LCOV - code coverage report
Current view: top level - ves - TD_LinearCombination.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 61 83 73.5 %
Date: 2025-03-25 09:33:27 Functions: 6 10 60.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : #include "VesTools.h"
      25             : 
      26             : #include "core/ActionRegister.h"
      27             : #include "core/ActionSet.h"
      28             : #include "core/PlumedMain.h"
      29             : #include "tools/Grid.h"
      30             : 
      31             : #include <limits>
      32             : 
      33             : 
      34             : namespace PLMD {
      35             : 
      36             : // class Grid;
      37             : class Action;
      38             : 
      39             : namespace ves {
      40             : 
      41             : //+PLUMEDOC VES_TARGETDIST TD_LINEAR_COMBINATION
      42             : /*
      43             : Target distribution given by linear combination of distributions (static or dynamic).
      44             : 
      45             : Employ a target distribution that is a linear combination of the other
      46             : distributions, defined as
      47             : \f[
      48             : p(\mathbf{s}) = \sum_{i} w_{i} \, p_{i}(\mathbf{s})
      49             : \f]
      50             : where the weights \f$w_{i}\f$ are normalized to 1, \f$\sum_{i}w_{i}=1\f$.
      51             : 
      52             : The labels of the distributions \f$p_{i}(\mathbf{s})\f$ to be used in the
      53             : linear combination are given in the DISTRIBUTIONS keyword.
      54             : 
      55             : The weights \f$w_{i}\f$ can be given using
      56             : the WEIGHTS keyword. The distributions are weighted equally if no weights are given.
      57             : 
      58             : It is assumed that all the distributions \f$p_{i}(\mathbf{s})\f$ are normalized.
      59             : If that is not the case for some reason should you
      60             : normalize each distribution separately by using the NORMALIZE
      61             : keyword when defining them in the input file (i.e. before the
      62             : TD_LINEAR_COMBINATION action).
      63             : Note that normalizing the overall
      64             : linear combination will generally lead to different results than normalizing
      65             : each distribution separately.
      66             : 
      67             : The linear combination will be a dynamic target distribution if one or more
      68             : of the distributions used is a dynamic distribution, otherwise it will be a
      69             : static distribution.
      70             : 
      71             : \par Examples
      72             : 
      73             : Here we employ a linear combination of a uniform and a Gaussian distribution.
      74             : No weights are given so the two distributions will be weighted equally.
      75             : \plumedfile
      76             : td_uni: TD_UNIFORM
      77             : 
      78             : td_gauss: TD_GAUSSIAN CENTER1=-2.0 SIGMA1=0.5
      79             : 
      80             : td_comb: TD_LINEAR_COMBINATION DISTRIBUTIONS=td_uni,td_gauss
      81             : \endplumedfile
      82             : 
      83             : Here we employ a linear combination of a uniform and two Gaussian distribution.
      84             : The weights are automatically normalized to 1 such that giving
      85             : WEIGHTS=1.0,1.0,2.0 as we do here is equal to giving WEIGHTS=0.25,0.25,0.50.
      86             : \plumedfile
      87             : td_uni: TD_UNIFORM
      88             : 
      89             : td_gauss1: TD_GAUSSIAN CENTER1=-2.0,-2.0 SIGMA1=0.5,0.3
      90             : 
      91             : td_gauss2: TD_GAUSSIAN CENTER1=+2.0,+2.0 SIGMA1=0.3,0.5
      92             : 
      93             : TD_LINEAR_COMBINATION ...
      94             :  DISTRIBUTIONS=td_uni,td_gauss1,td_gauss2
      95             :  WEIGHTS=1.0,1.0,2.0
      96             :  LABEL=td_comb
      97             : ... TD_LINEAR_COMBINATION
      98             : \endplumedfile
      99             : 
     100             : In the above example the two Gaussian kernels are given using two separate
     101             : DISTRIBUTION keywords. As the \ref TD_GAUSSIAN target distribution allows multiple
     102             : centers is it also possible to use just one DISTRIBUTION keyword for the two
     103             : Gaussian kernels. This is shown in the following example which will give the
     104             : exact same result as the one above as the weights have been appropriately
     105             : adjusted
     106             : \plumedfile
     107             : td_uni: TD_UNIFORM
     108             : 
     109             : TD_GAUSSIAN ...
     110             :  CENTER1=-2.0,-2.0  SIGMA1=0.5,0.3
     111             :  CENTER2=+2.0,+2.0  SIGMA2=0.3,0.5
     112             :  WEIGHTS=1.0,2.0
     113             :  LABEL=td_gauss
     114             : ... TD_GAUSSIAN
     115             : 
     116             : TD_LINEAR_COMBINATION ...
     117             :  DISTRIBUTIONS=td_uni,td_gauss
     118             :  WEIGHTS=0.25,0.75
     119             :  LABEL=td_comb
     120             : ... TD_LINEAR_COMBINATION
     121             : \endplumedfile
     122             : 
     123             : */
     124             : //+ENDPLUMEDOC
     125             : 
     126             : class VesBias;
     127             : 
     128             : class TD_LinearCombination: public TargetDistribution {
     129             : private:
     130             :   std::vector<TargetDistribution*> distribution_pntrs_;
     131             :   std::vector<Grid*> grid_pntrs_;
     132             :   std::vector<double> weights_;
     133             :   unsigned int ndist_;
     134             :   void setupAdditionalGrids(const std::vector<Value*>&, const std::vector<std::string>&, const std::vector<std::string>&, const std::vector<unsigned int>&) override;
     135             : public:
     136             :   static void registerKeywords(Keywords&);
     137             :   explicit TD_LinearCombination(const ActionOptions& ao);
     138             :   void updateGrid() override;
     139             :   double getValue(const std::vector<double>&) const override;
     140             :   //
     141             :   void linkVesBias(VesBias*) override;
     142             :   void linkAction(Action*) override;
     143             :   //
     144             :   void linkBiasGrid(Grid*) override;
     145             :   void linkBiasWithoutCutoffGrid(Grid*) override;
     146             :   void linkFesGrid(Grid*) override;
     147             :   //
     148             : };
     149             : 
     150             : 
     151             : PLUMED_REGISTER_ACTION(TD_LinearCombination,"TD_LINEAR_COMBINATION")
     152             : 
     153             : 
     154          14 : void TD_LinearCombination::registerKeywords(Keywords& keys) {
     155          14 :   TargetDistribution::registerKeywords(keys);
     156          14 :   keys.add("compulsory","DISTRIBUTIONS","The labels of the target distribution actions to be used in the linear combination.");
     157          14 :   keys.add("optional","WEIGHTS","The weights of target distributions. Have to be as many as the number of target distribution labels given in DISTRIBUTIONS. If no weights are given the distributions are weighted equally. The weights are automatically normalized to 1.");
     158          14 :   keys.use("WELLTEMPERED_FACTOR");
     159             :   //keys.use("SHIFT_TO_ZERO");
     160          14 :   keys.use("NORMALIZE");
     161          14 : }
     162             : 
     163             : 
     164          12 : TD_LinearCombination::TD_LinearCombination(const ActionOptions& ao):
     165             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     166          24 :   distribution_pntrs_(0),
     167          12 :   grid_pntrs_(0),
     168          12 :   weights_(0),
     169          24 :   ndist_(0) {
     170             :   std::vector<std::string> targetdist_labels;
     171          12 :   parseVector("DISTRIBUTIONS",targetdist_labels);
     172             : 
     173          12 :   std::string error_msg = "";
     174          24 :   distribution_pntrs_ = VesTools::getPointersFromLabels<TargetDistribution*>(targetdist_labels,plumed.getActionSet(),error_msg);
     175          12 :   if(error_msg.size()>0) {
     176           0 :     plumed_merror("Error in keyword DISTRIBUTIONS of "+getName()+": "+error_msg);
     177             :   }
     178             : 
     179          40 :   for(unsigned int i=0; i<distribution_pntrs_.size(); i++) {
     180          28 :     if(distribution_pntrs_[i]->isDynamic()) {
     181             :       setDynamic();
     182             :     }
     183          28 :     if(distribution_pntrs_[i]->fesGridNeeded()) {
     184             :       setFesGridNeeded();
     185             :     }
     186          28 :     if(distribution_pntrs_[i]->biasGridNeeded()) {
     187             :       setBiasGridNeeded();
     188             :     }
     189             :   }
     190             : 
     191          12 :   ndist_ = distribution_pntrs_.size();
     192          12 :   grid_pntrs_.assign(ndist_,NULL);
     193          12 :   if(ndist_==0) {
     194           0 :     plumed_merror(getName()+ ": no distributions are given.");
     195             :   }
     196          12 :   if(ndist_==1) {
     197           0 :     plumed_merror(getName()+ ": giving only one distribution does not make sense.");
     198             :   }
     199             :   //
     200          24 :   parseVector("WEIGHTS",weights_);
     201          12 :   if(weights_.size()==0) {
     202           4 :     weights_.assign(distribution_pntrs_.size(),1.0);
     203             :   }
     204          12 :   if(distribution_pntrs_.size()!=weights_.size()) {
     205           0 :     plumed_merror(getName()+ ": there has to be as many weights given in WEIGHTS as the number of target distribution labels given in DISTRIBUTIONS");
     206             :   }
     207             :   //
     208             :   double sum_weights=0.0;
     209          40 :   for(unsigned int i=0; i<weights_.size(); i++) {
     210          28 :     sum_weights+=weights_[i];
     211             :   }
     212          40 :   for(unsigned int i=0; i<weights_.size(); i++) {
     213          28 :     weights_[i]/=sum_weights;
     214             :   }
     215          12 :   checkRead();
     216          12 : }
     217             : 
     218             : 
     219           0 : double TD_LinearCombination::getValue(const std::vector<double>& argument) const {
     220           0 :   plumed_merror("getValue not implemented for TD_LinearCombination");
     221             :   return 0.0;
     222             : }
     223             : 
     224             : 
     225          12 : void TD_LinearCombination::setupAdditionalGrids(const std::vector<Value*>& arguments, const std::vector<std::string>& min, const std::vector<std::string>& max, const std::vector<unsigned int>& nbins) {
     226          40 :   for(unsigned int i=0; i<ndist_; i++) {
     227          28 :     distribution_pntrs_[i]->setupGrids(arguments,min,max,nbins);
     228          28 :     if(distribution_pntrs_[i]->getDimension()!=this->getDimension()) {
     229           0 :       plumed_merror(getName() + ": all target distribution must have the same dimension");
     230             :     }
     231          28 :     grid_pntrs_[i]=distribution_pntrs_[i]->getTargetDistGridPntr();
     232             :   }
     233          12 : }
     234             : 
     235             : 
     236          22 : void TD_LinearCombination::updateGrid() {
     237          70 :   for(unsigned int i=0; i<ndist_; i++) {
     238          48 :     distribution_pntrs_[i]->updateTargetDist();
     239             :   }
     240      162033 :   for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) {
     241             :     double value = 0.0;
     242      506837 :     for(unsigned int i=0; i<ndist_; i++) {
     243      344826 :       value += weights_[i]*grid_pntrs_[i]->getValue(l);
     244             :     }
     245      162011 :     if(value==0.0) {
     246             :       value=std::numeric_limits<double>::denorm_min();
     247             :     }
     248      162011 :     targetDistGrid().setValue(l,value);
     249      162011 :     logTargetDistGrid().setValue(l,-std::log(value));
     250             :   }
     251          22 :   logTargetDistGrid().setMinToZero();
     252          22 : }
     253             : 
     254             : 
     255           1 : void TD_LinearCombination::linkVesBias(VesBias* vesbias_pntr_in) {
     256           1 :   TargetDistribution::linkVesBias(vesbias_pntr_in);
     257           3 :   for(unsigned int i=0; i<ndist_; i++) {
     258           2 :     distribution_pntrs_[i]->linkVesBias(vesbias_pntr_in);
     259             :   }
     260           1 : }
     261             : 
     262             : 
     263           0 : void TD_LinearCombination::linkAction(Action* action_pntr_in) {
     264           0 :   TargetDistribution::linkAction(action_pntr_in);
     265           0 :   for(unsigned int i=0; i<ndist_; i++) {
     266           0 :     distribution_pntrs_[i]->linkAction(action_pntr_in);
     267             :   }
     268           0 : }
     269             : 
     270             : 
     271           0 : void TD_LinearCombination::linkBiasGrid(Grid* bias_grid_pntr_in) {
     272           0 :   TargetDistribution::linkBiasGrid(bias_grid_pntr_in);
     273           0 :   for(unsigned int i=0; i<ndist_; i++) {
     274           0 :     distribution_pntrs_[i]->linkBiasGrid(bias_grid_pntr_in);
     275             :   }
     276           0 : }
     277             : 
     278             : 
     279           0 : void TD_LinearCombination::linkBiasWithoutCutoffGrid(Grid* bias_withoutcutoff_grid_pntr_in) {
     280           0 :   TargetDistribution::linkBiasWithoutCutoffGrid(bias_withoutcutoff_grid_pntr_in);
     281           0 :   for(unsigned int i=0; i<ndist_; i++) {
     282           0 :     distribution_pntrs_[i]->linkBiasWithoutCutoffGrid(bias_withoutcutoff_grid_pntr_in);
     283             :   }
     284           0 : }
     285             : 
     286             : 
     287           1 : void TD_LinearCombination::linkFesGrid(Grid* fes_grid_pntr_in) {
     288           1 :   TargetDistribution::linkFesGrid(fes_grid_pntr_in);
     289           3 :   for(unsigned int i=0; i<ndist_; i++) {
     290           2 :     distribution_pntrs_[i]->linkFesGrid(fes_grid_pntr_in);
     291             :   }
     292           1 : }
     293             : 
     294             : 
     295             : }
     296             : }

Generated by: LCOV version 1.16