LCOV - code coverage report
Current view: top level - ves - TargetDistribution.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 189 217 87.1 %
Date: 2024-10-18 13:59:31 Functions: 22 26 84.6 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : #include "TargetDistModifer.h"
      25             : 
      26             : #include "VesBias.h"
      27             : #include "GridIntegrationWeights.h"
      28             : #include "VesTools.h"
      29             : 
      30             : #include "core/Value.h"
      31             : #include "tools/Grid.h"
      32             : #include "tools/File.h"
      33             : #include "tools/Keywords.h"
      34             : 
      35             : #include "GridProjWeights.h"
      36             : 
      37             : namespace PLMD {
      38             : namespace ves {
      39             : 
      40         441 : void TargetDistribution::registerKeywords( Keywords& keys ) {
      41         441 :   Action::registerKeywords(keys);
      42         882 :   keys.reserve("optional","WELLTEMPERED_FACTOR","Broaden the target distribution such that it is taken as [p(s)]^(1/gamma) where gamma is the well tempered factor given here. If this option is active the distribution will be automatically normalized.");
      43         882 :   keys.reserveFlag("SHIFT_TO_ZERO",false,"Shift the minimum value of the target distribution to zero. This can for example be used to avoid negative values in the target distribution. If this option is active the distribution will be automatically normalized.");
      44         882 :   keys.reserveFlag("NORMALIZE",false,"Renormalized the target distribution over the intervals on which it is defined to make sure that it is properly normalized to 1. In most cases this should not be needed as the target distributions should be normalized. The code will issue a warning (but still run) if this is needed for some reason.");
      45         441 : }
      46             : 
      47             : 
      48         407 : TargetDistribution::TargetDistribution(const ActionOptions&ao):
      49             :   Action(ao),
      50         407 :   type_(static_targetdist),
      51         407 :   force_normalization_(false),
      52         407 :   check_normalization_(true),
      53         407 :   check_nonnegative_(true),
      54         407 :   check_nan_inf_(false),
      55         407 :   shift_targetdist_to_zero_(false),
      56         407 :   dimension_(0),
      57         814 :   grid_args_(0),
      58         407 :   action_pntr_(NULL),
      59         407 :   vesbias_pntr_(NULL),
      60         407 :   needs_bias_grid_(false),
      61         407 :   needs_bias_withoutcutoff_grid_(false),
      62         407 :   needs_fes_grid_(false),
      63         407 :   bias_grid_pntr_(NULL),
      64         407 :   bias_withoutcutoff_grid_pntr_(NULL),
      65         407 :   fes_grid_pntr_(NULL),
      66         407 :   static_grid_calculated(false),
      67         407 :   allow_bias_cutoff_(true),
      68         407 :   bias_cutoff_active_(false)
      69             : {
      70             :   //
      71         814 :   if(keywords.exists("WELLTEMPERED_FACTOR")) {
      72         301 :     double welltempered_factor=0.0;
      73         301 :     parse("WELLTEMPERED_FACTOR",welltempered_factor);
      74             :     //
      75         301 :     if(welltempered_factor>0.0) {
      76             :       auto pntr = Tools::make_unique<WellTemperedModifer>(welltempered_factor);
      77           6 :       targetdist_modifer_pntrs_.emplace_back(std::move(pntr));
      78           6 :     }
      79         295 :     else if(welltempered_factor<0.0) {
      80           0 :       plumed_merror(getName()+": negative value in WELLTEMPERED_FACTOR does not make sense");
      81             :     }
      82             :   }
      83             :   //
      84         814 :   if(keywords.exists("SHIFT_TO_ZERO")) {
      85         289 :     parseFlag("SHIFT_TO_ZERO",shift_targetdist_to_zero_);
      86         289 :     if(shift_targetdist_to_zero_) {
      87           3 :       if(bias_cutoff_active_) {plumed_merror(getName()+": using SHIFT_TO_ZERO with bias cutoff is not allowed.");}
      88           3 :       check_nonnegative_=false;
      89             :     }
      90             :   }
      91             :   //
      92         814 :   if(keywords.exists("NORMALIZE")) {
      93         263 :     bool force_normalization=false;
      94         263 :     parseFlag("NORMALIZE",force_normalization);
      95         263 :     if(force_normalization) {
      96           3 :       if(shift_targetdist_to_zero_) {plumed_merror(getName()+" with label "+getLabel()+": using NORMALIZE with SHIFT_TO_ZERO is not needed, the target distribution will be automatically normalized.");}
      97             :       setForcedNormalization();
      98             :     }
      99             :   }
     100             : 
     101         407 : }
     102             : 
     103             : 
     104         407 : TargetDistribution::~TargetDistribution() {
     105         814 : }
     106         377 : double TargetDistribution::getBeta() const {
     107         377 :   plumed_massert(vesbias_pntr_!=NULL,"The VesBias has to be linked to use TargetDistribution::getBeta()");
     108         377 :   return vesbias_pntr_->getBeta();
     109             : }
     110             : 
     111             : 
     112         420 : void TargetDistribution::setDimension(const unsigned int dimension) {
     113         420 :   plumed_massert(dimension_==0,"setDimension: the dimension of the target distribution has already been set");
     114         420 :   dimension_=dimension;
     115         420 : }
     116             : 
     117             : 
     118          49 : void TargetDistribution::linkVesBias(VesBias* vesbias_pntr_in) {
     119          49 :   vesbias_pntr_ = vesbias_pntr_in;
     120          49 :   action_pntr_ = static_cast<Action*>(vesbias_pntr_in);
     121          49 : }
     122             : 
     123             : 
     124           0 : void TargetDistribution::linkAction(Action* action_pntr_in) {
     125           0 :   action_pntr_ = action_pntr_in;
     126           0 : }
     127             : 
     128             : 
     129           0 : void TargetDistribution::linkBiasGrid(Grid* bias_grid_pntr_in) {
     130           0 :   bias_grid_pntr_ = bias_grid_pntr_in;
     131           0 : }
     132             : 
     133             : 
     134           3 : void TargetDistribution::linkBiasWithoutCutoffGrid(Grid* bias_withoutcutoff_grid_pntr_in) {
     135           3 :   bias_withoutcutoff_grid_pntr_ = bias_withoutcutoff_grid_pntr_in;
     136           3 : }
     137             : 
     138             : 
     139          40 : void TargetDistribution::linkFesGrid(Grid* fes_grid_pntr_in) {
     140          40 :   fes_grid_pntr_ = fes_grid_pntr_in;
     141          40 : }
     142             : 
     143             : 
     144           3 : void TargetDistribution::setupBiasCutoff() {
     145           3 :   if(!allow_bias_cutoff_) {
     146           0 :     plumed_merror(getName()+" with label "+getLabel()+": this target distribution does not support a bias cutoff");
     147             :   }
     148           3 :   if(targetdist_modifer_pntrs_.size()>0) {
     149           0 :     plumed_merror(getName()+" with label "+getLabel()+": using a bias cutoff with a target distribution modifer like WELLTEMPERED_FACTOR is not allowed");
     150             :   }
     151           3 :   bias_cutoff_active_=true;
     152             :   setBiasWithoutCutoffGridNeeded();
     153             :   setDynamic();
     154             :   // as the p(s) includes the derivative factor so normalization
     155             :   // check can be misleading
     156           3 :   check_normalization_=false;
     157           3 :   force_normalization_=false;
     158           3 : }
     159             : 
     160             : 
     161         407 : void TargetDistribution::setupGrids(const std::vector<Value*>& arguments, const std::vector<std::string>& min, const std::vector<std::string>& max, const std::vector<unsigned int>& nbins) {
     162         407 :   if(getDimension()==0) {
     163          78 :     setDimension(arguments.size());
     164             :   }
     165             :   unsigned int dimension = getDimension();
     166         407 :   plumed_massert(arguments.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     167         407 :   plumed_massert(min.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     168         407 :   plumed_massert(max.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     169         407 :   plumed_massert(nbins.size()==dimension,"TargetDistribution::setupGrids: mismatch between number of values given for grid parameters");
     170         407 :   grid_args_=arguments;
     171         814 :   targetdist_grid_pntr_ =     Tools::make_unique<Grid>("targetdist",arguments,min,max,nbins,false,false);
     172         814 :   log_targetdist_grid_pntr_ = Tools::make_unique<Grid>("log_targetdist",arguments,min,max,nbins,false,false);
     173         407 :   setupAdditionalGrids(arguments,min,max,nbins);
     174         407 : }
     175             : 
     176             : 
     177         368 : void TargetDistribution::calculateStaticDistributionGrid() {
     178         368 :   if(static_grid_calculated && !bias_cutoff_active_) {return;}
     179             :   // plumed_massert(isStatic(),"this should only be used for static distributions");
     180         348 :   plumed_massert(targetdist_grid_pntr_,"the grids have not been setup using setupGrids");
     181         348 :   plumed_massert(log_targetdist_grid_pntr_,"the grids have not been setup using setupGrids");
     182      467955 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     183             :   {
     184      467607 :     std::vector<double> argument = targetdist_grid_pntr_->getPoint(l);
     185      467607 :     double value = getValue(argument);
     186      467607 :     targetdist_grid_pntr_->setValue(l,value);
     187      467607 :     log_targetdist_grid_pntr_->setValue(l,-std::log(value));
     188             :   }
     189         348 :   log_targetdist_grid_pntr_->setMinToZero();
     190         348 :   static_grid_calculated = true;
     191             : }
     192             : 
     193             : 
     194         901 : double TargetDistribution::integrateGrid(const Grid* grid_pntr) {
     195        1802 :   std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(grid_pntr);
     196             :   double sum = 0.0;
     197     2579140 :   for(Grid::index_t l=0; l<grid_pntr->getSize(); l++) {
     198     2578239 :     sum += integration_weights[l]*grid_pntr->getValue(l);
     199             :   }
     200         901 :   return sum;
     201             : }
     202             : 
     203             : 
     204          90 : double TargetDistribution::normalizeGrid(Grid* grid_pntr) {
     205          90 :   double normalization = TargetDistribution::integrateGrid(grid_pntr);
     206          90 :   grid_pntr->scaleAllValuesAndDerivatives(1.0/normalization);
     207          90 :   return normalization;
     208             : }
     209             : 
     210             : 
     211          28 : Grid TargetDistribution::getMarginalDistributionGrid(Grid* grid_pntr, const std::vector<std::string>& args) {
     212          28 :   plumed_massert(grid_pntr->getDimension()>1,"doesn't make sense calculating the marginal distribution for a one-dimensional distribution");
     213          28 :   plumed_massert(args.size()<grid_pntr->getDimension(),"the number of arguments for the marginal distribution should be less than the dimension of the full distribution");
     214             :   //
     215          28 :   std::vector<std::string> argnames = grid_pntr->getArgNames();
     216          28 :   std::vector<unsigned int> args_index(0);
     217          84 :   for(unsigned int i=0; i<argnames.size(); i++) {
     218         112 :     for(unsigned int l=0; l<args.size(); l++) {
     219          56 :       if(argnames[i]==args[l]) {args_index.push_back(i);}
     220             :     }
     221             :   }
     222          28 :   plumed_massert(args.size()==args_index.size(),"getMarginalDistributionGrid: problem with the arguments of the marginal");
     223             :   //
     224             :   auto Pw = Tools::make_unique<MarginalWeight>();
     225          28 :   Grid proj_grid = grid_pntr->project(args,Pw.get());
     226             :   Pw.reset();
     227             :   //
     228             :   // scale with the bin volume used for the integral such that the
     229             :   // marginals are proberly normalized to 1.0
     230          28 :   double intVol = grid_pntr->getBinVolume();
     231          56 :   for(unsigned int l=0; l<args_index.size(); l++) {
     232          28 :     intVol/=grid_pntr->getDx()[args_index[l]];
     233             :   }
     234          28 :   proj_grid.scaleAllValuesAndDerivatives(intVol);
     235             :   //
     236          28 :   return proj_grid;
     237          56 : }
     238             : 
     239             : 
     240           8 : Grid TargetDistribution::getMarginal(const std::vector<std::string>& args) {
     241           8 :   return TargetDistribution::getMarginalDistributionGrid(targetdist_grid_pntr_.get(),args);
     242             : }
     243             : 
     244             : 
     245         802 : void TargetDistribution::updateTargetDist() {
     246             :   //
     247         802 :   updateGrid();
     248             :   //
     249         808 :   for(unsigned int i=0; i<targetdist_modifer_pntrs_.size(); i++) {
     250           6 :     applyTargetDistModiferToGrid(targetdist_modifer_pntrs_[i].get());
     251             :   }
     252             :   //
     253         802 :   if(bias_cutoff_active_) {updateBiasCutoffForTargetDistGrid();}
     254             :   //
     255         802 :   if(shift_targetdist_to_zero_ && !(bias_cutoff_active_)) {setMinimumOfTargetDistGridToZero();}
     256         802 :   if(force_normalization_ && !(bias_cutoff_active_) ) {normalizeTargetDistGrid();}
     257             :   //
     258             :   // if(check_normalization_ && !force_normalization_ && !shift_targetdist_to_zero_){
     259         802 :   if(check_normalization_ && !(bias_cutoff_active_)) {
     260         691 :     double normalization = integrateGrid(targetdist_grid_pntr_.get());
     261             :     const double normalization_thrshold = 0.1;
     262         691 :     if(normalization < 1.0-normalization_thrshold || normalization > 1.0+normalization_thrshold) {
     263           9 :       std::string norm_str; Tools::convert(normalization,norm_str);
     264           9 :       std::string msg = "the target distribution grid is not proberly normalized, integrating over the grid gives: " + norm_str + " - You can avoid this problem by using the NORMALIZE keyword";
     265           9 :       warning(msg);
     266             :     }
     267             :   }
     268             :   //
     269         802 :   if(check_nonnegative_) {
     270             :     const double nonnegative_thrshold = -0.02;
     271         799 :     double grid_min_value = targetdist_grid_pntr_->getMinValue();
     272         799 :     if(grid_min_value<nonnegative_thrshold) {
     273           0 :       std::string grid_min_value_str; Tools::convert(grid_min_value,grid_min_value_str);
     274           0 :       std::string msg = "the target distribution grid has negative values, the lowest value is: " + grid_min_value_str + " - You can avoid this problem by using the SHIFT_TO_ZERO keyword";
     275           0 :       warning(msg);
     276             :     }
     277             :   }
     278             :   //
     279         802 :   if(check_nan_inf_) {checkNanAndInf();}
     280             :   //
     281         802 : }
     282             : 
     283             : 
     284          24 : void TargetDistribution::updateBiasCutoffForTargetDistGrid() {
     285          24 :   plumed_massert(vesbias_pntr_!=NULL,"The VesBias has to be linked to use updateBiasCutoffForTargetDistGrid()");
     286          24 :   plumed_massert(vesbias_pntr_->biasCutoffActive(),"updateBiasCutoffForTargetDistGrid() should only be used if the bias cutoff is active");
     287             :   // plumed_massert(targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     288             :   // plumed_massert(log_targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     289          24 :   plumed_massert(getBiasWithoutCutoffGridPntr()!=NULL,"the bias without cutoff grid has to be linked");
     290             :   //
     291          48 :   std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(targetdist_grid_pntr_.get());
     292             :   double norm = 0.0;
     293        2624 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     294             :   {
     295        2600 :     double value = targetdist_grid_pntr_->getValue(l);
     296        2600 :     double bias = getBiasWithoutCutoffGridPntr()->getValue(l);
     297        2600 :     double deriv_factor_swf = 0.0;
     298        2600 :     double swf = vesbias_pntr_->getBiasCutoffSwitchingFunction(bias,deriv_factor_swf);
     299             :     // this comes from the p(s)
     300        2600 :     value *= swf;
     301        2600 :     norm += integration_weights[l]*value;
     302             :     // this comes from the derivative of V(s)
     303        2600 :     value *= deriv_factor_swf;
     304        2600 :     targetdist_grid_pntr_->setValue(l,value);
     305             :     // double log_value = log_targetdist_grid_pntr_->getValue(l) - std::log(swf);
     306             :     // log_targetdist_grid_pntr_->setValue(l,log_value);
     307             :   }
     308          24 :   targetdist_grid_pntr_->scaleAllValuesAndDerivatives(1.0/norm);
     309             :   // log_targetdist_grid_pntr_->setMinToZero();
     310          24 : }
     311             : 
     312           6 : void TargetDistribution::applyTargetDistModiferToGrid(TargetDistModifer* modifer_pntr) {
     313             :   // plumed_massert(targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     314             :   // plumed_massert(log_targetdist_grid_pntr_!=NULL,"the grids have not been setup using setupGrids");
     315             :   //
     316          12 :   std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(targetdist_grid_pntr_.get());
     317             :   double norm = 0.0;
     318       21212 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     319             :   {
     320       21206 :     double value = targetdist_grid_pntr_->getValue(l);
     321       21206 :     std::vector<double> cv_values = targetdist_grid_pntr_->getPoint(l);
     322       21206 :     value = modifer_pntr->getModifedTargetDistValue(value,cv_values);
     323       21206 :     norm += integration_weights[l]*value;
     324       21206 :     targetdist_grid_pntr_->setValue(l,value);
     325       21206 :     log_targetdist_grid_pntr_->setValue(l,-std::log(value));
     326             :   }
     327           6 :   targetdist_grid_pntr_->scaleAllValuesAndDerivatives(1.0/norm);
     328           6 :   log_targetdist_grid_pntr_->setMinToZero();
     329           6 : }
     330             : 
     331             : 
     332          29 : void TargetDistribution::updateLogTargetDistGrid() {
     333       44070 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     334             :   {
     335       44041 :     log_targetdist_grid_pntr_->setValue(l,-std::log(targetdist_grid_pntr_->getValue(l)));
     336             :   }
     337          29 :   log_targetdist_grid_pntr_->setMinToZero();
     338          29 : }
     339             : 
     340             : 
     341           3 : void TargetDistribution::setMinimumOfTargetDistGridToZero() {
     342           3 :   targetDistGrid().setMinToZero();
     343           3 :   normalizeTargetDistGrid();
     344           3 :   updateLogTargetDistGrid();
     345           3 : }
     346             : 
     347             : 
     348           8 : void TargetDistribution::readInRestartTargetDistGrid(const std::string& grid_fname) {
     349           8 :   plumed_massert(isDynamic(),"this should only be used for dynamically updated target distributions!");
     350           8 :   IFile gridfile;
     351           8 :   if(!gridfile.FileExist(grid_fname)) {
     352           0 :     plumed_merror(getName()+": problem with reading previous target distribution when restarting, cannot find file " + grid_fname);
     353             :   }
     354           8 :   gridfile.open(grid_fname);
     355          16 :   std::unique_ptr<GridBase> restart_grid = GridBase::create("targetdist",grid_args_,gridfile,false,false,false);
     356           8 :   if(restart_grid->getSize()!=targetdist_grid_pntr_->getSize()) {
     357           0 :     plumed_merror(getName()+": problem with reading previous target distribution when restarting, the grid is not of the correct size!");
     358             :   }
     359           8 :   VesTools::copyGridValues(restart_grid.get(),targetdist_grid_pntr_.get());
     360           8 :   updateLogTargetDistGrid();
     361           8 : }
     362             : 
     363           1 : void TargetDistribution::clearLogTargetDistGrid() {
     364           1 :   log_targetdist_grid_pntr_->clear();
     365           1 : }
     366             : 
     367             : 
     368           0 : void TargetDistribution::checkNanAndInf() {
     369           0 :   for(Grid::index_t l=0; l<targetdist_grid_pntr_->getSize(); l++)
     370             :   {
     371           0 :     double value = targetdist_grid_pntr_->getValue(l);
     372           0 :     if(std::isnan(value) || std::isinf(value)) {
     373           0 :       std::string vs; Tools::convert(value,vs);
     374           0 :       std::vector<double> p = targetdist_grid_pntr_->getPoint(l);
     375           0 :       std::string ps; Tools::convert(p[0],ps);
     376           0 :       ps = "(" + ps;
     377           0 :       for(unsigned int k=1; k<p.size(); k++) {
     378           0 :         std::string t1; Tools::convert(p[k],t1);
     379           0 :         ps = ps + "," + t1;
     380             :       }
     381           0 :       ps = ps + ")";
     382           0 :       plumed_merror(getName()+": problem with target distribution, the value at " + ps + " is " + vs);
     383             :     }
     384             :   }
     385           0 : }
     386             : 
     387             : }
     388             : }

Generated by: LCOV version 1.16