = 0.;
    1512          12 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(dene_b)
    1513             :   {
    1514             :     #pragma omp for reduction( + : dene_b)
    1515             :     for(unsigned i=0; i<narg; ++i) {
    1516             :       const double dene_x  = kbt_*inv_s2[i]*dmean_x[i]*dev[i];
    1517             :       dene_b += kbt_*inv_s2[i]*dmean_b[i]*dev[i];
    1518             :       setOutputForce(i, -dene_x);
    1519             :     }
    1520             :   }
    1521             : 
    1522          12 :   if(do_reweight_) {
    1523           0 :     setOutputForce(narg, -dene_b);
    1524           0 :     getPntrToComponent("biasDer")->set(dene_b);
    1525             :   }
    1526          12 : }
    1527             : 
    1528         178 : void Metainference::get_weights(const unsigned iselect, double &weight, double &norm, double &neff)
    1529             : {
    1530         178 :   const double dnrep = static_cast<double>(nrep_);
    1531             :   // calculate the weights either from BIAS
    1532         178 :   if(do_reweight_) {
    1533         148 :     std::vector<double> bias(nrep_,0);
    1534         148 :     if(master) {
    1535          74 :       bias[replica_] = getArgument(narg);
    1536          74 :       if(nrep_>1) multi_sim_comm.Sum(&bias[0], nrep_);
    1537             :     }
    1538         148 :     comm.Sum(&bias[0], nrep_);
    1539             : 
    1540             :     // accumulate weights
    1541         148 :     const double decay = 1./static_cast<double> (average_weights_stride_);
    1542         148 :     if(!firstTimeW[iselect]) {
    1543         408 :       for(unsigned i=0; i<nrep_; ++i) {
    1544         272 :         const double delta=bias[i]-average_weights_[iselect][i];
    1545         272 :         average_weights_[iselect][i]+=decay*delta;
    1546             :       }
    1547             :     } else {
    1548             :       firstTimeW[iselect] = false;
    1549          36 :       for(unsigned i=0; i<nrep_; ++i) average_weights_[iselect][i] = bias[i];
    1550             :     }
    1551             : 
    1552             :     // set average back into bias and set norm to one
    1553         148 :     const double maxbias = *(std::max_element(average_weights_[iselect].begin(), average_weights_[iselect].end()));
    1554         444 :     for(unsigned i=0; i<nrep_; ++i) bias[i] = std::exp((average_weights_[iselect][i]-maxbias)/kbt_);
    1555             :     // set local weight, norm and weight variance
    1556         148 :     weight = bias[replica_];
    1557             :     double w2=0.;
    1558         444 :     for(unsigned i=0; i<nrep_; ++i) {
    1559         296 :       w2 += bias[i]*bias[i];
    1560         296 :       norm += bias[i];
    1561             :     }
    1562         148 :     neff = norm*norm/w2;
    1563         296 :     getPntrToComponent("weight")->set(weight/norm);
    1564             :   } else {
    1565             :     // or arithmetic ones
    1566          30 :     neff = dnrep;
    1567          30 :     weight = 1.0;
    1568          30 :     norm = dnrep;
    1569             :   }
    1570         178 :   getPntrToComponent("neff")->set(neff);
    1571         178 : }
    1572             : 
    1573         178 : void Metainference::get_sigma_mean(const unsigned iselect, const double weight, const double norm, const double neff, const std::vector<double> &mean)
    1574             : {
    1575         178 :   const double dnrep    = static_cast<double>(nrep_);
    1576         178 :   std::vector<double> sigma_mean2_tmp(sigma_mean2_.size(), 0.);
    1577             : 
    1578         178 :   if(do_optsigmamean_>0) {
    1579             :     // remove first entry of the history std::vector
    1580           0 :     if(sigma_mean2_last_[iselect][0].size()==optsigmamean_stride_&&optsigmamean_stride_>0)
    1581           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[iselect][i].erase(sigma_mean2_last_[iselect][i].begin());
    1582             :     /* this is the current estimate of sigma mean for each argument
    1583             :        there is one of this per argument in any case  because it is
    1584             :        the maximum among these to be used in case of GAUSS/OUTLIER */
    1585           0 :     std::vector<double> sigma_mean2_now(narg,0);
    1586           0 :     if(master) {
    1587           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_now[i] = weight*(getArgument(i)-mean[i])*(getArgument(i)-mean[i]);
    1588           0 :       if(nrep_>1) multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
    1589             :     }
    1590           0 :     comm.Sum(&sigma_mean2_now[0], narg);
    1591           0 :     for(unsigned i=0; i<narg; ++i) sigma_mean2_now[i] *= 1.0/(neff-1.)/norm;
    1592             : 
    1593             :     // add sigma_mean2 to history
    1594           0 :     if(optsigmamean_stride_>0) {
    1595           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[iselect][i].push_back(sigma_mean2_now[i]);
    1596             :     } else {
    1597           0 :       for(unsigned i=0; i<narg; ++i) if(sigma_mean2_now[i] > sigma_mean2_last_[iselect][i][0]) sigma_mean2_last_[iselect][i][0] = sigma_mean2_now[i];
    1598             :     }
    1599             : 
    1600           0 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1601           0 :       for(unsigned i=0; i<narg; ++i) {
    1602             :         /* set to the maximum in history std::vector */
    1603           0 :         sigma_mean2_tmp[i] = *max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end());
    1604             :         /* the standard error of the mean */
    1605           0 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1606           0 :         if(noise_type_==GENERIC) {
    1607           0 :           sigma_min_[i] = std::sqrt(sigma_mean2_tmp[i]);
    1608           0 :           if(sigma_[i] < sigma_min_[i]) sigma_[i] = sigma_min_[i];
    1609             :         }
    1610             :       }
    1611           0 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1612             :       // find maximum for each data point
    1613             :       std::vector <double> max_values;
    1614           0 :       for(unsigned i=0; i<narg; ++i) max_values.push_back(*max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end()));
    1615             :       // find maximum across data points
    1616           0 :       const double max_now = *max_element(max_values.begin(), max_values.end());
    1617             :       // set new value
    1618           0 :       sigma_mean2_tmp[0] = max_now;
    1619           0 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1620             :     }
    1621             :     // endif sigma mean optimization
    1622             :     // start sigma max optimization
    1623           0 :     if(do_optsigmamean_>1&&!sigmamax_opt_done_) {
    1624           0 :       for(unsigned i=0; i<sigma_max_.size(); i++) {
    1625           0 :         if(sigma_max_est_[i]<sigma_mean2_tmp[i]&&optimized_step_>optsigmamean_stride_) sigma_max_est_[i]=sigma_mean2_tmp[i];
    1626             :         // ready to set once and for all the value of sigma_max
    1627           0 :         if(optimized_step_==N_optimized_step_) {
    1628           0 :           sigmamax_opt_done_=true;
    1629           0 :           for(unsigned i=0; i<sigma_max_.size(); i++) {
    1630           0 :             sigma_max_[i]=std::sqrt(sigma_max_est_[i]*dnrep);
    1631           0 :             Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
    1632           0 :             if(sigma_[i]>sigma_max_[i]) sigma_[i]=sigma_max_[i];
    1633             :           }
    1634             :         }
    1635             :       }
    1636           0 :       optimized_step_++;
    1637             :     }
    1638             :     // end sigma max optimization
    1639             :   } else {
    1640         178 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1641        2876 :       for(unsigned i=0; i<narg; ++i) {
    1642        2764 :         sigma_mean2_tmp[i] = sigma_mean2_last_[iselect][i][0];
    1643        2764 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1644             :       }
    1645          66 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1646          66 :       sigma_mean2_tmp[0] = sigma_mean2_last_[iselect][0][0];
    1647          66 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1648             :     }
    1649             :   }
    1650             : 
    1651         178 :   sigma_mean2_ = sigma_mean2_tmp;
    1652         178 : }
    1653             : 
    1654         178 : void Metainference::replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b)
    1655             : {
    1656         178 :   if(master) {
    1657        1660 :     for(unsigned i=0; i<narg; ++i) mean[i] = weight/norm*getArgument(i);
    1658         104 :     if(nrep_>1) multi_sim_comm.Sum(&mean[0], narg);
    1659             :   }
    1660         178 :   comm.Sum(&mean[0], narg);
    1661             :   // set the derivative of the mean with respect to the bias
    1662        3200 :   for(unsigned i=0; i<narg; ++i) dmean_b[i] = weight/norm/kbt_*(getArgument(i)-mean[i])/static_cast<double>(average_weights_stride_);
    1663             : 
    1664             :   // this is only for generic metainference
    1665         178 :   if(firstTime) {ftilde_ = mean; firstTime = false;}
    1666         178 : }
    1667             : 
    1668           0 : void Metainference::do_regression_zero(const std::vector<double> &mean)
    1669             : {
    1670             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
    1671             :   double num = 0.0;
    1672             :   double den = 0.0;
    1673           0 :   for(unsigned i=0; i<parameters.size(); ++i) {
    1674           0 :     num += mean[i] * parameters[i];
    1675           0 :     den += mean[i] * mean[i];
    1676             :   }
    1677           0 :   if(den>0) {
    1678           0 :     scale_ = num / den;
    1679             :   } else {
    1680           0 :     scale_ = 1.0;
    1681             :   }
    1682           0 : }
    1683             : 
    1684         178 : void Metainference::calculate()
    1685             : {
    1686             :   // get step
    1687         178 :   const long long int step = getStep();
    1688             : 
    1689             :   unsigned iselect = 0;
    1690             :   // set the value of selector for  REM-like stuff
    1691         178 :   if(selector_.length()>0) iselect = static_cast<unsigned>(plumed.passMap[selector_]);
    1692             : 
    1693             :   /* 1) collect weights */
    1694         178 :   double weight = 0.;
    1695         178 :   double neff = 0.;
    1696         178 :   double norm = 0.;
    1697         178 :   get_weights(iselect, weight, norm, neff);
    1698             : 
    1699             :   /* 2) calculate average */
    1700         178 :   std::vector<double> mean(narg,0);
    1701             :   // this is the derivative of the mean with respect to the argument
    1702         178 :   std::vector<double> dmean_x(narg,weight/norm);
    1703             :   // this is the derivative of the mean with respect to the bias
    1704         178 :   std::vector<double> dmean_b(narg,0);
    1705             :   // calculate it
    1706         178 :   replica_averaging(weight, norm, mean, dmean_b);
    1707             : 
    1708             :   /* 3) calculates parameters */
    1709         178 :   get_sigma_mean(iselect, weight, norm, neff, mean);
    1710             : 
    1711             :   // in case of regression with zero intercept, calculate scale
    1712         178 :   if(doregres_zero_ && step%nregres_zero_==0) do_regression_zero(mean);
    1713             : 
    1714             :   /* 4) run monte carlo */
    1715         178 :   double ene = doMonteCarlo(mean);
    1716             : 
    1717             :   // calculate bias and forces
    1718         178 :   switch(noise_type_) {
    1719          12 :   case GAUSS:
    1720          12 :     getEnergyForceGJ(mean, dmean_x, dmean_b);
    1721             :     break;
    1722          52 :   case MGAUSS:
    1723          52 :     getEnergyForceGJE(mean, dmean_x, dmean_b);
    1724             :     break;
    1725          54 :   case OUTLIERS:
    1726          54 :     getEnergyForceSP(mean, dmean_x, dmean_b);
    1727             :     break;
    1728          48 :   case MOUTLIERS:
    1729          48 :     getEnergyForceSPE(mean, dmean_x, dmean_b);
    1730             :     break;
    1731          12 :   case GENERIC:
    1732          12 :     getEnergyForceMIGEN(mean, dmean_x, dmean_b);
    1733             :     break;
    1734             :   }
    1735             : 
    1736         178 :   setBias(ene);
    1737         178 : }
    1738             : 
    1739          19 : void Metainference::writeStatus()
    1740             : {
    1741          19 :   sfile_.rewind();
    1742          19 :   sfile_.printField("time",getTimeStep()*getStep());
    1743             :   //nsel
    1744          38 :   for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
    1745             :     std::string msg_i,msg_j;
    1746          19 :     Tools::convert(i,msg_i);
    1747             :     std::vector <double> max_values;
    1748             :     //narg
    1749        2434 :     for(unsigned j=0; j<narg; ++j) {
    1750        2415 :       Tools::convert(j,msg_j);
    1751        2415 :       std::string msg = msg_i+"_"+msg_j;
    1752        2415 :       if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1753        7170 :         sfile_.printField("sigmaMean_"+msg,std::sqrt(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end())));
    1754             :       } else {
    1755             :         // find maximum for each data point
    1756          50 :         max_values.push_back(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end()));
    1757             :       }
    1758             :     }
    1759          19 :     if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1760             :       // find maximum across data points
    1761           6 :       const double max_now = std::sqrt(*max_element(max_values.begin(), max_values.end()));
    1762           6 :       Tools::convert(0,msg_j);
    1763           6 :       std::string msg = msg_i+"_"+msg_j;
    1764          12 :       sfile_.printField("sigmaMean_"+msg, max_now);
    1765             :     }
    1766             :   }
    1767        2415 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1768             :     std::string msg;
    1769        2396 :     Tools::convert(i,msg);
    1770        4792 :     sfile_.printField("sigma_"+msg,sigma_[i]);
    1771             :   }
    1772        2415 :   for(unsigned i=0; i<sigma_max_.size(); ++i) {
    1773             :     std::string msg;
    1774        2396 :     Tools::convert(i,msg);
    1775        4792 :     sfile_.printField("sigma_max_"+msg,sigma_max_[i]);
    1776             :   }
    1777          19 :   if(noise_type_==GENERIC) {
    1778           3 :     for(unsigned i=0; i<ftilde_.size(); ++i) {
    1779             :       std::string msg;
    1780           2 :       Tools::convert(i,msg);
    1781           4 :       sfile_.printField("ftilde_"+msg,ftilde_[i]);
    1782             :     }
    1783             :   }
    1784          19 :   sfile_.printField("scale0_",scale_);
    1785          19 :   sfile_.printField("offset0_",offset_);
    1786          38 :   for(unsigned i=0; i<average_weights_.size(); i++) {
    1787             :     std::string msg_i;
    1788          19 :     Tools::convert(i,msg_i);
    1789          38 :     sfile_.printField("weight_"+msg_i,average_weights_[i][replica_]);
    1790             :   }
    1791          19 :   sfile_.printField();
    1792          19 :   sfile_.flush();
    1793          19 : }
    1794             : 
    1795         178 : void Metainference::update() {
    1796             :   // write status file
    1797         178 :   if(write_stride_>0&& (getStep()%write_stride_==0 || getCPT()) ) writeStatus();
    1798         178 : }
    1799             : 
    1800             : }
    1801             : }
    1802             : 

Generated by: LCOV version 1.16