LCOV - code coverage report
Current view: top level - ves - TD_Multicanonical.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 204 217 94.0 %
Date: 2025-03-25 09:33:27 Functions: 5 6 83.3 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : #include "GridIntegrationWeights.h"
      25             : #include "core/ActionRegister.h"
      26             : #include "tools/Grid.h"
      27             : #include "core/PlumedMain.h"
      28             : #include <cfloat>
      29             : 
      30             : 
      31             : namespace PLMD {
      32             : namespace ves {
      33             : 
      34             : //+PLUMEDOC VES_TARGETDIST TD_MULTICANONICAL
      35             : /*
      36             : Multicanonical target distribution (dynamic).
      37             : 
      38             : Use the target distribution to sample the multicanonical ensemble \cite Berg-PRL-1992 \cite Piaggi-PRL-2019.
      39             : In this way, in a single molecular dynamics simulation one can obtain information about the system in a range of temperatures.
      40             : This range is determined through the keywords MIN_TEMP and MAX_TEMP.
      41             : 
      42             : The collective variables (CVs) used to construct the bias potential must be:
      43             :  1. the energy or,
      44             :  2. the energy and an order parameter.
      45             : 
      46             : Other choices of CVs or a different order of the above mentioned CVs are nonsensical.
      47             : The second CV, the order parameter, must be used when one aims at studying a first order phase transition in the chosen temperature interval \cite Piaggi-JCP-2019.
      48             : 
      49             : The algorithm will explore the free energy at each temperature up to a predefined free
      50             :  energy threshold \f$\epsilon\f$ specified through the keyword THRESHOLD (in kT units).
      51             : If only the energy is biased, i.e. no phase transition is considered, then THRESHOLD can be set to around 5.
      52             : If also an order parameter is used then the THRESHOLD should be greater than the barrier for the transformation in kT.
      53             : For small systems undergoing a freezing transition THRESHOLD is typically between 20 and 50.
      54             : 
      55             : When only the potential energy is used as CV the method is equivalent to the Wang-Landau algorithm \cite wanglandau.
      56             : The advantage with respect to Wang-Landau is that instead of sampling the potential energy indiscriminately, an interval is chosen on the fly based on the minimum and maximum targeted temperatures.
      57             : 
      58             : The algorithm works as follows.
      59             : The target distribution for the potential energy is chosen to be:
      60             : 
      61             : \f[
      62             : p(E)= \left\{\begin{array}{ll}
      63             :          \frac{1}{E_2-E_1} & \mathrm{if} \quad E_1<E<E_2 \\
      64             :          0 & \mathrm{otherwise}
      65             :       \end{array}\right.
      66             : \f]
      67             : 
      68             : where the energy limits \f$E_1\f$ and \f$E_2\f$ are yet to be determined.
      69             : Clearly the interval \f$E_1–E_2\f$ chosen is related to the interval of temperatures \f$T_1-T_2\f$.
      70             : To link these two intervals we make use of the following relation:
      71             : \f[
      72             : \beta' F_{\beta'}(E) = \beta F_{\beta}(E) + (\beta' - \beta) E + C,
      73             : \f]
      74             : where \f$F_{\beta}(E)\f$ is determined during the optimization and we shall choose \f$C\f$ such that \f$F_{\beta'}(E_{m})=0\f$ with \f$E_{m}\f$ the position of the free energy minimum.
      75             : Using this relation we employ an iterative procedure to find the energy interval.
      76             : At iteration \f$k\f$ we have the estimates \f$E_1^k\f$ and \f$E_2^k\f$ for \f$E_1\f$ and \f$E_2\f$, and the target distribution is:
      77             : \f[
      78             : p^k(E)=\frac{1}{E_2^k-E_1^k} \quad \mathrm{for} \quad E_1^k<E<E_2^k.
      79             : \f]
      80             : \f$E_1^k\f$ and \f$E_2^k\f$ are obtained from the leftmost solution of \f$\beta_2 F_{\beta_2}^{k-1}(E_1^k)=\epsilon\f$ and the rightmost solution of \f$\beta_1 F_{\beta_1}^{k-1}(E_2^k)=\epsilon\f$.
      81             : The procedure is repeated until convergence.
      82             : This iterative approach is similar to that in \ref TD_WELLTEMPERED.
      83             : 
      84             : The version of this algorithm in which the energy and an order parameter are biased is similar to the one described in \ref TD_MULTITHERMAL_MULTIBARIC.
      85             : 
      86             : The output of these simulations can be reweighted in order to obtain information at all temperatures in the targeted temperature interval.
      87             : The reweighting can be performed using the action \ref REWEIGHT_TEMP_PRESS.
      88             : 
      89             : \par Examples
      90             : 
      91             : The following input can be used to run a simulation in the multicanonical ensemble.
      92             : The temperature interval to be explored is 400-600 K.
      93             : The energy is used as collective variable.
      94             : Legendre polynomials are used to construct the bias potential.
      95             : The averaged stochastic gradient descent algorithm is chosen to optimize the VES functional.
      96             : The target distribution is updated every 100 optimization steps (200 ps here) using the last estimation of the free energy.
      97             : 
      98             : \plumedfile
      99             : # Use energy and volume as CVs
     100             : energy: ENERGY
     101             : 
     102             : # Basis functions
     103             : bf1: BF_LEGENDRE ORDER=20 MINIMUM=-25000 MAXIMUM=-23500
     104             : 
     105             : # Target distributions
     106             : TD_MULTICANONICAL ...
     107             :  LABEL=td_multi
     108             :  MIN_TEMP=400
     109             :  MAX_TEMP=600
     110             : ... TD_MULTICANONICAL
     111             : 
     112             : # Expansion
     113             : VES_LINEAR_EXPANSION ...
     114             :  ARG=energy
     115             :  BASIS_FUNCTIONS=bf1
     116             :  TEMP=500.0
     117             :  GRID_BINS=1000
     118             :  TARGET_DISTRIBUTION=td_multi
     119             :  LABEL=b1
     120             : ... VES_LINEAR_EXPANSION
     121             : 
     122             : # Optimization algorithm
     123             : OPT_AVERAGED_SGD ...
     124             :   BIAS=b1
     125             :   STRIDE=500
     126             :   LABEL=o1
     127             :   STEPSIZE=1.0
     128             :   FES_OUTPUT=500
     129             :   BIAS_OUTPUT=500
     130             :   TARGETDIST_OUTPUT=500
     131             :   COEFFS_OUTPUT=10
     132             :   TARGETDIST_STRIDE=100
     133             : ... OPT_AVERAGED_SGD
     134             : 
     135             : \endplumedfile
     136             : 
     137             : The multicanonical target distribution can also be used to explore a temperature interval in which a first order phase transitions is observed.
     138             : 
     139             : */
     140             : //+ENDPLUMEDOC
     141             : 
     142             : class TD_Multicanonical: public TargetDistribution {
     143             : private:
     144             :   double threshold_, min_temp_, max_temp_;
     145             :   std::vector<double> sigma_;
     146             :   unsigned steps_temp_;
     147             :   double epsilon_;
     148             :   bool smoothening_;
     149             : public:
     150             :   static void registerKeywords(Keywords&);
     151             :   explicit TD_Multicanonical(const ActionOptions& ao);
     152             :   void updateGrid() override;
     153             :   double getValue(const std::vector<double>&) const override;
     154           4 :   ~TD_Multicanonical() {}
     155             :   double GaussianSwitchingFunc(const double, const double, const double) const;
     156             : };
     157             : 
     158             : 
     159             : PLUMED_REGISTER_ACTION(TD_Multicanonical,"TD_MULTICANONICAL")
     160             : 
     161             : 
     162           4 : void TD_Multicanonical::registerKeywords(Keywords& keys) {
     163           4 :   TargetDistribution::registerKeywords(keys);
     164           4 :   keys.add("compulsory","THRESHOLD","5","Maximum exploration free energy in kT.");
     165           4 :   keys.add("compulsory","EPSILON","10","The zeros of the target distribution are changed to e^-EPSILON.");
     166           4 :   keys.add("compulsory","MIN_TEMP","Minimum temperature.");
     167           4 :   keys.add("compulsory","MAX_TEMP","Maximum temperature.");
     168           4 :   keys.add("optional","STEPS_TEMP","Number of temperature steps. Only for the 2D version, i.e. energy and order parameter.");
     169           4 :   keys.add("optional","SIGMA","The standard deviation parameters of the Gaussian kernels used for smoothing the target distribution. One value must be specified for each argument, i.e. one value per CV. A value of 0.0 means that no smoothing is performed, this is the default behavior.");
     170           4 : }
     171             : 
     172             : 
     173           2 : TD_Multicanonical::TD_Multicanonical(const ActionOptions& ao):
     174             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     175           2 :   threshold_(5.0),
     176           2 :   min_temp_(0.0),
     177           2 :   max_temp_(1000.0),
     178           4 :   sigma_(0.0),
     179           2 :   steps_temp_(20),
     180           2 :   epsilon_(10.0),
     181           2 :   smoothening_(true) {
     182           2 :   log.printf("  Multicanonical target distribution");
     183           2 :   log.printf("\n");
     184           2 :   log.printf("  Please read and cite ");
     185           4 :   log << plumed.cite("Piaggi and Parrinello, Phys. Rev. Lett. 122 (5), 050601 (2019)");
     186           2 :   log.printf(" and ");
     187           4 :   log << plumed.cite("Piaggi and Parrinello, J. Chem. Phys. 150 (24), 244119 (2019)");
     188           2 :   log.printf("\n");
     189           2 :   parse("THRESHOLD",threshold_);
     190           2 :   if(threshold_<=0.0) {
     191           0 :     plumed_merror(getName()+": the value of the threshold should be positive.");
     192             :   }
     193           2 :   log.printf("  exploring free energy up to %f kT for each temperature \n",threshold_);
     194             : 
     195           2 :   parse("MIN_TEMP",min_temp_);
     196           2 :   parse("MAX_TEMP",max_temp_);
     197           2 :   log.printf("  temperatures between %f and %f will be explored \n",min_temp_,max_temp_);
     198           4 :   parseVector("SIGMA",sigma_);
     199           2 :   if(sigma_.size()==0) {
     200           0 :     smoothening_=false;
     201             :   }
     202           2 :   if(smoothening_ && (sigma_.size()<1 || sigma_.size()>2) ) {
     203           0 :     plumed_merror(getName()+": SIGMA takes 1 or 2 values as input.");
     204             :   }
     205           2 :   if (smoothening_) {
     206           2 :     log.printf("  the target distribution will be smoothed using sigma values");
     207           5 :     for(unsigned i=0; i<sigma_.size(); ++i) {
     208           3 :       log.printf(" %f",sigma_[i]);
     209             :     }
     210           2 :     log.printf("\n");
     211             :   }
     212             : 
     213           2 :   parse("STEPS_TEMP",steps_temp_); // Only used in the 2D version
     214           2 :   steps_temp_ += 1;
     215           2 :   log.printf("  %d steps in temperatures will be employed (if TD is two-dimensional) \n",steps_temp_);
     216             : 
     217           2 :   parse("EPSILON",epsilon_);
     218           2 :   if(epsilon_<=1.0) {
     219           0 :     plumed_merror(getName()+": the value of epsilon should be greater than 1.");
     220             :   }
     221           2 :   log.printf("  the non relevant regions of the target distribution are set to e^-%f \n",epsilon_);
     222             : 
     223             :   setDynamic();
     224             :   setFesGridNeeded();
     225           2 :   checkRead();
     226           2 : }
     227             : 
     228             : 
     229           0 : double TD_Multicanonical::getValue(const std::vector<double>& argument) const {
     230           0 :   plumed_merror("getValue not implemented for TD_Multicanonical");
     231             :   return 0.0;
     232             : }
     233             : 
     234             : 
     235          14 : void TD_Multicanonical::updateGrid() {
     236          14 :   if (getStep() == 0) {
     237           2 :     if(targetDistGrid().getDimension()>2 || targetDistGrid().getDimension()<1) {
     238           0 :       plumed_merror(getName()+" works only with 1 or 2 arguments, i.e. energy, or energy and CV");
     239             :     }
     240           2 :     if(smoothening_ && sigma_.size()!=targetDistGrid().getDimension()) {
     241           0 :       plumed_merror(getName()+": mismatch between SIGMA dimension and number of arguments");
     242             :     }
     243             :     // Use uniform TD
     244           4 :     std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr());
     245             :     double norm = 0.0;
     246        2704 :     for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     247             :       double value = 1.0;
     248        2702 :       norm += integration_weights[l]*value;
     249        2702 :       targetDistGrid().setValue(l,value);
     250             :     }
     251           2 :     targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm);
     252             :   } else {
     253             :     // Two variants: 1D and 2D
     254          12 :     if(targetDistGrid().getDimension()==1) {
     255             :       // 1D variant: Multicanonical without order parameter
     256             :       // In this variant we find the minimum and maximum relevant potential energies.
     257             :       // Using this information we construct a uniform target distribution in between these two.
     258          10 :       double beta = getBeta();
     259          10 :       double beta_prime_min = 1./(getKBoltzmann()*min_temp_);
     260          10 :       double beta_prime_max = 1./(getKBoltzmann()*max_temp_);
     261          10 :       plumed_massert(getFesGridPntr()!=NULL,"the FES grid has to be linked to use TD_Multicanonical!");
     262             :       // Find minimum of F(U) at temperature min
     263             :       double minval=DBL_MAX;
     264          10 :       Grid::index_t minindex = (targetDistGrid().getSize())/2;
     265          10 :       double minpos = targetDistGrid().getPoint(minindex)[0];
     266        1020 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     267        1010 :         double value = getFesGridPntr()->getValue(l);
     268        1010 :         double argument = targetDistGrid().getPoint(l)[0];
     269        1010 :         value = beta*value + (beta_prime_min-beta)*argument;
     270        1010 :         if(value<minval) {
     271             :           minval=value;
     272             :           minpos=argument;
     273             :           minindex=l;
     274             :         }
     275             :       }
     276             :       // Find minimum energy at low temperature
     277          10 :       double minimum_low = minpos;
     278          11 :       for(Grid::index_t l=minindex; l>1; l-=1) {
     279          11 :         double argument = targetDistGrid().getPoint(l)[0];
     280          11 :         double argument_next = targetDistGrid().getPoint(l-1)[0];
     281          11 :         double value = getFesGridPntr()->getValue(l);
     282          11 :         double value_next = getFesGridPntr()->getValue(l-1);
     283          11 :         value = beta*value + (beta_prime_min-beta)*argument - minval;
     284          11 :         value_next = beta*value_next + (beta_prime_min-beta)*argument_next - minval;
     285          11 :         if (value<threshold_ && value_next>threshold_) {
     286          10 :           minimum_low = argument_next;
     287          10 :           break;
     288             :         }
     289             :       }
     290             :       // Find maximum energy at low temperature
     291          10 :       double maximum_low = minpos;
     292          12 :       for(Grid::index_t l=minindex; l<(targetDistGrid().getSize()-1); l++) {
     293          12 :         double argument = targetDistGrid().getPoint(l)[0];
     294          12 :         double argument_next = targetDistGrid().getPoint(l+1)[0];
     295          12 :         double value = getFesGridPntr()->getValue(l);
     296          12 :         double value_next = getFesGridPntr()->getValue(l+1);
     297          12 :         value = beta*value + (beta_prime_min-beta)*argument - minval;
     298          12 :         value_next = beta*value_next + (beta_prime_min-beta)*argument_next - minval;
     299          12 :         if (value<threshold_ && value_next>threshold_) {
     300          10 :           maximum_low = argument_next;
     301          10 :           break;
     302             :         }
     303             :       }
     304             :       // Find minimum of F(U) at temperature max
     305             :       minval=DBL_MAX;
     306        1020 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     307        1010 :         double value = getFesGridPntr()->getValue(l);
     308        1010 :         double argument = targetDistGrid().getPoint(l)[0];
     309        1010 :         value = beta*value + (beta_prime_max-beta)*argument;
     310        1010 :         if(value<minval) {
     311             :           minval=value;
     312             :           minpos=argument;
     313             :           minindex=l;
     314             :         }
     315             :       }
     316             :       // Find minimum energy at high temperature
     317          10 :       double minimum_high = minpos;
     318          13 :       for(Grid::index_t l=minindex; l>1; l-=1) {
     319          13 :         double argument = targetDistGrid().getPoint(l)[0];
     320          13 :         double argument_next = targetDistGrid().getPoint(l-1)[0];
     321          13 :         double value = getFesGridPntr()->getValue(l);
     322          13 :         double value_next = getFesGridPntr()->getValue(l-1);
     323          13 :         value = beta*value + (beta_prime_max-beta)*argument - minval;
     324          13 :         value_next = beta*value_next + (beta_prime_max-beta)*argument_next - minval;
     325          13 :         if (value<threshold_ && value_next>threshold_) {
     326          10 :           minimum_high = argument_next;
     327          10 :           break;
     328             :         }
     329             :       }
     330             :       // Find maximum energy at high temperature
     331          10 :       double maximum_high = minpos;
     332          11 :       for(Grid::index_t l=minindex; l<(targetDistGrid().getSize()-1); l++) {
     333          11 :         double argument = targetDistGrid().getPoint(l)[0];
     334          11 :         double argument_next = targetDistGrid().getPoint(l+1)[0];
     335          11 :         double value = getFesGridPntr()->getValue(l);
     336          11 :         double value_next = getFesGridPntr()->getValue(l+1);
     337          11 :         value = beta*value + (beta_prime_max-beta)*argument - minval;
     338          11 :         value_next = beta*value_next + (beta_prime_max-beta)*argument_next - minval;
     339          11 :         if (value<threshold_ && value_next>threshold_) {
     340          10 :           maximum_high = argument_next;
     341          10 :           break;
     342             :         }
     343             :       }
     344          10 :       double minimum = std::min(minimum_low,minimum_high);
     345          10 :       double maximum = std::max(maximum_low,maximum_high);
     346             :       // Construct uniform TD in the interval between minimum and maximum
     347          20 :       std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr());
     348             :       double norm = 0.0;
     349        1020 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     350        1010 :         double argument = targetDistGrid().getPoint(l)[0];
     351             :         double value = 1.0;
     352             :         double tmp;
     353        1010 :         if(argument < minimum) {
     354         217 :           if (smoothening_) {
     355         217 :             tmp = GaussianSwitchingFunc(argument,minimum,sigma_[0]);
     356             :           } else {
     357           0 :             tmp = exp(-1.0*epsilon_);
     358             :           }
     359         793 :         } else if(argument > maximum) {
     360         199 :           if (smoothening_) {
     361         199 :             tmp = GaussianSwitchingFunc(argument,maximum,sigma_[0]);
     362             :           } else {
     363           0 :             tmp = exp(-1.0*epsilon_);
     364             :           }
     365             :         } else {
     366             :           tmp = 1.0;
     367             :         }
     368             :         value *= tmp;
     369        1010 :         norm += integration_weights[l]*value;
     370        1010 :         targetDistGrid().setValue(l,value);
     371             :       }
     372          10 :       targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm);
     373           2 :     } else if(targetDistGrid().getDimension()==2) {
     374             :       // 2D variant: Multicanonical with order parameter
     375             :       // In this variant we find for each temperature the relevant region of potential energy and order parameter.
     376             :       // The target distribution will be the union of the relevant regions at all temperatures in the temperature interval.
     377           2 :       double beta = getBeta();
     378           2 :       double beta_prime_min = 1./(getKBoltzmann()*min_temp_);
     379           2 :       double beta_prime_max = 1./(getKBoltzmann()*max_temp_);
     380           2 :       plumed_massert(getFesGridPntr()!=NULL,"the FES grid has to be linked to use TD_Multicanonical!");
     381             :       // Set all to zero
     382        5204 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     383        5202 :         double value = exp(-1.0*epsilon_);
     384        5202 :         targetDistGrid().setValue(l,value);
     385             :       }
     386             :       // Loop over temperatures
     387          44 :       for(unsigned i=0; i<steps_temp_; i++) {
     388          42 :         double beta_prime=beta_prime_min + (beta_prime_max-beta_prime_min)*i/(steps_temp_-1);
     389             :         // Find minimum for this temperature
     390             :         double minval=DBL_MAX;
     391      109284 :         for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     392      109242 :           double energy = targetDistGrid().getPoint(l)[0];
     393      109242 :           double value = getFesGridPntr()->getValue(l);
     394      109242 :           value = beta*value + (beta_prime-beta)*energy;
     395      109242 :           if(value<minval) {
     396             :             minval=value;
     397             :           }
     398             :         }
     399             :         // Now check which energies and volumes are below X kt
     400      109284 :         for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     401      109242 :           double energy = targetDistGrid().getPoint(l)[0];
     402      109242 :           double value = getFesGridPntr()->getValue(l);
     403      109242 :           value = beta*value + (beta_prime-beta)*energy - minval;
     404      109242 :           if (value<threshold_) {
     405             :             double value = 1.0;
     406        7076 :             targetDistGrid().setValue(l,value);
     407             :           }
     408             :         }
     409             :       }
     410           2 :       if (smoothening_) {
     411           2 :         std::vector<unsigned> nbin=targetDistGrid().getNbin();
     412           2 :         std::vector<double> dx=targetDistGrid().getDx();
     413             :         // Smoothening
     414         104 :         for(unsigned i=0; i<nbin[0]; i++) {
     415        5304 :           for(unsigned j=0; j<nbin[1]; j++) {
     416        5202 :             std::vector<unsigned> indices(2);
     417        5202 :             indices[0]=i;
     418        5202 :             indices[1]=j;
     419        5202 :             Grid::index_t index = targetDistGrid().getIndex(indices);
     420        5202 :             double energy = targetDistGrid().getPoint(index)[0];
     421        5202 :             double volume = targetDistGrid().getPoint(index)[1];
     422        5202 :             double value = targetDistGrid().getValue(index);
     423        5202 :             if (value>(1-1.e-5)) { // Apply only if this grid point was 1.
     424             :               // Apply gaussians around
     425         773 :               std::vector<int> minBin(2), maxBin(2), deltaBin(2); // These cannot be unsigned
     426             :               // Only consider contributions less than n*sigma bins apart from the actual distance
     427         773 :               deltaBin[0]=std::floor(6*sigma_[0]/dx[0]);;
     428         773 :               deltaBin[1]=std::floor(6*sigma_[1]/dx[1]);;
     429             :               // For energy
     430         773 :               minBin[0]=i - deltaBin[0];
     431         773 :               if (minBin[0] < 0) {
     432         406 :                 minBin[0]=0;
     433             :               }
     434         773 :               if (minBin[0] > (nbin[0]-1)) {
     435           0 :                 minBin[0]=nbin[0]-1;
     436             :               }
     437         773 :               maxBin[0]=i +  deltaBin[0];
     438         773 :               if (maxBin[0] > (nbin[0]-1)) {
     439         349 :                 maxBin[0]=nbin[0]-1;
     440             :               }
     441             :               // For volume
     442         773 :               minBin[1]=j - deltaBin[1];
     443         773 :               if (minBin[1] < 0) {
     444         655 :                 minBin[1]=0;
     445             :               }
     446         773 :               if (minBin[1] > (nbin[1]-1)) {
     447           0 :                 minBin[1]=nbin[1]-1;
     448             :               }
     449         773 :               maxBin[1]=j +  deltaBin[1];
     450         773 :               if (maxBin[1] > (nbin[1]-1)) {
     451          86 :                 maxBin[1]=nbin[1]-1;
     452             :               }
     453       31273 :               for(unsigned l=minBin[0]; l<maxBin[0]+1; l++) {
     454      549973 :                 for(unsigned m=minBin[1]; m<maxBin[1]+1; m++) {
     455      519473 :                   std::vector<unsigned> indices_prime(2);
     456      519473 :                   indices_prime[0]=l;
     457      519473 :                   indices_prime[1]=m;
     458      519473 :                   Grid::index_t index_prime = targetDistGrid().getIndex(indices_prime);
     459      519473 :                   double energy_prime = targetDistGrid().getPoint(index_prime)[0];
     460      519473 :                   double volume_prime = targetDistGrid().getPoint(index_prime)[1];
     461      519473 :                   double value_prime = targetDistGrid().getValue(index_prime);
     462             :                   // Apply gaussian
     463     1558419 :                   double gaussian_value = GaussianSwitchingFunc(energy_prime,energy,sigma_[0])*GaussianSwitchingFunc(volume_prime,volume,sigma_[1]);
     464      519473 :                   if (value_prime<gaussian_value) {
     465       19817 :                     targetDistGrid().setValue(index_prime,gaussian_value);
     466             :                   }
     467             :                 }
     468             :               }
     469             :             }
     470             :           }
     471             :         }
     472             :       }
     473             :       // Normalize
     474           4 :       std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr());
     475             :       double norm = 0.0;
     476        5204 :       for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     477        5202 :         double value = targetDistGrid().getValue(l);
     478        5202 :         norm += integration_weights[l]*value;
     479             :       }
     480           2 :       targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm);
     481             :     } else {
     482           0 :       plumed_merror(getName()+": Number of arguments for this target distribution must be 1 or 2");
     483             :     }
     484             :   }
     485          14 :   updateLogTargetDistGrid();
     486          14 : }
     487             : 
     488             : inline
     489             : double TD_Multicanonical::GaussianSwitchingFunc(const double argument, const double center, const double sigma) const {
     490     1039362 :   if(sigma>0.0) {
     491     1039362 :     double arg=(argument-center)/sigma;
     492     1039362 :     return exp(-0.5*arg*arg);
     493             :   } else {
     494             :     return 0.0;
     495             :   }
     496             : }
     497             : 
     498             : 
     499             : }
     500             : }

Generated by: LCOV version 1.16