Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2016-2021 The VES code team 3 : (see the PEOPLE-VES file at the root of this folder for a list of names) 4 : 5 : See http://www.ves-code.org for more information. 6 : 7 : This file is part of VES code module. 8 : 9 : The VES code module is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : The VES code module is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with the VES code module. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : 23 : #include "TargetDistribution.h" 24 : #include "GridIntegrationWeights.h" 25 : 26 : #include "core/ActionRegister.h" 27 : #include "tools/Grid.h" 28 : #include "core/PlumedMain.h" 29 : 30 : 31 : 32 : namespace PLMD { 33 : namespace ves { 34 : 35 : //+PLUMEDOC VES_TARGETDIST TD_WELLTEMPERED 36 : /* 37 : Well-tempered target distribution (dynamic). 38 : 39 : Use as a target distribution the well-tempered distribution \cite Barducci:2008 40 : given by 41 : \f[ 42 : p(\mathbf{s}) = 43 : \frac{e^{-(\beta/\gamma) F(\mathbf{s})}} 44 : {\int d\mathbf{s}\, e^{-(\beta/\gamma) F(\mathbf{s})}} = 45 : \frac{[P_{0}(\mathbf{s})]^{1/\gamma}} 46 : {\int d\mathbf{s}\, [P_{0}(\mathbf{s})]^{1/\gamma}} 47 : \f] 48 : where \f$\gamma\f$ is a so-called bias factor and \f$P_{0}(\mathbf{s})\f$ is the 49 : unbiased canonical distribution of the CVs. This target distribution thus 50 : corresponds to a biased ensemble where, as compared to the unbiased one, 51 : the probability peaks have been broaden and the fluctuations of the CVs are 52 : enhanced. 53 : The value of the bias factor \f$\gamma\f$ determines by how much the fluctuations 54 : are enhanced. 55 : 56 : The well-tempered distribution can be view as sampling on 57 : an effective free energy surface \f$\tilde{F}(\mathbf{s}) = (1/\gamma) F(\mathbf{s})\f$ 58 : which has largely the same metastable states as the original \f$F(\mathbf{s})\f$ 59 : but with barriers that have been reduced by a factor of \f$\gamma\f$. 60 : Generally one should use a value of \f$\gamma\f$ that results in 61 : effective barriers on the order of few \f$k_{\mathrm{B}}T\f$ 62 : such that thermal fluctuations can easily induce transitions 63 : between different metastable states. 64 : 65 : At convergence the relationship between the bias potential and the free 66 : energy surface is given by 67 : \f[ 68 : F(\mathbf{s}) = - \left(\frac{1}{1-\gamma^{-1}} \right) V(\mathbf{s}) 69 : \f] 70 : 71 : This target distribution depends directly on the free energy surface 72 : \f$F(\mathbf{s})\f$ which is quantity that we do not know a-priori and 73 : want to obtain. Therefore, this target distribution 74 : is iteratively updated \cite Valsson-JCTC-2015 according to 75 : \f[ 76 : p^{(m+1)}(\mathbf{s}) = 77 : \frac{e^{-(\beta/\gamma) F^{(m+1)}(\mathbf{s})}} 78 : {\int d\mathbf{s}\, e^{-(\beta/\gamma) F^{(m+1)}(\mathbf{s})}} 79 : \f] 80 : where \f$F^{(m+1)}(\mathbf{s})\f$ is the current best estimate of the 81 : free energy surface obtained according to 82 : \f[ 83 : F^{(m+1)}(\mathbf{s}) = 84 : - V^{(m+1)}(\mathbf{s}) - \frac{1}{\beta} \log p^{(m)}(\mathbf{s}) = 85 : - V^{(m+1)}(\mathbf{s}) + \frac{1}{\gamma} F^{(m)}(\mathbf{s}) 86 : \f] 87 : The frequency of performing this update needs to be set in the 88 : optimizer used in the calculation. Normally it is sufficient 89 : to do it every 100-1000 bias update iterations. 90 : 91 : \par Examples 92 : 93 : Employ a well-tempered target distribution with a bias factor of 10 94 : \plumedfile 95 : td_welltemp: TD_WELLTEMPERED BIASFACTOR=10 96 : \endplumedfile 97 : 98 : */ 99 : //+ENDPLUMEDOC 100 : 101 : class TD_WellTempered: public TargetDistribution { 102 : private: 103 : double bias_factor_; 104 : public: 105 : static void registerKeywords(Keywords&); 106 : explicit TD_WellTempered(const ActionOptions& ao); 107 : void updateGrid() override; 108 : double getValue(const std::vector<double>&) const override; 109 29 : ~TD_WellTempered() {} 110 : }; 111 : 112 : 113 : PLUMED_REGISTER_ACTION(TD_WellTempered,"TD_WELLTEMPERED") 114 : 115 : 116 31 : void TD_WellTempered::registerKeywords(Keywords& keys) { 117 31 : TargetDistribution::registerKeywords(keys); 118 62 : keys.add("compulsory","BIASFACTOR","The bias factor used for the well-tempered distribution."); 119 31 : } 120 : 121 : 122 29 : TD_WellTempered::TD_WellTempered(const ActionOptions& ao): 123 : PLUMED_VES_TARGETDISTRIBUTION_INIT(ao), 124 29 : bias_factor_(0.0) 125 : { 126 29 : log.printf(" Well-tempered target distribution, see and cite "); 127 58 : log << plumed.cite("Valsson and Parrinello, J. Chem. Theory Comput. 11, 1996-2002 (2015)"); 128 58 : log << plumed.cite("Barducci, Bussi, and Parrinello, Phys. Rev. Lett. 100, 020603 (2008)"); 129 29 : log.printf("\n"); 130 29 : parse("BIASFACTOR",bias_factor_); 131 29 : if(bias_factor_<=1.0) { 132 0 : plumed_merror("TD_WELLTEMPERED target distribution: the value of the bias factor doesn't make sense, it should be larger than 1.0"); 133 : } 134 : setDynamic(); 135 : setFesGridNeeded(); 136 29 : checkRead(); 137 29 : } 138 : 139 : 140 0 : double TD_WellTempered::getValue(const std::vector<double>& argument) const { 141 0 : plumed_merror("getValue not implemented for TD_WellTempered"); 142 : return 0.0; 143 : } 144 : 145 : 146 319 : void TD_WellTempered::updateGrid() { 147 319 : double beta_prime = getBeta()/bias_factor_; 148 319 : plumed_massert(getFesGridPntr()!=NULL,"the FES grid has to be linked to use TD_WellTempered!"); 149 638 : std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr()); 150 : double norm = 0.0; 151 1127896 : for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) { 152 1127577 : double value = beta_prime * getFesGridPntr()->getValue(l); 153 1127577 : logTargetDistGrid().setValue(l,value); 154 1127577 : value = exp(-value); 155 1127577 : norm += integration_weights[l]*value; 156 1127577 : targetDistGrid().setValue(l,value); 157 : } 158 319 : targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm); 159 319 : logTargetDistGrid().setMinToZero(); 160 319 : } 161 : 162 : 163 : } 164 : }