LCOV - code coverage report
Current view: top level - ves - VesBias.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 324 425 76.2 %
Date: 2024-10-18 13:59:31 Functions: 27 45 60.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "VesBias.h"
      24             : #include "BasisFunctions.h"
      25             : #include "CoeffsVector.h"
      26             : #include "CoeffsMatrix.h"
      27             : #include "Optimizer.h"
      28             : #include "FermiSwitchingFunction.h"
      29             : #include "VesTools.h"
      30             : #include "TargetDistribution.h"
      31             : 
      32             : #include "tools/Communicator.h"
      33             : #include "core/ActionSet.h"
      34             : #include "core/PlumedMain.h"
      35             : #include "tools/File.h"
      36             : 
      37             : 
      38             : namespace PLMD {
      39             : namespace ves {
      40             : 
      41          90 : VesBias::VesBias(const ActionOptions&ao):
      42             :   Action(ao),
      43             :   Bias(ao),
      44          90 :   ncoeffssets_(0),
      45          90 :   sampled_averages(0),
      46          90 :   sampled_cross_averages(0),
      47          90 :   use_multiple_coeffssets_(false),
      48          90 :   coeffs_fnames(0),
      49          90 :   ncoeffs_total_(0),
      50          90 :   optimizer_pntr_(NULL),
      51          90 :   optimize_coeffs_(false),
      52          90 :   compute_hessian_(false),
      53          90 :   diagonal_hessian_(true),
      54          90 :   aver_counters(0),
      55          90 :   kbt_(0.0),
      56          90 :   targetdist_pntrs_(0),
      57          90 :   dynamic_targetdist_(false),
      58          90 :   grid_bins_(0),
      59          90 :   grid_min_(0),
      60          90 :   grid_max_(0),
      61          90 :   bias_filename_(""),
      62          90 :   fes_filename_(""),
      63          90 :   targetdist_filename_(""),
      64          90 :   coeffs_id_prefix_("c-"),
      65          90 :   bias_file_fmt_("14.9f"),
      66          90 :   fes_file_fmt_("14.9f"),
      67          90 :   targetdist_file_fmt_("14.9f"),
      68          90 :   targetdist_restart_file_fmt_("30.16e"),
      69          90 :   filenames_have_iteration_number_(false),
      70          90 :   bias_fileoutput_active_(false),
      71          90 :   fes_fileoutput_active_(false),
      72          90 :   fesproj_fileoutput_active_(false),
      73          90 :   dynamic_targetdist_fileoutput_active_(false),
      74          90 :   static_targetdist_fileoutput_active_(true),
      75          90 :   bias_cutoff_active_(false),
      76          90 :   bias_cutoff_value_(0.0),
      77          90 :   bias_current_max_value(0.0),
      78          90 :   calc_reweightfactor_(false),
      79         270 :   optimization_threshold_(0.0)
      80             : {
      81          90 :   log.printf("  VES bias, please read and cite ");
      82         180 :   log << plumed.cite("Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)");
      83          90 :   log.printf("\n");
      84             : 
      85          90 :   kbt_=getkBT();
      86          90 :   if(kbt_>0.0) {
      87          90 :     log.printf("  KbT: %f\n",kbt_);
      88             :   }
      89             :   // NOTE: the check for that the temperature is given is done when linking the optimizer later on.
      90             : 
      91         180 :   if(keywords.exists("COEFFS")) {
      92         180 :     parseVector("COEFFS",coeffs_fnames);
      93             :   }
      94             : 
      95         180 :   if(keywords.exists("GRID_BINS")) {
      96         180 :     parseMultipleValues<unsigned int>("GRID_BINS",grid_bins_,getNumberOfArguments(),100);
      97             :   }
      98             : 
      99          90 :   if(keywords.exists("GRID_MIN") && keywords.exists("GRID_MAX")) {
     100           0 :     parseMultipleValues("GRID_MIN",grid_min_,getNumberOfArguments());
     101           0 :     parseMultipleValues("GRID_MAX",grid_max_,getNumberOfArguments());
     102             :   }
     103             : 
     104             :   std::vector<std::string> targetdist_labels;
     105         180 :   if(keywords.exists("TARGET_DISTRIBUTION")) {
     106         180 :     parseVector("TARGET_DISTRIBUTION",targetdist_labels);
     107          90 :     if(targetdist_labels.size()>1) {
     108           0 :       plumed_merror(getName()+" with label "+getLabel()+": multiple target distribution labels not allowed");
     109             :     }
     110             :   }
     111           0 :   else if(keywords.exists("TARGET_DISTRIBUTIONS")) {
     112           0 :     parseVector("TARGET_DISTRIBUTIONS",targetdist_labels);
     113             :   }
     114             : 
     115          90 :   std::string error_msg = "";
     116         180 :   targetdist_pntrs_ = VesTools::getPointersFromLabels<TargetDistribution*>(targetdist_labels,plumed.getActionSet(),error_msg);
     117          90 :   if(error_msg.size()>0) {plumed_merror("Problem with target distribution in "+getName()+": "+error_msg);}
     118             : 
     119         135 :   for(unsigned int i=0; i<targetdist_pntrs_.size(); i++) {
     120          45 :     targetdist_pntrs_[i]->linkVesBias(this);
     121             :   }
     122             : 
     123             : 
     124          90 :   if(getNumberOfArguments()>2) {
     125             :     disableStaticTargetDistFileOutput();
     126             :   }
     127             : 
     128             : 
     129         180 :   if(keywords.exists("BIAS_FILE")) {
     130         180 :     parse("BIAS_FILE",bias_filename_);
     131          90 :     if(bias_filename_.size()==0) {
     132         180 :       bias_filename_ = "bias." + getLabel() + ".data";
     133             :     }
     134             :   }
     135         180 :   if(keywords.exists("FES_FILE")) {
     136         180 :     parse("FES_FILE",fes_filename_);
     137          90 :     if(fes_filename_.size()==0) {
     138         180 :       fes_filename_ = "fes." + getLabel() + ".data";
     139             :     }
     140             :   }
     141         180 :   if(keywords.exists("TARGETDIST_FILE")) {
     142         180 :     parse("TARGETDIST_FILE",targetdist_filename_);
     143          90 :     if(targetdist_filename_.size()==0) {
     144         180 :       targetdist_filename_ = "targetdist." + getLabel() + ".data";
     145             :     }
     146             :   }
     147             :   //
     148         180 :   if(keywords.exists("BIAS_FILE_FMT")) {
     149           0 :     parse("BIAS_FILE_FMT",bias_file_fmt_);
     150             :   }
     151         180 :   if(keywords.exists("FES_FILE_FMT")) {
     152           0 :     parse("FES_FILE_FMT",fes_file_fmt_);
     153             :   }
     154         180 :   if(keywords.exists("TARGETDIST_FILE_FMT")) {
     155           0 :     parse("TARGETDIST_FILE_FMT",targetdist_file_fmt_);
     156             :   }
     157         180 :   if(keywords.exists("TARGETDIST_RESTART_FILE_FMT")) {
     158           0 :     parse("TARGETDIST_RESTART_FILE_FMT",targetdist_restart_file_fmt_);
     159             :   }
     160             : 
     161             :   //
     162         180 :   if(keywords.exists("BIAS_CUTOFF")) {
     163          90 :     double cutoff_value=0.0;
     164          90 :     parse("BIAS_CUTOFF",cutoff_value);
     165          90 :     if(cutoff_value<0.0) {
     166           0 :       plumed_merror("the value given in BIAS_CUTOFF doesn't make sense, it should be larger than 0.0");
     167             :     }
     168             :     //
     169          90 :     if(cutoff_value>0.0) {
     170           3 :       double fermi_lambda=10.0;
     171           3 :       parse("BIAS_CUTOFF_FERMI_LAMBDA",fermi_lambda);
     172           3 :       setupBiasCutoff(cutoff_value,fermi_lambda);
     173           3 :       log.printf("  Employing a bias cutoff of %f (the lambda value for the Fermi switching function is %f), see and cite ",cutoff_value,fermi_lambda);
     174           6 :       log << plumed.cite("McCarty, Valsson, Tiwary, and Parrinello, Phys. Rev. Lett. 115, 070601 (2015)");
     175           3 :       log.printf("\n");
     176             :     }
     177             :   }
     178             : 
     179             : 
     180         180 :   if(keywords.exists("PROJ_ARG")) {
     181             :     std::vector<std::string> proj_arg;
     182          90 :     for(int i=1;; i++) {
     183         212 :       if(!parseNumberedVector("PROJ_ARG",i,proj_arg)) {break;}
     184             :       // checks
     185          16 :       if(proj_arg.size() > (getNumberOfArguments()-1) ) {
     186           0 :         plumed_merror("PROJ_ARG must be a subset of ARG");
     187             :       }
     188             :       //
     189          32 :       for(unsigned int k=0; k<proj_arg.size(); k++) {
     190             :         bool found = false;
     191          24 :         for(unsigned int l=0; l<getNumberOfArguments(); l++) {
     192          24 :           if(proj_arg[k]==getPntrToArgument(l)->getName()) {
     193             :             found = true;
     194             :             break;
     195             :           }
     196             :         }
     197          16 :         if(!found) {
     198           0 :           std::string s1; Tools::convert(i,s1);
     199           0 :           std::string error = "PROJ_ARG" + s1 + ": label " + proj_arg[k] + " is not among the arguments given in ARG";
     200           0 :           plumed_merror(error);
     201             :         }
     202             :       }
     203             :       //
     204          16 :       projection_args_.push_back(proj_arg);
     205          16 :     }
     206          90 :   }
     207             : 
     208         180 :   if(keywords.exists("CALC_REWEIGHT_FACTOR")) {
     209           0 :     parseFlag("CALC_REWEIGHT_FACTOR",calc_reweightfactor_);
     210           0 :     if(calc_reweightfactor_) {
     211           0 :       addComponent("rct"); componentIsNotPeriodic("rct");
     212           0 :       updateReweightFactor();
     213             :     }
     214             :   }
     215             : 
     216         180 :   if(keywords.exists("OPTIMIZATION_THRESHOLD")) {
     217          90 :     parse("OPTIMIZATION_THRESHOLD",optimization_threshold_);
     218          90 :     if(optimization_threshold_ < 0.0) {
     219           0 :       plumed_merror("OPTIMIZATION_THRESHOLD should be a postive value");
     220             :     }
     221          90 :     if(optimization_threshold_!=0.0) {
     222           1 :       log.printf("  Employing a threshold value of %e for optimization of localized basis functions.\n",optimization_threshold_);
     223             :     }
     224             :   }
     225             : 
     226          90 : }
     227             : 
     228             : 
     229          90 : VesBias::~VesBias() {
     230         180 : }
     231             : 
     232             : 
     233          92 : void VesBias::registerKeywords( Keywords& keys ) {
     234          92 :   Bias::registerKeywords(keys);
     235         184 :   keys.add("optional","TEMP","the system temperature - this is needed if the MD code does not pass the temperature to PLUMED.");
     236             :   //
     237         184 :   keys.reserve("optional","COEFFS","read in the coefficients from files.");
     238             :   //
     239         184 :   keys.reserve("optional","TARGET_DISTRIBUTION","the label of the target distribution to be used.");
     240         184 :   keys.reserve("optional","TARGET_DISTRIBUTIONS","the label of the target distribution to be used. Here you are allows to use multiple labels.");
     241             :   //
     242         184 :   keys.reserve("optional","GRID_BINS","the number of bins used for the grid. The default value is 100 bins per dimension.");
     243         184 :   keys.reserve("optional","GRID_MIN","the lower bounds used for the grid.");
     244         184 :   keys.reserve("optional","GRID_MAX","the upper bounds used for the grid.");
     245             :   //
     246         184 :   keys.add("optional","BIAS_FILE","filename of the file on which the bias should be written out. By default it is bias.LABEL.data. Note that suffixes indicating the iteration number (iter-#) are added to the filename when optimizing coefficients.");
     247         184 :   keys.add("optional","FES_FILE","filename of the file on which the FES should be written out. By default it is fes.LABEL.data. Note that suffixes indicating the iteration number (iter-#) are added to the filename when optimizing coefficients.");
     248         184 :   keys.add("optional","TARGETDIST_FILE","filename of the file on which the target distribution should be written out. By default it is targetdist.LABEL.data. Note that suffixes indicating the iteration number (iter-#) are added to the filename when optimizing coefficients and the target distribution is dynamic.");
     249             :   //
     250             :   // keys.add("optional","BIAS_FILE_FMT","the format of the bias files, by default it is %14.9f.");
     251             :   // keys.add("optional","FES_FILE_FMT","the format of the FES files, by default it is %14.9f.");
     252             :   // keys.add("optional","TARGETDIST_FILE_FMT","the format of the target distribution files, by default it is %14.9f.");
     253             :   // keys.add("hidden","TARGETDIST_RESTART_FILE_FMT","the format of the target distribution files that are used for restarting, by default it is %30.16e.");
     254             :   //
     255         184 :   keys.reserve("optional","BIAS_CUTOFF","cutoff the bias such that it only fills the free energy surface up to certain level F_cutoff, here you should give the value of the F_cutoff.");
     256         184 :   keys.reserve("optional","BIAS_CUTOFF_FERMI_LAMBDA","the lambda value used in the Fermi switching function for the bias cutoff (BIAS_CUTOFF), the default value is 10.0.");
     257             :   //
     258         184 :   keys.reserve("numbered","PROJ_ARG","arguments for doing projections of the FES or the target distribution.");
     259             :   //
     260         184 :   keys.reserveFlag("CALC_REWEIGHT_FACTOR",false,"enable the calculation of the reweight factor c(t). You should also give a stride for updating the reweight factor in the optimizer by using the REWEIGHT_FACTOR_STRIDE keyword if the coefficients are updated.");
     261         184 :   keys.add("optional","OPTIMIZATION_THRESHOLD","Threshold value to turn off optimization of localized basis functions.");
     262             : 
     263          92 : }
     264             : 
     265             : 
     266          92 : void VesBias::useInitialCoeffsKeywords(Keywords& keys) {
     267          92 :   keys.use("COEFFS");
     268          92 : }
     269             : 
     270             : 
     271          92 : void VesBias::useTargetDistributionKeywords(Keywords& keys) {
     272         184 :   plumed_massert(!keys.exists("TARGET_DISTRIBUTIONS"),"you cannot use both useTargetDistributionKeywords and useMultipleTargetDistributionKeywords");
     273          92 :   keys.use("TARGET_DISTRIBUTION");
     274          92 : }
     275             : 
     276             : 
     277           0 : void VesBias::useMultipleTargetDistributionKeywords(Keywords& keys) {
     278           0 :   plumed_massert(!keys.exists("TARGET_DISTRIBUTION"),"you cannot use both useTargetDistributionKeywords and useMultipleTargetDistributionKeywords");
     279           0 :   keys.use("TARGET_DISTRIBUTIONS");
     280           0 : }
     281             : 
     282             : 
     283          92 : void VesBias::useGridBinKeywords(Keywords& keys) {
     284          92 :   keys.use("GRID_BINS");
     285          92 : }
     286             : 
     287             : 
     288           0 : void VesBias::useGridLimitsKeywords(Keywords& keys) {
     289           0 :   keys.use("GRID_MIN");
     290           0 :   keys.use("GRID_MAX");
     291           0 : }
     292             : 
     293             : 
     294          92 : void VesBias::useBiasCutoffKeywords(Keywords& keys) {
     295          92 :   keys.use("BIAS_CUTOFF");
     296          92 :   keys.use("BIAS_CUTOFF_FERMI_LAMBDA");
     297          92 : }
     298             : 
     299             : 
     300          92 : void VesBias::useProjectionArgKeywords(Keywords& keys) {
     301          92 :   keys.use("PROJ_ARG");
     302          92 : }
     303             : 
     304             : 
     305           0 : void VesBias::useReweightFactorKeywords(Keywords& keys) {
     306           0 :   keys.use("CALC_REWEIGHT_FACTOR");
     307           0 :   keys.addOutputComponent("rct","CALC_REWEIGHT_FACTOR","scalar","the reweight factor c(t).");
     308           0 : }
     309             : 
     310             : 
     311           0 : void VesBias::addCoeffsSet(const std::vector<std::string>& dimension_labels,const std::vector<unsigned int>& indices_shape) {
     312           0 :   auto coeffs_pntr_tmp = Tools::make_unique<CoeffsVector>("coeffs",dimension_labels,indices_shape,comm,true);
     313           0 :   initializeCoeffs(std::move(coeffs_pntr_tmp));
     314           0 : }
     315             : 
     316             : 
     317          90 : void VesBias::addCoeffsSet(std::vector<Value*>& args,std::vector<BasisFunctions*>& basisf) {
     318          90 :   auto coeffs_pntr_tmp = Tools::make_unique<CoeffsVector>("coeffs",args,basisf,comm,true);
     319          90 :   initializeCoeffs(std::move(coeffs_pntr_tmp));
     320          90 : }
     321             : 
     322             : 
     323           0 : void VesBias::addCoeffsSet(std::unique_ptr<CoeffsVector> coeffs_pntr_in) {
     324           0 :   initializeCoeffs(std::move(coeffs_pntr_in));
     325           0 : }
     326             : 
     327             : 
     328          90 : void VesBias::initializeCoeffs(std::unique_ptr<CoeffsVector> coeffs_pntr_in) {
     329             :   //
     330          90 :   coeffs_pntr_in->linkVesBias(this);
     331             :   //
     332             :   std::string label;
     333          90 :   if(!use_multiple_coeffssets_ && ncoeffssets_==1) {
     334           0 :     plumed_merror("you are not allowed to use multiple coefficient sets");
     335             :   }
     336             :   //
     337         180 :   label = getCoeffsSetLabelString("coeffs",ncoeffssets_);
     338          90 :   coeffs_pntr_in->setLabels(label);
     339             : 
     340          90 :   coeffs_pntrs_.emplace_back(std::move(coeffs_pntr_in));
     341             :   auto aver_ps_tmp = Tools::make_unique<CoeffsVector>(*coeffs_pntrs_.back());
     342         180 :   label = getCoeffsSetLabelString("targetdist_averages",ncoeffssets_);
     343          90 :   aver_ps_tmp->setLabels(label);
     344          90 :   aver_ps_tmp->setValues(0.0);
     345          90 :   targetdist_averages_pntrs_.emplace_back(std::move(aver_ps_tmp));
     346             :   //
     347             :   auto gradient_tmp = Tools::make_unique<CoeffsVector>(*coeffs_pntrs_.back());
     348         180 :   label = getCoeffsSetLabelString("gradient",ncoeffssets_);
     349          90 :   gradient_tmp->setLabels(label);
     350          90 :   gradient_pntrs_.emplace_back(std::move(gradient_tmp));
     351             :   //
     352         180 :   label = getCoeffsSetLabelString("hessian",ncoeffssets_);
     353          90 :   auto hessian_tmp = Tools::make_unique<CoeffsMatrix>(label,coeffs_pntrs_.back().get(),comm,diagonal_hessian_);
     354             : 
     355          90 :   hessian_pntrs_.emplace_back(std::move(hessian_tmp));
     356             :   //
     357             :   std::vector<double> aver_sampled_tmp;
     358          90 :   aver_sampled_tmp.assign(coeffs_pntrs_.back()->numberOfCoeffs(),0.0);
     359          90 :   sampled_averages.push_back(aver_sampled_tmp);
     360             :   //
     361             :   std::vector<double> cross_aver_sampled_tmp;
     362          90 :   cross_aver_sampled_tmp.assign(hessian_pntrs_.back()->getSize(),0.0);
     363          90 :   sampled_cross_averages.push_back(cross_aver_sampled_tmp);
     364             :   //
     365          90 :   aver_counters.push_back(0);
     366             :   //
     367          90 :   ncoeffssets_++;
     368         180 : }
     369             : 
     370             : 
     371          90 : bool VesBias::readCoeffsFromFiles() {
     372          90 :   plumed_assert(ncoeffssets_>0);
     373         180 :   plumed_massert(keywords.exists("COEFFS"),"you are not allowed to use this function as the COEFFS keyword is not enabled");
     374             :   bool read_coeffs = false;
     375          90 :   if(coeffs_fnames.size()>0) {
     376           4 :     plumed_massert(coeffs_fnames.size()==ncoeffssets_,"COEFFS keyword is of the wrong size");
     377           4 :     if(ncoeffssets_==1) {
     378           4 :       log.printf("  Read in coefficients from file ");
     379             :     }
     380             :     else {
     381           0 :       log.printf("  Read in coefficients from files:\n");
     382             :     }
     383           8 :     for(unsigned int i=0; i<ncoeffssets_; i++) {
     384           4 :       IFile ifile;
     385           4 :       ifile.link(*this);
     386           4 :       ifile.open(coeffs_fnames[i]);
     387           8 :       if(!ifile.FieldExist(coeffs_pntrs_[i]->getDataLabel())) {
     388           0 :         std::string error_msg = "Problem with reading coefficients from file " + ifile.getPath() + ": no field with name " + coeffs_pntrs_[i]->getDataLabel() + "\n";
     389           0 :         plumed_merror(error_msg);
     390             :       }
     391           4 :       size_t ncoeffs_read = coeffs_pntrs_[i]->readFromFile(ifile,false,false);
     392           4 :       coeffs_pntrs_[i]->setIterationCounterAndTime(0,getTime());
     393           4 :       if(ncoeffssets_==1) {
     394           8 :         log.printf("%s (read %zu of %zu values)\n", ifile.getPath().c_str(),ncoeffs_read,coeffs_pntrs_[i]->numberOfCoeffs());
     395             :       }
     396             :       else {
     397           0 :         log.printf("   coefficient %u: %s (read %zu of %zu values)\n",i,ifile.getPath().c_str(),ncoeffs_read,coeffs_pntrs_[i]->numberOfCoeffs());
     398             :       }
     399           4 :       ifile.close();
     400           4 :     }
     401             :     read_coeffs = true;
     402             :   }
     403          90 :   return read_coeffs;
     404             : }
     405             : 
     406             : 
     407       22810 : void VesBias::updateGradientAndHessian(const bool use_mwalkers_mpi) {
     408       45620 :   for(unsigned int k=0; k<ncoeffssets_; k++) {
     409             :     //
     410       22810 :     comm.Sum(sampled_averages[k]);
     411       22810 :     comm.Sum(sampled_cross_averages[k]);
     412       22810 :     if(use_mwalkers_mpi) {
     413             :       double walker_weight=1.0;
     414         120 :       if(aver_counters[k]==0) {walker_weight=0.0;}
     415         120 :       multiSimSumAverages(k,walker_weight);
     416             :     }
     417             :     // NOTE: this assumes that all walkers have the same TargetDist, might change later on!!
     418       22810 :     Gradient(k).setValues( TargetDistAverages(k) - sampled_averages[k] );
     419       22810 :     Hessian(k) = computeCovarianceFromAverages(k);
     420       22810 :     Hessian(k) *= getBeta();
     421             : 
     422       22810 :     if(optimization_threshold_ != 0.0) {
     423         390 :       for(size_t c_id=0; c_id < sampled_averages[k].size(); ++c_id) {
     424         380 :         if(fabs(sampled_averages[k][c_id]) < optimization_threshold_) {
     425         219 :           Gradient(k).setValue(c_id, 0.0);
     426         219 :           Hessian(k).setValue(c_id, c_id, 0.0);
     427             :         }
     428             :       }
     429             :     }
     430             :     //
     431             :     Gradient(k).activate();
     432             :     Hessian(k).activate();
     433             :     //
     434             :     // Check the total number of samples (from all walkers) and deactivate the Gradient and Hessian if it
     435             :     // is zero
     436       22810 :     unsigned int total_samples = aver_counters[k];
     437       22810 :     if(use_mwalkers_mpi) {
     438         120 :       if(comm.Get_rank()==0) {multi_sim_comm.Sum(total_samples);}
     439         120 :       comm.Bcast(total_samples,0);
     440             :     }
     441       22810 :     if(total_samples==0) {
     442             :       Gradient(k).deactivate();
     443          95 :       Gradient(k).clear();
     444             :       Hessian(k).deactivate();
     445          95 :       Hessian(k).clear();
     446             :     }
     447             :     //
     448             :     std::fill(sampled_averages[k].begin(), sampled_averages[k].end(), 0.0);
     449             :     std::fill(sampled_cross_averages[k].begin(), sampled_cross_averages[k].end(), 0.0);
     450       22810 :     aver_counters[k]=0;
     451             :   }
     452       22810 : }
     453             : 
     454             : 
     455         120 : void VesBias::multiSimSumAverages(const unsigned int c_id, const double walker_weight) {
     456         120 :   plumed_massert(walker_weight>=0.0,"the weight of the walker cannot be negative!");
     457         120 :   if(walker_weight!=1.0) {
     458        7860 :     for(size_t i=0; i<sampled_averages[c_id].size(); i++) {
     459        7800 :       sampled_averages[c_id][i] *= walker_weight;
     460             :     }
     461        7860 :     for(size_t i=0; i<sampled_cross_averages[c_id].size(); i++) {
     462        7800 :       sampled_cross_averages[c_id][i] *= walker_weight;
     463             :     }
     464             :   }
     465             :   //
     466         120 :   if(comm.Get_rank()==0) {
     467         120 :     multi_sim_comm.Sum(sampled_averages[c_id]);
     468         120 :     multi_sim_comm.Sum(sampled_cross_averages[c_id]);
     469         120 :     double norm_weights = walker_weight;
     470         120 :     multi_sim_comm.Sum(norm_weights);
     471         120 :     if(norm_weights>0.0) {norm_weights=1.0/norm_weights;}
     472        8580 :     for(size_t i=0; i<sampled_averages[c_id].size(); i++) {
     473        8460 :       sampled_averages[c_id][i] *= norm_weights;
     474             :     }
     475        8580 :     for(size_t i=0; i<sampled_cross_averages[c_id].size(); i++) {
     476        8460 :       sampled_cross_averages[c_id][i] *= norm_weights;
     477             :     }
     478             :   }
     479         120 :   comm.Bcast(sampled_averages[c_id],0);
     480         120 :   comm.Bcast(sampled_cross_averages[c_id],0);
     481         120 : }
     482             : 
     483             : 
     484       23556 : void VesBias::addToSampledAverages(const std::vector<double>& values, const unsigned int c_id) {
     485             :   /*
     486             :   use the following online equation to calculate the average and covariance
     487             :   (see https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Covariance)
     488             :       xm[n+1] = xm[n] + (x[n+1]-xm[n])/(n+1)
     489             :   */
     490       23556 :   double counter_dbl = static_cast<double>(aver_counters[c_id]);
     491             :   size_t ncoeffs = numberOfCoeffs(c_id);
     492       23556 :   std::vector<double> deltas(ncoeffs,0.0);
     493       23556 :   size_t stride = comm.Get_size();
     494       23556 :   size_t rank = comm.Get_rank();
     495             :   // update average and diagonal part of Hessian
     496     1830228 :   for(size_t i=rank; i<ncoeffs; i+=stride) {
     497             :     size_t midx = getHessianIndex(i,i,c_id);
     498     1806672 :     deltas[i] = (values[i]-sampled_averages[c_id][i])/(counter_dbl+1); // (x[n+1]-xm[n])/(n+1)
     499     1806672 :     sampled_averages[c_id][i] += deltas[i];
     500     1806672 :     sampled_cross_averages[c_id][midx] += (values[i]*values[i]-sampled_cross_averages[c_id][midx])/(counter_dbl+1);
     501             :   }
     502       23556 :   comm.Sum(deltas);
     503             :   // update off-diagonal part of the Hessian
     504       23556 :   if(!diagonal_hessian_) {
     505           0 :     for(size_t i=rank; i<ncoeffs; i+=stride) {
     506           0 :       for(size_t j=(i+1); j<ncoeffs; j++) {
     507             :         size_t midx = getHessianIndex(i,j,c_id);
     508           0 :         sampled_cross_averages[c_id][midx] += (values[i]*values[j]-sampled_cross_averages[c_id][midx])/(counter_dbl+1);
     509             :       }
     510             :     }
     511             :   }
     512             :   // NOTE: the MPI sum for sampled_averages and sampled_cross_averages is done later
     513       23556 :   aver_counters[c_id] += 1;
     514       23556 : }
     515             : 
     516             : 
     517           0 : void VesBias::setTargetDistAverages(const std::vector<double>& coeffderivs_aver_ps, const unsigned int coeffs_id) {
     518           0 :   TargetDistAverages(coeffs_id) = coeffderivs_aver_ps;
     519           0 :   TargetDistAverages(coeffs_id).setIterationCounterAndTime(this->getIterationCounter(),this->getTime());
     520           0 : }
     521             : 
     522             : 
     523         453 : void VesBias::setTargetDistAverages(const CoeffsVector& coeffderivs_aver_ps, const unsigned int coeffs_id) {
     524         453 :   TargetDistAverages(coeffs_id).setValues( coeffderivs_aver_ps );
     525         453 :   TargetDistAverages(coeffs_id).setIterationCounterAndTime(this->getIterationCounter(),this->getTime());
     526         453 : }
     527             : 
     528             : 
     529           0 : void VesBias::setTargetDistAveragesToZero(const unsigned int coeffs_id) {
     530           0 :   TargetDistAverages(coeffs_id).setAllValuesToZero();
     531           0 :   TargetDistAverages(coeffs_id).setIterationCounterAndTime(this->getIterationCounter(),this->getTime());
     532           0 : }
     533             : 
     534             : 
     535         175 : void VesBias::checkThatTemperatureIsGiven() {
     536         175 :   if(kbt_==0.0) {
     537           0 :     std::string err_msg = "VES bias " + getLabel() + " of type " + getName() + ": the temperature is needed so you need to give it using the TEMP keyword as the MD engine does not pass it to PLUMED.";
     538           0 :     plumed_merror(err_msg);
     539             :   }
     540         175 : }
     541             : 
     542             : 
     543        1005 : unsigned int VesBias::getIterationCounter() const {
     544             :   unsigned int iteration = 0;
     545        1005 :   if(optimizeCoeffs()) {
     546             :     iteration = getOptimizerPntr()->getIterationCounter();
     547             :   }
     548             :   else {
     549         113 :     iteration = getCoeffsPntrs()[0]->getIterationCounter();
     550             :   }
     551        1005 :   return iteration;
     552             : }
     553             : 
     554             : 
     555          85 : void VesBias::linkOptimizer(Optimizer* optimizer_pntr_in) {
     556             :   //
     557          85 :   if(optimizer_pntr_==NULL) {
     558          85 :     optimizer_pntr_ = optimizer_pntr_in;
     559             :   }
     560             :   else {
     561           0 :     std::string err_msg = "VES bias " + getLabel() + " of type " + getName() + " has already been linked with optimizer " + optimizer_pntr_->getLabel() + " of type " + optimizer_pntr_->getName() + ". You cannot link two optimizer to the same VES bias.";
     562           0 :     plumed_merror(err_msg);
     563             :   }
     564          85 :   checkThatTemperatureIsGiven();
     565          85 :   optimize_coeffs_ = true;
     566          85 :   filenames_have_iteration_number_ = true;
     567          85 : }
     568             : 
     569             : 
     570          82 : void VesBias::enableHessian(const bool diagonal_hessian) {
     571          82 :   compute_hessian_=true;
     572          82 :   diagonal_hessian_=diagonal_hessian;
     573          82 :   sampled_cross_averages.clear();
     574         164 :   for (unsigned int i=0; i<ncoeffssets_; i++) {
     575          82 :     std::string label = getCoeffsSetLabelString("hessian",i);
     576         164 :     hessian_pntrs_[i] = Tools::make_unique<CoeffsMatrix>(label,coeffs_pntrs_[i].get(),comm,diagonal_hessian_);
     577             :     //
     578             :     std::vector<double> cross_aver_sampled_tmp;
     579          82 :     cross_aver_sampled_tmp.assign(hessian_pntrs_[i]->getSize(),0.0);
     580          82 :     sampled_cross_averages.push_back(cross_aver_sampled_tmp);
     581             :   }
     582          82 : }
     583             : 
     584             : 
     585           0 : void VesBias::disableHessian() {
     586           0 :   compute_hessian_=false;
     587           0 :   diagonal_hessian_=true;
     588           0 :   sampled_cross_averages.clear();
     589           0 :   for (unsigned int i=0; i<ncoeffssets_; i++) {
     590           0 :     std::string label = getCoeffsSetLabelString("hessian",i);
     591           0 :     hessian_pntrs_[i] = Tools::make_unique<CoeffsMatrix>(label,coeffs_pntrs_[i].get(),comm,diagonal_hessian_);
     592             :     //
     593             :     std::vector<double> cross_aver_sampled_tmp;
     594           0 :     cross_aver_sampled_tmp.assign(hessian_pntrs_[i]->getSize(),0.0);
     595           0 :     sampled_cross_averages.push_back(cross_aver_sampled_tmp);
     596             :   }
     597           0 : }
     598             : 
     599             : 
     600         442 : std::string VesBias::getCoeffsSetLabelString(const std::string& type, const unsigned int coeffs_id) const {
     601         442 :   std::string label_prefix = getLabel() + ".";
     602         442 :   std::string label_postfix = "";
     603         442 :   if(use_multiple_coeffssets_) {
     604           0 :     Tools::convert(coeffs_id,label_postfix);
     605           0 :     label_postfix = "-" + label_postfix;
     606             :   }
     607        1326 :   return label_prefix+type+label_postfix;
     608             : }
     609             : 
     610             : 
     611         567 : std::unique_ptr<OFile> VesBias::getOFile(const std::string& filepath, const bool multi_sim_single_file, const bool enforce_backup) {
     612             :   auto ofile_pntr = Tools::make_unique<OFile>();
     613         567 :   std::string fp = filepath;
     614         567 :   ofile_pntr->link(*static_cast<Action*>(this));
     615         567 :   if(enforce_backup) {ofile_pntr->enforceBackup();}
     616         567 :   if(multi_sim_single_file) {
     617          56 :     unsigned int r=0;
     618          56 :     if(comm.Get_rank()==0) {r=multi_sim_comm.Get_rank();}
     619          56 :     comm.Bcast(r,0);
     620          56 :     if(r>0) {fp="/dev/null";}
     621         112 :     ofile_pntr->enforceSuffix("");
     622             :   }
     623         567 :   ofile_pntr->open(fp);
     624         567 :   return ofile_pntr;
     625           0 : }
     626             : 
     627             : 
     628           0 : void VesBias::setGridBins(const std::vector<unsigned int>& grid_bins_in) {
     629           0 :   plumed_massert(grid_bins_in.size()==getNumberOfArguments(),"the number of grid bins given doesn't match the number of arguments");
     630           0 :   grid_bins_=grid_bins_in;
     631           0 : }
     632             : 
     633             : 
     634           0 : void VesBias::setGridBins(const unsigned int nbins) {
     635           0 :   std::vector<unsigned int> grid_bins_in(getNumberOfArguments(),nbins);
     636           0 :   grid_bins_=grid_bins_in;
     637           0 : }
     638             : 
     639             : 
     640           0 : void VesBias::setGridMin(const std::vector<double>& grid_min_in) {
     641           0 :   plumed_massert(grid_min_in.size()==getNumberOfArguments(),"the number of lower bounds given for the grid doesn't match the number of arguments");
     642           0 :   grid_min_=grid_min_in;
     643           0 : }
     644             : 
     645             : 
     646           0 : void VesBias::setGridMax(const std::vector<double>& grid_max_in) {
     647           0 :   plumed_massert(grid_max_in.size()==getNumberOfArguments(),"the number of upper bounds given for the grid doesn't match the number of arguments");
     648           0 :   grid_max_=grid_max_in;
     649           0 : }
     650             : 
     651             : 
     652         383 : std::string VesBias::getCurrentOutputFilename(const std::string& base_filename, const std::string& suffix) const {
     653         383 :   std::string filename = base_filename;
     654         383 :   if(suffix.size()>0) {
     655          82 :     filename = FileBase::appendSuffix(filename,"."+suffix);
     656             :   }
     657         383 :   if(filenamesIncludeIterationNumber()) {
     658         756 :     filename = FileBase::appendSuffix(filename,"."+getIterationFilenameSuffix());
     659             :   }
     660         383 :   return filename;
     661             : }
     662             : 
     663             : 
     664         192 : std::string VesBias::getCurrentTargetDistOutputFilename(const std::string& suffix) const {
     665         192 :   std::string filename = targetdist_filename_;
     666         192 :   if(suffix.size()>0) {
     667         204 :     filename = FileBase::appendSuffix(filename,"."+suffix);
     668             :   }
     669         192 :   if(filenamesIncludeIterationNumber() && dynamicTargetDistribution()) {
     670         348 :     filename = FileBase::appendSuffix(filename,"."+getIterationFilenameSuffix());
     671             :   }
     672         192 :   return filename;
     673             : }
     674             : 
     675             : 
     676         552 : std::string VesBias::getIterationFilenameSuffix() const {
     677             :   std::string iter_str;
     678         552 :   Tools::convert(getIterationCounter(),iter_str);
     679         552 :   iter_str = "iter-" + iter_str;
     680         552 :   return iter_str;
     681             : }
     682             : 
     683             : 
     684           0 : std::string VesBias::getCoeffsSetFilenameSuffix(const unsigned int coeffs_id) const {
     685           0 :   std::string suffix = "";
     686           0 :   if(use_multiple_coeffssets_) {
     687           0 :     Tools::convert(coeffs_id,suffix);
     688           0 :     suffix = coeffs_id_prefix_ + suffix;
     689             :   }
     690           0 :   return suffix;
     691             : }
     692             : 
     693             : 
     694           3 : void VesBias::setupBiasCutoff(const double bias_cutoff_value, const double fermi_lambda) {
     695             :   //
     696             :   double fermi_exp_max = 100.0;
     697             :   //
     698             :   std::string str_bias_cutoff_value; VesTools::convertDbl2Str(bias_cutoff_value,str_bias_cutoff_value);
     699             :   std::string str_fermi_lambda; VesTools::convertDbl2Str(fermi_lambda,str_fermi_lambda);
     700             :   std::string str_fermi_exp_max; VesTools::convertDbl2Str(fermi_exp_max,str_fermi_exp_max);
     701           6 :   std::string swfunc_keywords = "FERMI R_0=" + str_bias_cutoff_value + " FERMI_LAMBDA=" + str_fermi_lambda + " FERMI_EXP_MAX=" + str_fermi_exp_max;
     702             :   //
     703           3 :   std::string swfunc_errors="";
     704           3 :   bias_cutoff_swfunc_pntr_ = Tools::make_unique<FermiSwitchingFunction>();
     705           3 :   bias_cutoff_swfunc_pntr_->set(swfunc_keywords,swfunc_errors);
     706           3 :   if(swfunc_errors.size()>0) {
     707           0 :     plumed_merror("problem with setting up Fermi switching function: " + swfunc_errors);
     708             :   }
     709             :   //
     710           3 :   bias_cutoff_value_=bias_cutoff_value;
     711           3 :   bias_cutoff_active_=true;
     712             :   enableDynamicTargetDistribution();
     713           3 : }
     714             : 
     715             : 
     716        3263 : double VesBias::getBiasCutoffSwitchingFunction(const double bias, double& deriv_factor) const {
     717        3263 :   plumed_massert(bias_cutoff_active_,"The bias cutoff is not active so you cannot call this function");
     718        3263 :   double arg = -(bias-bias_current_max_value);
     719        3263 :   double deriv=0.0;
     720        3263 :   double value = bias_cutoff_swfunc_pntr_->calculate(arg,deriv);
     721             :   // as FermiSwitchingFunction class has different behavior from normal SwitchingFunction class
     722             :   // I was having problems with NaN as it was dividing with zero
     723             :   // deriv *= arg;
     724        3263 :   deriv_factor = value-bias*deriv;
     725        3263 :   return value;
     726             : }
     727             : 
     728             : 
     729         567 : bool VesBias::useMultipleWalkers() const {
     730             :   bool use_mwalkers_mpi=false;
     731         567 :   if(optimizeCoeffs() && getOptimizerPntr()->useMultipleWalkers()) {
     732             :     use_mwalkers_mpi=true;
     733             :   }
     734         567 :   return use_mwalkers_mpi;
     735             : }
     736             : 
     737             : 
     738           0 : void VesBias::updateReweightFactor() {
     739           0 :   if(calc_reweightfactor_) {
     740           0 :     double value = calculateReweightFactor();
     741           0 :     getPntrToComponent("rct")->set(value);
     742             :   }
     743           0 : }
     744             : 
     745             : 
     746           0 : double VesBias::calculateReweightFactor() const {
     747           0 :   plumed_merror(getName()+" with label "+getLabel()+": calculation of the reweight factor c(t) has not been implemented for this type of VES bias");
     748             :   return 0.0;
     749             : }
     750             : 
     751             : 
     752             : }
     753             : }

Generated by: LCOV version 1.16