LCOV - code coverage report
Current view: top level - fourier - FourierTransform.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 87 100 87.0 %
Date: 2024-10-18 14:00:25 Functions: 6 9 66.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include <iostream>
      23             : #include <complex>
      24             : #include "gridtools/ActionWithGrid.h"
      25             : #include "core/ActionRegister.h"
      26             : #ifdef __PLUMED_HAS_FFTW
      27             : #include <fftw3.h> // FFTW interface
      28             : #endif
      29             : 
      30             : namespace PLMD {
      31             : namespace fourier {
      32             : 
      33             : //+PLUMEDOC GRIDANALYSIS FOURIER_TRANSFORM
      34             : /*
      35             : Compute the Discrete Fourier Transform (DFT) by means of FFTW of data stored on a 2D grid.
      36             : 
      37             : This action can operate on any other action that outputs scalar data on a two-dimensional grid.
      38             : 
      39             : Up to now, even if the input data are purely real the action uses a complex DFT.
      40             : 
      41             : Just as a quick reference, given a 1D array \f$\mathbf{X}\f$ of size \f$n\f$, this action computes the vector \f$\mathbf{Y}\f$ given by
      42             : 
      43             : \f[
      44             : Y_k = \sum_{j=0}^{n-1} X_j e^{2\pi\, j k \sqrt{-1}/n}.
      45             : \f]
      46             : 
      47             : This can be easily extended to more than one dimension. All the other details can be found at http://www.fftw.org/doc/What-FFTW-Really-Computes.html#What-FFTW-Really-Computes.
      48             : 
      49             : The keyword "FOURIER_PARAMETERS" deserves just a note on the usage. This keyword specifies how the Fourier transform will be normalized. The keyword takes two numerical parameters (\f$a,\,b\f$) that define the normalization according to the following expression
      50             : 
      51             : \f[
      52             : \frac{1}{n^{(1-a)/2}} \sum_{j=0}^{n-1} X_j e^{2\pi b\, j k \sqrt{-1}/n}
      53             : \f]
      54             : 
      55             : The default values of these parameters are: \f$a=1\f$ and \f$b=1\f$.
      56             : 
      57             : \par Examples
      58             : 
      59             : The following example tells Plumed to compute the complex 2D 'backward' Discrete Fourier Transform by taking the data saved on a grid called 'density', and normalizing the output by \f$ \frac{1}{\sqrt{N_x\, N_y}}\f$, where \f$N_x\f$ and \f$N_y\f$ are the number of data on the grid (it can be the case that \f$N_x\neq N_y\f$):
      60             : 
      61             : \plumedfile
      62             : FOURIER_TRANSFORM STRIDE=1 GRID=density FT_TYPE=complex FOURIER_PARAMETERS=0,-1
      63             : \endplumedfile
      64             : 
      65             : */
      66             : //+ENDPLUMEDOC
      67             : 
      68             : 
      69             : class FourierTransform : public gridtools::ActionWithGrid {
      70             : private:
      71             :   bool firsttime;
      72             :   std::string output_type;
      73             :   bool real_output, store_norm;
      74             :   std::vector<int> fourier_params;
      75             :   gridtools::GridCoordinatesObject gridcoords;
      76             : public:
      77             :   static void registerKeywords( Keywords& keys );
      78             :   explicit FourierTransform(const ActionOptions&ao);
      79           0 :   void setupOnFirstStep( const bool incalc ) override { plumed_error(); }
      80             :   unsigned getNumberOfDerivatives() override ;
      81             :   const gridtools::GridCoordinatesObject& getGridCoordinatesObject() const override ;
      82             :   std::vector<std::string> getGridCoordinateNames() const override ;
      83           0 :   void performTask( const unsigned& current, MultiValue& myvals ) const override { plumed_error(); }
      84             :   void calculate() override ;
      85             : };
      86             : 
      87             : PLUMED_REGISTER_ACTION(FourierTransform,"FOURIER_TRANSFORM")
      88             : 
      89           3 : void FourierTransform::registerKeywords( Keywords& keys ) {
      90           3 :   ActionWithGrid::registerKeywords( keys ); keys.use("ARG");
      91           6 :   keys.add("optional","FT_TYPE","choose what kind of data you want as output on the grid. Possible values are: ABS = compute the complex modulus of Fourier coefficients (DEFAULT); NORM = compute the norm (i.e. ABS^2) of Fourier coefficients; COMPLEX = store the FFTW complex output on the grid (as a vector).");
      92           6 :   keys.add("compulsory","FOURIER_PARAMETERS","default","what kind of normalization is applied to the output and if the Fourier transform in FORWARD or BACKWARD. This keyword takes the form FOURIER_PARAMETERS=A,B, where A and B can be 0, 1 or -1. The default values are A=1 (no normalization at all) and B=1 (forward FFT). Other possible choices for A are: "
      93             :            "A=-1: normalize by the number of data, "
      94             :            "A=0: normalize by the square root of the number of data (one forward and followed by backward FFT recover the original data). ");
      95           6 :   keys.addOutputComponent("real","FT_TYPE","the real part of the function");
      96           6 :   keys.addOutputComponent("imag","FT_TYPE","the imaginary part of the function");
      97           3 :   keys.setValueDescription("the fourier transform of the input grid");
      98           3 : }
      99             : 
     100           1 : FourierTransform::FourierTransform(const ActionOptions&ao):
     101             :   Action(ao),
     102             :   ActionWithGrid(ao),
     103           1 :   firsttime(true),
     104           1 :   real_output(true),
     105           1 :   store_norm(false),
     106           1 :   fourier_params(2)
     107             : {
     108           1 :   if( getPntrToArgument(0)->getRank()!=2 ) error("fourier transform currently only works with two dimensional grids");
     109             : 
     110             :   // Get the type of FT
     111           2 :   parse("FT_TYPE",output_type);
     112           1 :   if (output_type.length()==0) {
     113           0 :     log<<"  keyword FT_TYPE unset. By default output grid will contain REAL Fourier coefficients\n";
     114           2 :   } else if ( output_type=="ABS" || output_type=="abs") {
     115           0 :     log << "  keyword FT_TYPE is '"<< output_type << "' : will compute the MODULUS of Fourier coefficients\n";
     116           2 :   } else if ( output_type=="NORM" || output_type=="norm") {
     117           0 :     log << "  keyword FT_TYPE is '"<< output_type << "' : will compute the NORM of Fourier coefficients\n";
     118           0 :     store_norm=true;
     119           2 :   } else if ( output_type=="COMPLEX" || output_type=="complex" ) {
     120           1 :     log<<"  keyword FT_TYPE is '"<< output_type <<"' : output grid will contain the COMPLEX Fourier coefficients\n";
     121           1 :     real_output=false;
     122           0 :   } else error("keyword FT_TYPE unrecognized!");
     123             : 
     124             :   // Normalize output?
     125           2 :   std::string params_str; parse("FOURIER_PARAMETERS",params_str);
     126           1 :   if (params_str=="default") {
     127           0 :     fourier_params.assign( fourier_params.size(), 1 );
     128           0 :     log.printf("  default values of Fourier parameters A=%i, B=%i : the output will NOT be normalized and BACKWARD Fourier transform is computed \n", fourier_params[0],fourier_params[1]);
     129             :   } else {
     130           1 :     std::vector<std::string> fourier_str = Tools::getWords(params_str, "\t\n ,");
     131           1 :     if (fourier_str.size()>2) error("FOURIER_PARAMETERS can take just two values");
     132           3 :     for (unsigned i=0; i<fourier_str.size(); ++i) {
     133           2 :       Tools::convert(fourier_str[i],fourier_params[i]);
     134           2 :       if (fourier_params[i]>1 || fourier_params[i]<-1) error("values accepted for FOURIER_PARAMETERS are only -1, 1 or 0");
     135             :     }
     136           1 :     log.printf("  Fourier parameters are A=%i, B=%i \n", fourier_params[0],fourier_params[1]);
     137           1 :   }
     138             : 
     139           1 :   std::vector<unsigned> shape( getPntrToArgument(0)->getRank() );
     140           1 :   if (real_output) {
     141           0 :     addValueWithDerivatives( shape );
     142             :   } else {
     143           1 :     addComponentWithDerivatives( "real", shape );
     144           2 :     addComponentWithDerivatives( "imag", shape );
     145             :   }
     146             : 
     147             :   unsigned dimension = getPntrToArgument(0)->getRank();
     148           1 :   gridtools::ActionWithGrid* ag=dynamic_cast<gridtools::ActionWithGrid*>( getPntrToArgument(0)->getPntrToAction() );
     149           1 :   if( !ag ) error("input action should be a grid");
     150           1 :   const gridtools::GridCoordinatesObject & gcoords( ag->getGridCoordinatesObject() );
     151           2 :   if( gcoords.getGridType()=="fibonacci" ) error("cannot fourier transform fibonacci grids");
     152           3 :   std::vector<bool> ipbc( dimension ); for(unsigned i=0; i<dimension; ++i) ipbc[i] = gcoords.isPeriodic(i);
     153           2 :   gridcoords.setup( "flat", ipbc, 0, 0.0 ); checkRead();
     154             : #ifndef __PLUMED_HAS_FFTW
     155             :   error("this feature is only available if you compile PLUMED with FFTW");
     156             : #endif
     157           1 : }
     158             : 
     159           4 : unsigned FourierTransform::getNumberOfDerivatives() {
     160           4 :   return 2;
     161             : }
     162             : 
     163           7 : const gridtools::GridCoordinatesObject& FourierTransform::getGridCoordinatesObject() const {
     164           7 :   return gridcoords;
     165             : }
     166             : 
     167           2 : std::vector<std::string> FourierTransform::getGridCoordinateNames() const {
     168           2 :   gridtools::ActionWithGrid* ag=dynamic_cast<gridtools::ActionWithGrid*>( getPntrToArgument(0)->getPntrToAction() );
     169           2 :   return ag->getGridCoordinateNames();
     170             : }
     171             : 
     172           1 : void FourierTransform::calculate() {
     173           1 :   if( firsttime ) {
     174           1 :     gridtools::ActionWithGrid* ag=dynamic_cast<gridtools::ActionWithGrid*>( getPntrToArgument(0)->getPntrToAction() );
     175           1 :     const gridtools::GridCoordinatesObject & gcoords( ag->getGridCoordinatesObject() );
     176           1 :     std::vector<double> fspacing; std::vector<unsigned> snbins( getGridCoordinatesObject().getDimension() );
     177           1 :     std::vector<std::string> smin( gcoords.getDimension() ), smax( gcoords.getDimension() );
     178           3 :     for(unsigned i=0; i<getGridCoordinatesObject().getDimension(); ++i) {
     179           6 :       smin[i]=gcoords.getMin()[i]; smax[i]=gcoords.getMax()[i];
     180             :       // Compute k-grid extents
     181           2 :       double dmin, dmax; snbins[i]=gcoords.getNbin(false)[i];
     182           2 :       Tools::convert(smin[i],dmin); Tools::convert(smax[i],dmax);
     183           2 :       dmax=2.0*pi*snbins[i]/( dmax - dmin ); dmin=0.0;
     184           2 :       Tools::convert(dmin,smin[i]); Tools::convert(dmax,smax[i]);
     185             :     }
     186           1 :     gridcoords.setBounds( smin, smax, snbins, fspacing ); firsttime=false;
     187           3 :     for(unsigned i=0; i<getNumberOfComponents(); ++i) getPntrToComponent(i)->setShape( gcoords.getNbin(true) );
     188           1 :   }
     189             : 
     190             : #ifdef __PLUMED_HAS_FFTW
     191             :   // *** CHECK CORRECT k-GRID BOUNDARIES ***
     192             :   //log<<"Real grid boundaries: \n"
     193             :   //    <<"  min_x: "<<mygrid->getMin()[0]<<"  min_y: "<<mygrid->getMin()[1]<<"\n"
     194             :   //    <<"  max_x: "<<mygrid->getMax()[0]<<"  max_y: "<<mygrid->getMax()[1]<<"\n"
     195             :   //    <<"K-grid boundaries:"<<"\n"
     196             :   //    <<"  min_x: "<<ft_min[0]<<"  min_y: "<<ft_min[1]<<"\n"
     197             :   //    <<"  max_x: "<<ft_max[0]<<"  max_y: "<<ft_max[1]<<"\n";
     198             : 
     199             :   // Get the size of the input data arrays (to allocate FFT data)
     200           1 :   std::vector<unsigned> N_input_data( gridcoords.getNbin(true) );
     201           3 :   size_t fft_dimension=1; for(unsigned i=0; i<N_input_data.size(); ++i) fft_dimension*=static_cast<size_t>( N_input_data[i] );
     202             :   // FFT arrays
     203           1 :   std::vector<std::complex<double> > input_data(fft_dimension), fft_data(fft_dimension);
     204             : 
     205             :   // Fill real input with the data on the grid
     206             :   Value* arg=getPntrToArgument(0);
     207           1 :   unsigned nargs=arg->getNumberOfValues();
     208           1 :   std::vector<unsigned> ind( arg->getRank() );
     209       10202 :   for (unsigned i=0; i<arg->getNumberOfValues(); ++i) {
     210             :     // Get point indices
     211       10201 :     gridcoords.getIndices(i, ind);
     212             :     // Fill input data in row-major order
     213       10201 :     input_data[ind[0]*N_input_data[0]+ind[1]].real( arg->get( i ) );
     214       10201 :     input_data[ind[0]*N_input_data[0]+ind[1]].imag( 0.0 );
     215             :   }
     216             : 
     217             :   // *** HERE is the only clear limitation: I'm computing explicitly a 2D FT. It should not happen to deal with other than two-dimensional grid ...
     218           1 :   fftw_plan plan_complex = fftw_plan_dft_2d(N_input_data[0], N_input_data[1], reinterpret_cast<fftw_complex*>(&input_data[0]), reinterpret_cast<fftw_complex*>(&fft_data[0]), fourier_params[1], FFTW_ESTIMATE);
     219             : 
     220             :   // Compute FT
     221           1 :   fftw_execute( plan_complex );
     222             : 
     223             :   // Compute the normalization constant
     224             :   double norm=1.0;
     225           3 :   for (unsigned i=0; i<N_input_data.size(); ++i) {
     226           2 :     norm *= pow( N_input_data[i], (1-fourier_params[0])/2 );
     227             :   }
     228             : 
     229             :   // Save FT data to output grid
     230           1 :   std::vector<unsigned> N_out_data ( getGridCoordinatesObject().getNbin(true) );
     231           1 :   std::vector<unsigned> out_ind ( getPntrToArgument(0)->getRank() );
     232       10202 :   for(unsigned i=0; i<getPntrToArgument(0)->getNumberOfValues(); ++i) {
     233       10201 :     gridcoords.getIndices( i, out_ind );
     234       10201 :     if (real_output) {
     235             :       double ft_value;
     236             :       // Compute abs/norm and fix normalization
     237           0 :       if (!store_norm) ft_value=std::abs( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
     238           0 :       else ft_value=std::norm( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
     239             :       // Set the value
     240           0 :       getPntrToComponent(0)->set( i, ft_value);
     241             :     } else {
     242             :       double ft_value_real, ft_value_imag;
     243       10201 :       ft_value_real=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].real() / norm;
     244       10201 :       ft_value_imag=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].imag() / norm;
     245             :       // Set values
     246       10201 :       getPntrToComponent(0)->set( i, ft_value_real );
     247       10201 :       getPntrToComponent(1)->set( i, ft_value_imag );
     248             :     }
     249             :   }
     250             : 
     251             :   // Free FFTW stuff
     252           1 :   fftw_destroy_plan(plan_complex);
     253             : #endif
     254           1 : }
     255             : 
     256             : } // end namespace 'gridtools'
     257             : } // end namespace 'PLMD'

Generated by: LCOV version 1.16