LCOV - code coverage report
Current view: top level - ves - TD_Multicanonical.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 197 204 96.6 %
Date: 2024-10-18 13:59:31 Functions: 5 6 83.3 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : #include "GridIntegrationWeights.h"
      25             : #include "core/ActionRegister.h"
      26             : #include "tools/Grid.h"
      27             : #include "core/PlumedMain.h"
      28             : #include <cfloat>
      29             : 
      30             : 
      31             : namespace PLMD {
      32             : namespace ves {
      33             : 
      34             : //+PLUMEDOC VES_TARGETDIST TD_MULTICANONICAL
      35             : /*
      36             : Multicanonical target distribution (dynamic).
      37             : 
      38             : Use the target distribution to sample the multicanonical ensemble \cite Berg-PRL-1992 \cite Piaggi-PRL-2019.
      39             : In this way, in a single molecular dynamics simulation one can obtain information about the system in a range of temperatures.
      40             : This range is determined through the keywords MIN_TEMP and MAX_TEMP.
      41             : 
      42             : The collective variables (CVs) used to construct the bias potential must be:
      43             :  1. the energy or,
      44             :  2. the energy and an order parameter.
      45             : 
      46             : Other choices of CVs or a different order of the above mentioned CVs are nonsensical.
      47             : The second CV, the order parameter, must be used when one aims at studying a first order phase transition in the chosen temperature interval \cite Piaggi-JCP-2019.
      48             : 
      49             : The algorithm will explore the free energy at each temperature up to a predefined free
      50             :  energy threshold \f$\epsilon\f$ specified through the keyword THRESHOLD (in kT units).
      51             : If only the energy is biased, i.e. no phase transition is considered, then THRESHOLD can be set to around 5.
      52             : If also an order parameter is used then the THRESHOLD should be greater than the barrier for the transformation in kT.
      53             : For small systems undergoing a freezing transition THRESHOLD is typically between 20 and 50.
      54             : 
      55             : When only the potential energy is used as CV the method is equivalent to the Wang-Landau algorithm \cite wanglandau.
      56             : The advantage with respect to Wang-Landau is that instead of sampling the potential energy indiscriminately, an interval is chosen on the fly based on the minimum and maximum targeted temperatures.
      57             : 
      58             : The algorithm works as follows.
      59             : The target distribution for the potential energy is chosen to be:
      60             : 
      61             : \f[
      62             : p(E)= \left\{\begin{array}{ll}
      63             :          \frac{1}{E_2-E_1} & \mathrm{if} \quad E_1<E<E_2 \\
      64             :          0 & \mathrm{otherwise}
      65             :       \end{array}\right.
      66             : \f]
      67             : 
      68             : where the energy limits \f$E_1\f$ and \f$E_2\f$ are yet to be determined.
      69             : Clearly the interval \f$E_1–E_2\f$ chosen is related to the interval of temperatures \f$T_1-T_2\f$.
      70             : To link these two intervals we make use of the following relation:
      71             : \f[
      72             : \beta' F_{\beta'}(E) = \beta F_{\beta}(E) + (\beta' - \beta) E + C,
      73             : \f]
      74             : where \f$F_{\beta}(E)\f$ is determined during the optimization and we shall choose \f$C\f$ such that \f$F_{\beta'}(E_{m})=0\f$ with \f$E_{m}\f$ the position of the free energy minimum.
      75             : Using this relation we employ an iterative procedure to find the energy interval.
      76             : At iteration \f$k\f$ we have the estimates \f$E_1^k\f$ and \f$E_2^k\f$ for \f$E_1\f$ and \f$E_2\f$, and the target distribution is:
      77             : \f[
      78             : p^k(E)=\frac{1}{E_2^k-E_1^k} \quad \mathrm{for} \quad E_1^k<E<E_2^k.
      79             : \f]
      80             : \f$E_1^k\f$ and \f$E_2^k\f$ are obtained from the leftmost solution of \f$\beta_2 F_{\beta_2}^{k-1}(E_1^k)=\epsilon\f$ and the rightmost solution of \f$\beta_1 F_{\beta_1}^{k-1}(E_2^k)=\epsilon\f$.
      81             : The procedure is repeated until convergence.
      82             : This iterative approach is similar to that in \ref TD_WELLTEMPERED.
      83             : 
      84             : The version of this algorithm in which the energy and an order parameter are biased is similar to the one described in \ref TD_MULTITHERMAL_MULTIBARIC.
      85             : 
      86             : The output of these simulations can be reweighted in order to obtain information at all temperatures in the targeted temperature interval.
      87             : The reweighting can be performed using the action \ref REWEIGHT_TEMP_PRESS.
      88             : 
      89             : \par Examples
      90             : 
      91             : The following input can be used to run a simulation in the multicanonical ensemble.
      92             : The temperature interval to be explored is 400-600 K.
      93             : The energy is used as collective variable.
      94             : Legendre polynomials are used to construct the bias potential.
      95             : The averaged stochastic gradient descent algorithm is chosen to optimize the VES functional.
      96             : The target distribution is updated every 100 optimization steps (200 ps here) using the last estimation of the free energy.
      97             : 
      98             : \plumedfile
      99             : # Use energy and volume as CVs
     100             : energy: ENERGY
     101             : 
     102             : # Basis functions
     103             : bf1: BF_LEGENDRE ORDER=20 MINIMUM=-25000 MAXIMUM=-23500
     104             : 
     105             : # Target distributions
     106             : TD_MULTICANONICAL ...
     107             :  LABEL=td_multi
     108             :  MIN_TEMP=400
     109             :  MAX_TEMP=600
     110             : ... TD_MULTICANONICAL
     111             : 
     112             : # Expansion
     113             : VES_LINEAR_EXPANSION ...
     114             :  ARG=energy
     115             :  BASIS_FUNCTIONS=bf1
     116             :  TEMP=500.0
     117             :  GRID_BINS=1000
     118             :  TARGET_DISTRIBUTION=td_multi
     119             :  LABEL=b1
     120             : ... VES_LINEAR_EXPANSION
     121             : 
     122             : # Optimization algorithm
     123             : OPT_AVERAGED_SGD ...
     124             :   BIAS=b1
     125             :   STRIDE=500
     126             :   LABEL=o1
     127             :   STEPSIZE=1.0
     128             :   FES_OUTPUT=500
     129             :   BIAS_OUTPUT=500
     130             :   TARGETDIST_OUTPUT=500
     131             :   COEFFS_OUTPUT=10
     132             :   TARGETDIST_STRIDE=100
     133             : ... OPT_AVERAGED_SGD
     134             : 
     135             : \endplumedfile
     136             : 
     137             : The multicanonical target distribution can also be used to explore a temperature interval in which a first order phase transitions is observed.
     138             : 
     139             : */
     140             : //+ENDPLUMEDOC
     141             : 
     142             : class TD_Multicanonical: public TargetDistribution {
     143             : private:
     144             :   double threshold_, min_temp_, max_temp_;
     145             :   std::vector<double> sigma_;
     146             :   unsigned steps_temp_;
     147             :   double epsilon_;
     148             :   bool smoothening_;
     149             : public:
     150             :   static void registerKeywords(Keywords&);
     151             :   explicit TD_Multicanonical(const ActionOptions& ao);
     152             :   void updateGrid() override;
     153             :   double getValue(const std::vector<double>&) const override;
     154           4 :   ~TD_Multicanonical() {}
     155             :   double GaussianSwitchingFunc(const double, const double, const double) const;
     156             : };
     157             : 
     158             : 
     159             : PLUMED_REGISTER_ACTION(TD_Multicanonical,"TD_MULTICANONICAL")
     160             : 
     161             : 
     162           4 : void TD_Multicanonical::registerKeywords(Keywords& keys) {
     163           4 :   TargetDistribution::registerKeywords(keys);
     164           8 :   keys.add("compulsory","THRESHOLD","5","Maximum exploration free energy in kT.");
     165           8 :   keys.add("compulsory","EPSILON","10","The zeros of the target distribution are changed to e^-EPSILON.");
     166           8 :   keys.add("compulsory","MIN_TEMP","Minimum temperature.");
     167           8 :   keys.add("compulsory","MAX_TEMP","Maximum temperature.");
     168           8 :   keys.add("optional","STEPS_TEMP","Number of temperature steps. Only for the 2D version, i.e. energy and order parameter.");
     169           8 :   keys.add("optional","SIGMA","The standard deviation parameters of the Gaussian kernels used for smoothing the target distribution. One value must be specified for each argument, i.e. one value per CV. A value of 0.0 means that no smoothing is performed, this is the default behavior.");
     170           4 : }
     171             : 
     172             : 
     173           2 : TD_Multicanonical::TD_Multicanonical(const ActionOptions& ao):
     174             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     175           2 :   threshold_(5.0),
     176           2 :   min_temp_(0.0),
     177           2 :   max_temp_(1000.0),
     178           4 :   sigma_(0.0),
     179           2 :   steps_temp_(20),
     180           2 :   epsilon_(10.0),
     181           2 :   smoothening_(true)
     182             : {
     183           2 :   log.printf("  Multicanonical target distribution");
     184           2 :   log.printf("\n");
     185           2 :   log.printf("  Please read and cite ");
     186           4 :   log << plumed.cite("Piaggi and Parrinello, Phys. Rev. Lett. 122 (5), 050601 (2019)");
     187           2 :   log.printf(" and ");
     188           4 :   log << plumed.cite("Piaggi and Parrinello, J. Chem. Phys. 150 (24), 244119 (2019)");
     189           2 :   log.printf("\n");
     190           2 :   parse("THRESHOLD",threshold_);
     191           2 :   if(threshold_<=0.0) {
     192           0 :     plumed_merror(getName()+": the value of the threshold should be positive.");
     193             :   }
     194           2 :   log.printf("  exploring free energy up to %f kT for each temperature \n",threshold_);
     195             : 
     196           2 :   parse("MIN_TEMP",min_temp_);
     197           2 :   parse("MAX_TEMP",max_temp_);
     198           2 :   log.printf("  temperatures between %f and %f will be explored \n",min_temp_,max_temp_);
     199           4 :   parseVector("SIGMA",sigma_);
     200           2 :   if(sigma_.size()==0) smoothening_=false;
     201           2 :   if(smoothening_ && (sigma_.size()<1 || sigma_.size()>2) ) plumed_merror(getName()+": SIGMA takes 1 or 2 values as input.");
     202           2 :   if (smoothening_) {
     203           2 :     log.printf("  the target distribution will be smoothed using sigma values");
     204           5 :     for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",sigma_[i]);
     205           2 :     log.printf("\n");
     206             :   }
     207             : 
     208           2 :   parse("STEPS_TEMP",steps_temp_); // Only used in the 2D version
     209           2 :   steps_temp_ += 1;
     210           2 :   log.printf("  %d steps in temperatures will be employed (if TD is two-dimensional) \n",steps_temp_);
     211             : 
     212           2 :   parse("EPSILON",epsilon_);
     213           2 :   if(epsilon_<=1.0) {
     214           0 :     plumed_merror(getName()+": the value of epsilon should be greater than 1.");
     215             :   }
     216           2 :   log.printf("  the non relevant regions of the target distribution are set to e^-%f \n",epsilon_);
     217             : 
     218             :   setDynamic();
     219             :   setFesGridNeeded();
     220           2 :   checkRead();
     221           2 : }
     222             : 
     223             : 
     224           0 : double TD_Multicanonical::getValue(const std::vector<double>& argument) const {
     225           0 :   plumed_merror("getValue not implemented for TD_Multicanonical");
     226             :   return 0.0;
     227             : }
     228             : 
     229             : 
     230          14 : void TD_Multicanonical::updateGrid() {
     231          14 :   if (getStep() == 0) {
     232           2 :     if(targetDistGrid().getDimension()>2 || targetDistGrid().getDimension()<1) plumed_merror(getName()+" works only with 1 or 2 arguments, i.e. energy, or energy and CV");
     233           2 :     if(smoothening_ && sigma_.size()!=targetDistGrid().getDimension()) plumed_merror(getName()+": mismatch between SIGMA dimension and number of arguments");
     234             :     // Use uniform TD
     235           4 :     std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr());
     236             :     double norm = 0.0;
     237        2704 :     for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     238             :       double value = 1.0;
     239        2702 :       norm += integration_weights[l]*value;
     240        2702 :       targetDistGrid().setValue(l,value);
     241             :     }
     242           2 :     targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm);
     243             :   } else {
     244             :     // Two variants: 1D and 2D
     245          12 :     if(targetDistGrid().getDimension()==1) {
     246             :       // 1D variant: Multicanonical without order parameter
     247             :       // In this variant we find the minimum and maximum relevant potential energies.
     248             :       // Using this information we construct a uniform target distribution in between these two.
     249          10 :       double beta = getBeta();
     250          10 :       double beta_prime_min = 1./(getKBoltzmann()*min_temp_);
     251          10 :       double beta_prime_max = 1./(getKBoltzmann()*max_temp_);
     252          10 :       plumed_massert(getFesGridPntr()!=NULL,"the FES grid has to be linked to use TD_Multicanonical!");
     253             :       // Find minimum of F(U) at temperature min
     254             :       double minval=DBL_MAX;
     255          10 :       Grid::index_t minindex = (targetDistGrid().getSize())/2;
     256          10 :       double minpos = targetDistGrid().getPoint(minindex)[0];
     257        1020 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     258        1010 :         double value = getFesGridPntr()->getValue(l);
     259        1010 :         double argument = targetDistGrid().getPoint(l)[0];
     260        1010 :         value = beta*value + (beta_prime_min-beta)*argument;
     261        1010 :         if(value<minval) {
     262             :           minval=value;
     263             :           minpos=argument;
     264             :           minindex=l;
     265             :         }
     266             :       }
     267             :       // Find minimum energy at low temperature
     268          10 :       double minimum_low = minpos;
     269          11 :       for(Grid::index_t l=minindex; l>1; l-=1) {
     270          11 :         double argument = targetDistGrid().getPoint(l)[0];
     271          11 :         double argument_next = targetDistGrid().getPoint(l-1)[0];
     272          11 :         double value = getFesGridPntr()->getValue(l);
     273          11 :         double value_next = getFesGridPntr()->getValue(l-1);
     274          11 :         value = beta*value + (beta_prime_min-beta)*argument - minval;
     275          11 :         value_next = beta*value_next + (beta_prime_min-beta)*argument_next - minval;
     276          11 :         if (value<threshold_ && value_next>threshold_) {
     277          10 :           minimum_low = argument_next;
     278          10 :           break;
     279             :         }
     280             :       }
     281             :       // Find maximum energy at low temperature
     282          10 :       double maximum_low = minpos;
     283          12 :       for(Grid::index_t l=minindex; l<(targetDistGrid().getSize()-1); l++) {
     284          12 :         double argument = targetDistGrid().getPoint(l)[0];
     285          12 :         double argument_next = targetDistGrid().getPoint(l+1)[0];
     286          12 :         double value = getFesGridPntr()->getValue(l);
     287          12 :         double value_next = getFesGridPntr()->getValue(l+1);
     288          12 :         value = beta*value + (beta_prime_min-beta)*argument - minval;
     289          12 :         value_next = beta*value_next + (beta_prime_min-beta)*argument_next - minval;
     290          12 :         if (value<threshold_ && value_next>threshold_) {
     291          10 :           maximum_low = argument_next;
     292          10 :           break;
     293             :         }
     294             :       }
     295             :       // Find minimum of F(U) at temperature max
     296             :       minval=DBL_MAX;
     297        1020 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     298        1010 :         double value = getFesGridPntr()->getValue(l);
     299        1010 :         double argument = targetDistGrid().getPoint(l)[0];
     300        1010 :         value = beta*value + (beta_prime_max-beta)*argument;
     301        1010 :         if(value<minval) {
     302             :           minval=value;
     303             :           minpos=argument;
     304             :           minindex=l;
     305             :         }
     306             :       }
     307             :       // Find minimum energy at high temperature
     308          10 :       double minimum_high = minpos;
     309          13 :       for(Grid::index_t l=minindex; l>1; l-=1) {
     310          13 :         double argument = targetDistGrid().getPoint(l)[0];
     311          13 :         double argument_next = targetDistGrid().getPoint(l-1)[0];
     312          13 :         double value = getFesGridPntr()->getValue(l);
     313          13 :         double value_next = getFesGridPntr()->getValue(l-1);
     314          13 :         value = beta*value + (beta_prime_max-beta)*argument - minval;
     315          13 :         value_next = beta*value_next + (beta_prime_max-beta)*argument_next - minval;
     316          13 :         if (value<threshold_ && value_next>threshold_) {
     317          10 :           minimum_high = argument_next;
     318          10 :           break;
     319             :         }
     320             :       }
     321             :       // Find maximum energy at high temperature
     322          10 :       double maximum_high = minpos;
     323          11 :       for(Grid::index_t l=minindex; l<(targetDistGrid().getSize()-1); l++) {
     324          11 :         double argument = targetDistGrid().getPoint(l)[0];
     325          11 :         double argument_next = targetDistGrid().getPoint(l+1)[0];
     326          11 :         double value = getFesGridPntr()->getValue(l);
     327          11 :         double value_next = getFesGridPntr()->getValue(l+1);
     328          11 :         value = beta*value + (beta_prime_max-beta)*argument - minval;
     329          11 :         value_next = beta*value_next + (beta_prime_max-beta)*argument_next - minval;
     330          11 :         if (value<threshold_ && value_next>threshold_) {
     331          10 :           maximum_high = argument_next;
     332          10 :           break;
     333             :         }
     334             :       }
     335          10 :       double minimum = std::min(minimum_low,minimum_high);
     336          10 :       double maximum = std::max(maximum_low,maximum_high);
     337             :       // Construct uniform TD in the interval between minimum and maximum
     338          20 :       std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr());
     339             :       double norm = 0.0;
     340        1020 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     341        1010 :         double argument = targetDistGrid().getPoint(l)[0];
     342             :         double value = 1.0;
     343             :         double tmp;
     344        1010 :         if(argument < minimum) {
     345         217 :           if (smoothening_) tmp = GaussianSwitchingFunc(argument,minimum,sigma_[0]);
     346           0 :           else tmp = exp(-1.0*epsilon_);
     347             :         }
     348         793 :         else if(argument > maximum) {
     349         199 :           if (smoothening_) tmp = GaussianSwitchingFunc(argument,maximum,sigma_[0]);
     350           0 :           else tmp = exp(-1.0*epsilon_);
     351             :         }
     352             :         else {
     353             :           tmp = 1.0;
     354             :         }
     355             :         value *= tmp;
     356        1010 :         norm += integration_weights[l]*value;
     357        1010 :         targetDistGrid().setValue(l,value);
     358             :       }
     359          10 :       targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm);
     360           2 :     } else if(targetDistGrid().getDimension()==2) {
     361             :       // 2D variant: Multicanonical with order parameter
     362             :       // In this variant we find for each temperature the relevant region of potential energy and order parameter.
     363             :       // The target distribution will be the union of the relevant regions at all temperatures in the temperature interval.
     364           2 :       double beta = getBeta();
     365           2 :       double beta_prime_min = 1./(getKBoltzmann()*min_temp_);
     366           2 :       double beta_prime_max = 1./(getKBoltzmann()*max_temp_);
     367           2 :       plumed_massert(getFesGridPntr()!=NULL,"the FES grid has to be linked to use TD_Multicanonical!");
     368             :       // Set all to zero
     369        5204 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     370        5202 :         double value = exp(-1.0*epsilon_);
     371        5202 :         targetDistGrid().setValue(l,value);
     372             :       }
     373             :       // Loop over temperatures
     374          44 :       for(unsigned i=0; i<steps_temp_; i++) {
     375          42 :         double beta_prime=beta_prime_min + (beta_prime_max-beta_prime_min)*i/(steps_temp_-1);
     376             :         // Find minimum for this temperature
     377             :         double minval=DBL_MAX;
     378      109284 :         for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     379      109242 :           double energy = targetDistGrid().getPoint(l)[0];
     380      109242 :           double value = getFesGridPntr()->getValue(l);
     381      109242 :           value = beta*value + (beta_prime-beta)*energy;
     382      109242 :           if(value<minval) {
     383             :             minval=value;
     384             :           }
     385             :         }
     386             :         // Now check which energies and volumes are below X kt
     387      109284 :         for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     388      109242 :           double energy = targetDistGrid().getPoint(l)[0];
     389      109242 :           double value = getFesGridPntr()->getValue(l);
     390      109242 :           value = beta*value + (beta_prime-beta)*energy - minval;
     391      109242 :           if (value<threshold_) {
     392             :             double value = 1.0;
     393        7076 :             targetDistGrid().setValue(l,value);
     394             :           }
     395             :         }
     396             :       }
     397           2 :       if (smoothening_) {
     398           2 :         std::vector<unsigned> nbin=targetDistGrid().getNbin();
     399           2 :         std::vector<double> dx=targetDistGrid().getDx();
     400             :         // Smoothening
     401         104 :         for(unsigned i=0; i<nbin[0]; i++) {
     402        5304 :           for(unsigned j=0; j<nbin[1]; j++) {
     403        5202 :             std::vector<unsigned> indices(2);
     404        5202 :             indices[0]=i;
     405        5202 :             indices[1]=j;
     406        5202 :             Grid::index_t index = targetDistGrid().getIndex(indices);
     407        5202 :             double energy = targetDistGrid().getPoint(index)[0];
     408        5202 :             double volume = targetDistGrid().getPoint(index)[1];
     409        5202 :             double value = targetDistGrid().getValue(index);
     410        5202 :             if (value>(1-1.e-5)) { // Apply only if this grid point was 1.
     411             :               // Apply gaussians around
     412         773 :               std::vector<int> minBin(2), maxBin(2), deltaBin(2); // These cannot be unsigned
     413             :               // Only consider contributions less than n*sigma bins apart from the actual distance
     414         773 :               deltaBin[0]=std::floor(6*sigma_[0]/dx[0]);;
     415         773 :               deltaBin[1]=std::floor(6*sigma_[1]/dx[1]);;
     416             :               // For energy
     417         773 :               minBin[0]=i - deltaBin[0];
     418         773 :               if (minBin[0] < 0) minBin[0]=0;
     419         773 :               if (minBin[0] > (nbin[0]-1)) minBin[0]=nbin[0]-1;
     420         773 :               maxBin[0]=i +  deltaBin[0];
     421         773 :               if (maxBin[0] > (nbin[0]-1)) maxBin[0]=nbin[0]-1;
     422             :               // For volume
     423         773 :               minBin[1]=j - deltaBin[1];
     424         773 :               if (minBin[1] < 0) minBin[1]=0;
     425         773 :               if (minBin[1] > (nbin[1]-1)) minBin[1]=nbin[1]-1;
     426         773 :               maxBin[1]=j +  deltaBin[1];
     427         773 :               if (maxBin[1] > (nbin[1]-1)) maxBin[1]=nbin[1]-1;
     428       31273 :               for(unsigned l=minBin[0]; l<maxBin[0]+1; l++) {
     429      549973 :                 for(unsigned m=minBin[1]; m<maxBin[1]+1; m++) {
     430      519473 :                   std::vector<unsigned> indices_prime(2);
     431      519473 :                   indices_prime[0]=l;
     432      519473 :                   indices_prime[1]=m;
     433      519473 :                   Grid::index_t index_prime = targetDistGrid().getIndex(indices_prime);
     434      519473 :                   double energy_prime = targetDistGrid().getPoint(index_prime)[0];
     435      519473 :                   double volume_prime = targetDistGrid().getPoint(index_prime)[1];
     436      519473 :                   double value_prime = targetDistGrid().getValue(index_prime);
     437             :                   // Apply gaussian
     438     1558419 :                   double gaussian_value = GaussianSwitchingFunc(energy_prime,energy,sigma_[0])*GaussianSwitchingFunc(volume_prime,volume,sigma_[1]);
     439      519473 :                   if (value_prime<gaussian_value) {
     440       19817 :                     targetDistGrid().setValue(index_prime,gaussian_value);
     441             :                   }
     442             :                 }
     443             :               }
     444             :             }
     445             :           }
     446             :         }
     447             :       }
     448             :       // Normalize
     449           4 :       std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr());
     450             :       double norm = 0.0;
     451        5204 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     452        5202 :         double value = targetDistGrid().getValue(l);
     453        5202 :         norm += integration_weights[l]*value;
     454             :       }
     455           2 :       targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm);
     456           0 :     } else plumed_merror(getName()+": Number of arguments for this target distribution must be 1 or 2");
     457             :   }
     458          14 :   updateLogTargetDistGrid();
     459          14 : }
     460             : 
     461             : inline
     462             : double TD_Multicanonical::GaussianSwitchingFunc(const double argument, const double center, const double sigma) const {
     463     1039362 :   if(sigma>0.0) {
     464     1039362 :     double arg=(argument-center)/sigma;
     465     1039362 :     return exp(-0.5*arg*arg);
     466             :   }
     467             :   else {
     468             :     return 0.0;
     469             :   }
     470             : }
     471             : 
     472             : 
     473             : }
     474             : }

Generated by: LCOV version 1.16