LCOV - code coverage report
Current view: top level - ves - TD_GeneralizedNormal.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 66 74 89.2 %
Date: 2025-03-25 09:33:27 Functions: 4 4 100.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : 
      25             : #include "core/ActionRegister.h"
      26             : 
      27             : 
      28             : namespace PLMD {
      29             : namespace ves {
      30             : 
      31             : //+PLUMEDOC VES_TARGETDIST TD_GENERALIZED_NORMAL
      32             : /*
      33             : Target distribution given by a sum of generalized normal distributions (static).
      34             : 
      35             : Employ a target distribution that is given by a sum where each
      36             : term is a product of one-dimensional
      37             : [generalized normal distributions](https://en.wikipedia.org/wiki/Generalized_normal_distribution)
      38             : (version 1, also know as an exponential power distribution), defined as
      39             : \f[
      40             : p(\mathbf{s}) = \sum_{i} \, w_{i}
      41             : \prod_{k}^{d}
      42             : \frac{\beta_{k,i}}{2 \, \alpha_{k,i} \, \Gamma(1/\beta_{k,i})}
      43             : \exp\left( -\left\vert \frac{s_{k}-\mu_{k,i}}{\alpha_{k,i}} \right\vert^{\beta_{k,i}} \right)
      44             : \f]
      45             : where \f$(\mu_{1,i},\mu_{2,i},\ldots,\mu_{d,i})\f$
      46             : are the centers of the distributions,
      47             : \f$(\alpha_{1,i},\alpha_{2,i},\ldots,\alpha_{d,i})\f$ are the scale
      48             : parameters of the distributions,
      49             : \f$(\beta_{1,i},\beta_{2,i},\ldots,\beta_{d,i})\f$ are the shape
      50             : parameters of the distributions, and \f$\Gamma(x)\f$ is the
      51             : gamma function.
      52             : The weights \f$w_{i}\f$ are normalized to 1, \f$\sum_{i}w_{i}=1\f$.
      53             : 
      54             : Employing \f$\beta=2\f$ results in a
      55             : Gaussian (normal) distributions with mean
      56             : \f$\mu\f$ and variance \f$\alpha^2/2\f$,
      57             : \f$\beta=1\f$ gives the Laplace distribution, and
      58             : the limit \f$\beta \to \infty\f$ results in a
      59             : uniform  distribution on the interval \f$[\mu-\alpha,\mu+\alpha]\f$.
      60             : 
      61             : The centers \f$(\mu_{1,i},\mu_{2,i},\ldots,\mu_{d,i})\f$
      62             : are given using the numbered CENTER keywords, the scale
      63             : parameters \f$(\alpha_{1,i},\alpha_{2,i},\ldots,\alpha_{d,i})\f$
      64             : using the numbered SCALE keywords, and the shape parameters
      65             : \f$(\beta_{1,i},\beta_{2,i},\ldots,\beta_{d,i})\f$ using the
      66             : numbered SHAPE keywords.
      67             : The weights are given using the WEIGHTS keywords, if no weights are
      68             : given are all terms weighted equally.
      69             : 
      70             : \par Examples
      71             : 
      72             : A generalized normal distribution in one-dimensional
      73             : \plumedfile
      74             : td1: TD_GENERALIZED_NORMAL CENTER1=+20.0  ALPHA1=5.0  BETA1=4.0
      75             : \endplumedfile
      76             : 
      77             : A sum of two one-dimensional generalized normal distributions
      78             : \plumedfile
      79             : TD_GENERALIZED_NORMAL ...
      80             :  CENTER1=+20.0  ALPHA1=5.0  BETA1=4.0
      81             :  CENTER2=-20.0  ALPHA2=5.0  BETA2=3.0
      82             :  LABEL=td1
      83             : ... TD_GENERALIZED_NORMAL
      84             : \endplumedfile
      85             : 
      86             : A sum of two two-dimensional generalized normal distributions
      87             : \plumedfile
      88             : TD_GENERALIZED_NORMAL ...
      89             :  CENTER1=-20.0,-20.0 ALPHA1=5.0,3.0 BETA1=2.0,4.0
      90             :  CENTER2=-20.0,+20.0 ALPHA2=3.0,5.0 BETA2=4.0,2.0
      91             :  WEIGHTS=2.0,1.0
      92             :  LABEL=td1
      93             : ... TD_GENERALIZED_NORMAL
      94             : \endplumedfile
      95             : 
      96             : */
      97             : //+ENDPLUMEDOC
      98             : 
      99             : class TD_GeneralizedNormal: public TargetDistribution {
     100             :   std::vector< std::vector<double> > centers_;
     101             :   std::vector< std::vector<double> > alphas_;
     102             :   std::vector< std::vector<double> > betas_;
     103             :   std::vector< std::vector<double> > normalization_;
     104             :   std::vector<double> weights_;
     105             :   unsigned int ncenters_;
     106             :   double ExponentialPowerDiagonal(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&, const std::vector<double>&, const std::vector<double>&) const;
     107             : public:
     108             :   static void registerKeywords(Keywords&);
     109             :   explicit TD_GeneralizedNormal(const ActionOptions& ao);
     110             :   double getValue(const std::vector<double>&) const override;
     111             : };
     112             : 
     113             : 
     114             : PLUMED_REGISTER_ACTION(TD_GeneralizedNormal,"TD_GENERALIZED_NORMAL")
     115             : 
     116             : 
     117          10 : void TD_GeneralizedNormal::registerKeywords(Keywords& keys) {
     118          10 :   TargetDistribution::registerKeywords(keys);
     119          10 :   keys.add("numbered","CENTER","The center of each generalized normal distribution.");
     120          10 :   keys.add("numbered","ALPHA","The alpha parameters for each generalized normal distribution.");
     121          10 :   keys.add("numbered","BETA","The beta parameters for each generalized normal distribution.");
     122          10 :   keys.add("optional","WEIGHTS","The weights of the generalized normal distribution. By default all are weighted equally.");
     123          10 :   keys.use("WELLTEMPERED_FACTOR");
     124          10 :   keys.use("SHIFT_TO_ZERO");
     125          10 :   keys.use("NORMALIZE");
     126          10 : }
     127             : 
     128             : 
     129           8 : TD_GeneralizedNormal::TD_GeneralizedNormal(const ActionOptions& ao):
     130             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     131          16 :   centers_(0),
     132           8 :   alphas_(0),
     133           8 :   betas_(0),
     134           8 :   normalization_(0),
     135           8 :   weights_(0),
     136          16 :   ncenters_(0) {
     137          15 :   for(unsigned int i=1;; i++) {
     138             :     std::vector<double> tmp_center;
     139          46 :     if(!parseNumberedVector("CENTER",i,tmp_center) ) {
     140             :       break;
     141             :     }
     142          15 :     centers_.push_back(tmp_center);
     143          15 :   }
     144          15 :   for(unsigned int i=1;; i++) {
     145             :     std::vector<double> tmp_alpha;
     146          46 :     if(!parseNumberedVector("ALPHA",i,tmp_alpha) ) {
     147             :       break;
     148             :     }
     149          35 :     for(unsigned int k=0; k<tmp_alpha.size(); k++) {
     150          20 :       if(tmp_alpha[k]<=0.0) {
     151           0 :         plumed_merror(getName()+": the values given in ALPHA should be positive");
     152             :       }
     153             :     }
     154          15 :     alphas_.push_back(tmp_alpha);
     155          15 :   }
     156          15 :   for(unsigned int i=1;; i++) {
     157             :     std::vector<double> tmp_beta;
     158          46 :     if(!parseNumberedVector("BETA",i,tmp_beta) ) {
     159             :       break;
     160             :     }
     161          35 :     for(unsigned int k=0; k<tmp_beta.size(); k++) {
     162          20 :       if(tmp_beta[k]<=0.0) {
     163           0 :         plumed_merror(getName()+": the values given in BETA should be positive");
     164             :       }
     165             :     }
     166          15 :     betas_.push_back(tmp_beta);
     167          15 :   }
     168             :   //
     169           8 :   if(centers_.size()==0) {
     170           0 :     plumed_merror(getName()+": CENTER keywords seem to be missing. Note that numbered keywords start at CENTER1.");
     171             :   }
     172             :   //
     173           8 :   if(centers_.size()!=alphas_.size() || centers_.size()!=betas_.size() ) {
     174           0 :     plumed_merror(getName()+": there has to be an equal amount of CENTER, ALPHA, and BETA keywords");
     175             :   }
     176             :   //
     177           8 :   setDimension(centers_[0].size());
     178           8 :   ncenters_ = centers_.size();
     179             :   //
     180             :   // check centers and sigmas
     181          23 :   for(unsigned int i=0; i<ncenters_; i++) {
     182          15 :     if(centers_[i].size()!=getDimension()) {
     183           0 :       plumed_merror(getName()+": one of the CENTER keyword does not match the given dimension");
     184             :     }
     185          15 :     if(alphas_[i].size()!=getDimension()) {
     186           0 :       plumed_merror(getName()+": one of the ALPHA keyword does not match the given dimension");
     187             :     }
     188          15 :     if(betas_[i].size()!=getDimension()) {
     189           0 :       plumed_merror(getName()+": one of the BETA keyword does not match the given dimension");
     190             :     }
     191             :   }
     192             :   //
     193          16 :   parseVector("WEIGHTS",weights_);
     194           8 :   if(weights_.size()==0) {
     195           4 :     weights_.assign(centers_.size(),1.0);
     196             :   }
     197           8 :   if(centers_.size()!=weights_.size()) {
     198           0 :     plumed_merror(getName()+": there has to be as many weights given in WEIGHTS as numbered CENTER keywords");
     199             :   }
     200             :   //
     201             :   double sum_weights=0.0;
     202          23 :   for(unsigned int i=0; i<weights_.size(); i++) {
     203          15 :     sum_weights+=weights_[i];
     204             :   }
     205          23 :   for(unsigned int i=0; i<weights_.size(); i++) {
     206          15 :     weights_[i]/=sum_weights;
     207             :   }
     208             :   //
     209           8 :   normalization_.resize(ncenters_);
     210          23 :   for(unsigned int i=0; i<ncenters_; i++) {
     211          15 :     normalization_[i].resize(getDimension());
     212          35 :     for(unsigned int k=0; k<getDimension(); k++) {
     213          20 :       normalization_[i][k] = 0.5*betas_[i][k]/(alphas_[i][k]*tgamma(1.0/betas_[i][k]));
     214             :     }
     215             :   }
     216           8 :   checkRead();
     217           8 : }
     218             : 
     219             : 
     220       21608 : double TD_GeneralizedNormal::getValue(const std::vector<double>& argument) const {
     221             :   double value=0.0;
     222       74623 :   for(unsigned int i=0; i<ncenters_; i++) {
     223       53015 :     value+=weights_[i]*ExponentialPowerDiagonal(argument,centers_[i],alphas_[i],betas_[i],normalization_[i]);
     224             :   }
     225       21608 :   return value;
     226             : }
     227             : 
     228             : 
     229       53015 : double TD_GeneralizedNormal::ExponentialPowerDiagonal(const std::vector<double>& argument, const std::vector<double>& center, const std::vector<double>& alpha, const std::vector<double>& beta, const std::vector<double>& normalization) const {
     230             :   double value = 1.0;
     231      157035 :   for(unsigned int k=0; k<argument.size(); k++) {
     232      104020 :     double arg=(std::abs(argument[k]-center[k]))/alpha[k];
     233      104020 :     arg = pow(arg,beta[k]);
     234      104020 :     value*=normalization[k]*exp(-arg);
     235             :   }
     236       53015 :   return value;
     237             : }
     238             : 
     239             : 
     240             : 
     241             : }
     242             : }

Generated by: LCOV version 1.16