LCOV - code coverage report
Current view: top level - tools - Tensor.h (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 146 151 96.7 %
Date: 2024-10-18 13:59:31 Functions: 58 69 84.1 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #ifndef __PLUMED_tools_Tensor_h
      23             : #define __PLUMED_tools_Tensor_h
      24             : 
      25             : #include "MatrixSquareBracketsAccess.h"
      26             : #include "Vector.h"
      27             : #include "LoopUnroller.h"
      28             : #include "Exception.h"
      29             : 
      30             : #include <array>
      31             : 
      32             : namespace PLMD {
      33             : 
      34             : /// Small class to contain local utilities.
      35             : /// Should not be used outside of the TensorGeneric class.
      36             : class TensorGenericAux {
      37             : public:
      38             : // local redefinition, just to avoid including lapack.h here
      39             :   static void local_dsyevr(const char *jobz, const char *range, const char *uplo, int *n,
      40             :                            double *a, int *lda, double *vl, double *vu, int *
      41             :                            il, int *iu, double *abstol, int *m, double *w,
      42             :                            double *z__, int *ldz, int *isuppz, double *work,
      43             :                            int *lwork, int *iwork, int *liwork, int *info);
      44             : };
      45             : 
      46             : /**
      47             : \ingroup TOOLBOX
      48             : Class implementing fixed size matrices of doubles
      49             : 
      50             : \tparam n The number rows
      51             : \tparam m The number columns
      52             : 
      53             : This class implements a matrix of doubles with size fixed at
      54             : compile time. It is useful for small fixed size objects (e.g.
      55             : 3x3 tensors) as it does not waste space to store the vector size.
      56             : Moreover, as the compiler knows the size, it can be completely
      57             : opimized inline.
      58             : Most of the loops are explicitly unrolled using PLMD::LoopUnroller class
      59             : Matrix elements are initialized to zero by default. Notice that
      60             : this means that constructor is a bit slow. This point might change
      61             : in future if we find performance issues.
      62             : It takes advantage of MatrixSquareBracketsAccess to provide both
      63             : () and [] syntax for access.
      64             : Several functions are declared as friends even if not necessary so as to
      65             : properly appear in Doxygen documentation.
      66             : 
      67             : Aliases are defined to simplify common declarations (Tensor, Tensor2d, Tensor3d, Tensor4d).
      68             : Also notice that some operations are only available for 3x3 tensors.
      69             : 
      70             : Example of usage
      71             : \verbatim
      72             : 
      73             : #include "Tensor.h"
      74             : 
      75             : using namespace PLMD;
      76             : 
      77             : int main(){
      78             :   Tensor a;
      79             :   TensorGeneric<3,2> b;
      80             :   TensorGeneric<3,2> c=matmul(a,b);
      81             :   return 0;
      82             : }
      83             : 
      84             : \endverbatim
      85             : */
      86             : template <unsigned n,unsigned m>
      87             : class TensorGeneric:
      88             :   public MatrixSquareBracketsAccess<TensorGeneric<n,m>,double>
      89             : {
      90             :   std::array<double,n*m> d;
      91             : /// Auxiliary private function for constructor
      92             :   void auxiliaryConstructor();
      93             : /// Auxiliary private function for constructor
      94             :   template<typename... Args>
      95             :   void auxiliaryConstructor(double first,Args... arg);
      96             : public:
      97             : /// Constructor accepting n*m double parameters.
      98             : /// Can be used as Tensor<2,2>(1.0,2.0,3.0,4.0)
      99             : /// In case a wrong number of parameters is given, a static assertion will fail.
     100             :   template<typename... Args>
     101             :   TensorGeneric(double first,Args... arg);
     102             : /// initialize the tensor to zero
     103             :   TensorGeneric();
     104             : /// initialize a tensor as an external product of two Vector
     105             :   TensorGeneric(const VectorGeneric<n>&v1,const VectorGeneric<m>&v2);
     106             : /// set it to zero
     107             :   void zero();
     108             : /// access element
     109             :   double & operator() (unsigned i,unsigned j);
     110             : /// access element
     111             :   const double & operator() (unsigned i,unsigned j)const;
     112             : /// increment
     113             :   TensorGeneric& operator +=(const TensorGeneric<n,m>& b);
     114             : /// decrement
     115             :   TensorGeneric& operator -=(const TensorGeneric<n,m>& b);
     116             : /// multiply
     117             :   TensorGeneric& operator *=(double);
     118             : /// divide
     119             :   TensorGeneric& operator /=(double);
     120             : /// return +t
     121             :   TensorGeneric operator +()const;
     122             : /// return -t
     123             :   TensorGeneric operator -()const;
     124             : /// set j-th column
     125             :   TensorGeneric& setCol(unsigned j,const VectorGeneric<n> & c);
     126             : /// set i-th row
     127             :   TensorGeneric& setRow(unsigned i,const VectorGeneric<m> & r);
     128             : /// get j-th column
     129             :   VectorGeneric<n> getCol(unsigned j)const;
     130             : /// get i-th row
     131             :   VectorGeneric<m> getRow(unsigned i)const;
     132             : /// return t1+t2
     133             :   template<unsigned n_,unsigned m_>
     134             :   friend TensorGeneric<n_,m_> operator+(const TensorGeneric<n_,m_>&,const TensorGeneric<n_,m_>&);
     135             : /// return t1+t2
     136             :   template<unsigned n_,unsigned m_>
     137             :   friend TensorGeneric<n_,m_> operator-(const TensorGeneric<n_,m_>&,const TensorGeneric<n_,m_>&);
     138             : /// scale the tensor by a factor s
     139             :   template<unsigned n_,unsigned m_>
     140             :   friend TensorGeneric<n_,m_> operator*(double,const TensorGeneric<n_,m_>&);
     141             : /// scale the tensor by a factor s
     142             :   template<unsigned n_,unsigned m_>
     143             :   friend TensorGeneric<n_,m_> operator*(const TensorGeneric<n_,m_>&,double s);
     144             : /// scale the tensor by a factor 1/s
     145             :   template<unsigned n_,unsigned m_>
     146             :   friend TensorGeneric<n_,m_> operator/(const TensorGeneric<n_,m_>&,double s);
     147             : /// returns the determinant
     148             :   double determinant()const;
     149             : /// return an identity tensor
     150             :   static TensorGeneric<n,n> identity();
     151             : /// return the matrix inverse
     152             :   TensorGeneric inverse()const;
     153             : /// return the transpose matrix
     154             :   TensorGeneric<m,n> transpose()const;
     155             : /// matrix-matrix multiplication
     156             :   template<unsigned n_,unsigned m_,unsigned l_>
     157             :   friend TensorGeneric<n_,l_> matmul(const TensorGeneric<n_,m_>&,const TensorGeneric<m_,l_>&);
     158             : /// matrix-vector multiplication
     159             :   template<unsigned n_,unsigned m_>
     160             :   friend VectorGeneric<n_> matmul(const TensorGeneric<n_,m_>&,const VectorGeneric<m_>&);
     161             : /// vector-matrix multiplication
     162             :   template<unsigned n_,unsigned m_>
     163             :   friend VectorGeneric<n_> matmul(const VectorGeneric<m_>&,const TensorGeneric<m_,n_>&);
     164             : /// vector-vector multiplication (maps to dotProduct)
     165             :   template<unsigned n_>
     166             :   friend double matmul(const VectorGeneric<n_>&,const VectorGeneric<n_>&);
     167             : /// matrix-matrix-matrix multiplication
     168             :   template<unsigned n_,unsigned m_,unsigned l_,unsigned i_>
     169             :   friend TensorGeneric<n_,i_> matmul(const TensorGeneric<n_,m_>&,const TensorGeneric<m_,l_>&,const TensorGeneric<l_,i_>&);
     170             : /// matrix-matrix-vector multiplication
     171             :   template<unsigned n_,unsigned m_,unsigned l_>
     172             :   friend VectorGeneric<n_> matmul(const TensorGeneric<n_,m_>&,const TensorGeneric<m_,l_>&,const VectorGeneric<l_>&);
     173             : /// vector-matrix-matrix multiplication
     174             :   template<unsigned n_,unsigned m_,unsigned l_>
     175             :   friend VectorGeneric<l_> matmul(const VectorGeneric<n_>&,const TensorGeneric<n_,m_>&,const TensorGeneric<m_,l_>&);
     176             : /// vector-matrix-vector multiplication
     177             :   template<unsigned n_,unsigned m_>
     178             :   friend double matmul(const VectorGeneric<n_>&,const TensorGeneric<n_,m_>&,const VectorGeneric<m_>&);
     179             : /// returns the determinant of a tensor
     180             :   friend double determinant(const TensorGeneric<3,3>&);
     181             : /// returns the inverse of a tensor (same as inverse())
     182             :   friend TensorGeneric<3,3> inverse(const TensorGeneric<3,3>&);
     183             : /// returns the transpose of a tensor (same as transpose())
     184             :   template<unsigned n_,unsigned m_>
     185             :   friend TensorGeneric<n_,m_> transpose(const TensorGeneric<m_,n_>&);
     186             : /// returns the transpose of a tensor (same as TensorGeneric(const VectorGeneric&,const VectorGeneric&))
     187             :   template<unsigned n_,unsigned m_>
     188             :   friend TensorGeneric<n_,m_> extProduct(const VectorGeneric<n>&,const VectorGeneric<m>&);
     189             :   friend TensorGeneric<3,3> dcrossDv1(const VectorGeneric<3>&,const VectorGeneric<3>&);
     190             :   friend TensorGeneric<3,3> dcrossDv2(const VectorGeneric<3>&,const VectorGeneric<3>&);
     191             :   friend TensorGeneric<3,3> VcrossTensor(const VectorGeneric<3>&,const TensorGeneric<3,3>&);
     192             :   friend TensorGeneric<3,3> VcrossTensor(const TensorGeneric<3,3>&,const VectorGeneric<3>&);
     193             : /// Derivative of a normalized vector
     194             :   friend TensorGeneric<3,3> deriNorm(const VectorGeneric<3>&,const TensorGeneric<3,3>&);
     195             : /// << operator.
     196             : /// Allows printing tensor `t` with `std::cout<<t;`
     197             :   template<unsigned n_,unsigned m_>
     198             :   friend std::ostream & operator<<(std::ostream &os, const TensorGeneric<n_,m_>&);
     199             : /// Diagonalize tensor.
     200             : /// Syntax is the same as Matrix::diagMat.
     201             : /// In addition, it is possible to call if with m_ smaller than n_. In this case,
     202             : /// only the first (smaller) m_ eigenvalues and eigenvectors are retrieved.
     203             : /// If case lapack fails (info!=0) it throws an exception.
     204             : /// Notice that tensor is assumed to be symmetric!!!
     205             :   template<unsigned n_,unsigned m_>
     206             :   friend void diagMatSym(const TensorGeneric<n_,n_>&,VectorGeneric<m_>&evals,TensorGeneric<m_,n_>&evec);
     207             : };
     208             : 
     209             : template <unsigned n,unsigned m>
     210             : void TensorGeneric<n,m>::auxiliaryConstructor()
     211             : {}
     212             : 
     213             : template <unsigned n,unsigned m>
     214             : template<typename... Args>
     215   103767498 : void TensorGeneric<n,m>::auxiliaryConstructor(double first,Args... arg)
     216             : {
     217   103767498 :   d[n*m-(sizeof...(Args))-1]=first;
     218    92237776 :   auxiliaryConstructor(arg...);
     219   103767498 : }
     220             : 
     221             : template <unsigned n,unsigned m>
     222             : template<typename... Args>
     223    11529722 : TensorGeneric<n,m>::TensorGeneric(double first,Args... arg)
     224             : {
     225             :   static_assert((sizeof...(Args))+1==n*m,"you are trying to initialize a Tensor with the wrong number of arguments");
     226    11529722 :   auxiliaryConstructor(first,arg...);
     227    11529722 : }
     228             : 
     229             : template<unsigned n,unsigned m>
     230    59806532 : TensorGeneric<n,m>::TensorGeneric() {
     231    59806532 :   LoopUnroller<n*m>::_zero(d.data());
     232    59806532 : }
     233             : 
     234             : template<unsigned n,unsigned m>
     235   101538290 : TensorGeneric<n,m>::TensorGeneric(const VectorGeneric<n>&v1,const VectorGeneric<m>&v2) {
     236  1319997770 :   for(unsigned i=0; i<n; i++)for(unsigned j=0; j<m; j++)d[i*m+j]=v1[i]*v2[j];
     237   101538290 : }
     238             : 
     239             : template<unsigned n,unsigned m>
     240      932023 : void TensorGeneric<n,m>::zero() {
     241      932023 :   LoopUnroller<n*m>::_zero(d.data());
     242      932023 : }
     243             : 
     244             : template<unsigned n,unsigned m>
     245   351794501 : double & TensorGeneric<n,m>::operator() (unsigned i,unsigned j) {
     246             : #ifdef _GLIBCXX_DEBUG
     247             : // index i is implicitly checked by the std::array class
     248             :   plumed_assert(j<m);
     249             : #endif
     250   351794501 :   return d[m*i+j];
     251             : }
     252             : 
     253             : template<unsigned n,unsigned m>
     254  5054268506 : const double & TensorGeneric<n,m>::operator() (unsigned i,unsigned j)const {
     255             : #ifdef _GLIBCXX_DEBUG
     256             : // index i is implicitly checked by the std::array class
     257             :   plumed_assert(j<m);
     258             : #endif
     259  5054268506 :   return d[m*i+j];
     260             : }
     261             : 
     262             : template<unsigned n,unsigned m>
     263    60103808 : TensorGeneric<n,m>& TensorGeneric<n,m>::operator +=(const TensorGeneric<n,m>& b) {
     264    60103808 :   LoopUnroller<n*m>::_add(d.data(),b.d.data());
     265    60103808 :   return *this;
     266             : }
     267             : 
     268             : template<unsigned n,unsigned m>
     269    49162145 : TensorGeneric<n,m>& TensorGeneric<n,m>::operator -=(const TensorGeneric<n,m>& b) {
     270    49162145 :   LoopUnroller<n*m>::_sub(d.data(),b.d.data());
     271    49162145 :   return *this;
     272             : }
     273             : 
     274             : template<unsigned n,unsigned m>
     275    81597648 : TensorGeneric<n,m>& TensorGeneric<n,m>::operator *=(double s) {
     276    81597648 :   LoopUnroller<n*m>::_mul(d.data(),s);
     277    81597648 :   return *this;
     278             : }
     279             : 
     280             : template<unsigned n,unsigned m>
     281             : TensorGeneric<n,m>& TensorGeneric<n,m>::operator /=(double s) {
     282             :   LoopUnroller<n*m>::_mul(d.data(),1.0/s);
     283             :   return *this;
     284             : }
     285             : 
     286             : template<unsigned n,unsigned m>
     287      177723 : TensorGeneric<n,m> TensorGeneric<n,m>::operator+()const {
     288      177723 :   return *this;
     289             : }
     290             : 
     291             : template<unsigned n,unsigned m>
     292      250728 : TensorGeneric<n,m> TensorGeneric<n,m>::operator-()const {
     293      250728 :   TensorGeneric<n,m> r;
     294      250728 :   LoopUnroller<n*m>::_neg(r.d.data(),d.data());
     295      250728 :   return r;
     296             : }
     297             : 
     298             : template<unsigned n,unsigned m>
     299       79542 : TensorGeneric<n,m>& TensorGeneric<n,m>::setCol(unsigned j,const VectorGeneric<n> & c) {
     300      318168 :   for(unsigned i=0; i<n; ++i) (*this)(i,j)=c(i);
     301       79542 :   return *this;
     302             : }
     303             : 
     304             : template<unsigned n,unsigned m>
     305     3075597 : TensorGeneric<n,m>& TensorGeneric<n,m>::setRow(unsigned i,const VectorGeneric<m> & r) {
     306    12302388 :   for(unsigned j=0; j<m; ++j) (*this)(i,j)=r(j);
     307     3075597 :   return *this;
     308             : }
     309             : 
     310             : template<unsigned n,unsigned m>
     311    12312882 : VectorGeneric<n> TensorGeneric<n,m>::getCol(unsigned j)const {
     312    12312882 :   VectorGeneric<n> v;
     313    61455240 :   for(unsigned i=0; i<n; ++i) v(i)=(*this)(i,j);
     314    12312882 :   return v;
     315             : }
     316             : 
     317             : template<unsigned n,unsigned m>
     318     3536124 : VectorGeneric<m> TensorGeneric<n,m>::getRow(unsigned i)const {
     319     3536124 :   VectorGeneric<m> v;
     320    14144496 :   for(unsigned j=0; j<m; ++j) v(j)=(*this)(i,j);
     321     3536124 :   return v;
     322             : }
     323             : 
     324             : template<unsigned n,unsigned m>
     325     2932161 : TensorGeneric<n,m> operator+(const TensorGeneric<n,m>&t1,const TensorGeneric<n,m>&t2) {
     326     2932161 :   TensorGeneric<n,m> t(t1);
     327     2932161 :   t+=t2;
     328     2932161 :   return t;
     329             : }
     330             : 
     331             : template<unsigned n,unsigned m>
     332     1821830 : TensorGeneric<n,m> operator-(const TensorGeneric<n,m>&t1,const TensorGeneric<n,m>&t2) {
     333     1821830 :   TensorGeneric<n,m> t(t1);
     334     1821830 :   t-=t2;
     335     1821830 :   return t;
     336             : }
     337             : 
     338             : template<unsigned n,unsigned m>
     339    81592623 : TensorGeneric<n,m> operator*(const TensorGeneric<n,m>&t1,double s) {
     340    81592623 :   TensorGeneric<n,m> t(t1);
     341    81592623 :   t*=s;
     342    81592623 :   return t;
     343             : }
     344             : 
     345             : template<unsigned n,unsigned m>
     346    55998693 : TensorGeneric<n,m> operator*(double s,const TensorGeneric<n,m>&t1) {
     347    55998693 :   return t1*s;
     348             : }
     349             : 
     350             : template<unsigned n,unsigned m>
     351       37375 : TensorGeneric<n,m> operator/(const TensorGeneric<n,m>&t1,double s) {
     352       37375 :   return t1*(1.0/s);
     353             : }
     354             : 
     355             : template<>
     356             : inline
     357      272145 : double TensorGeneric<3,3>::determinant()const {
     358             :   return
     359      272145 :     d[0]*d[4]*d[8]
     360      272145 :     + d[1]*d[5]*d[6]
     361      272145 :     + d[2]*d[3]*d[7]
     362      272145 :     - d[0]*d[5]*d[7]
     363      272145 :     - d[1]*d[3]*d[8]
     364      272145 :     - d[2]*d[4]*d[6];
     365             : }
     366             : 
     367             : template<unsigned n,unsigned m>
     368             : inline
     369    13275572 : TensorGeneric<n,n> TensorGeneric<n,m>::identity() {
     370    13275572 :   TensorGeneric<n,n> t;
     371    53102288 :   for(unsigned i=0; i<n; i++) t(i,i)=1.0;
     372    13275572 :   return t;
     373             : }
     374             : 
     375             : template<unsigned n,unsigned m>
     376     4882753 : TensorGeneric<m,n> TensorGeneric<n,m>::transpose()const {
     377     4882753 :   TensorGeneric<m,n> t;
     378    63475789 :   for(unsigned i=0; i<m; i++)for(unsigned j=0; j<n; j++) t(i,j)=(*this)(j,i);
     379     4882753 :   return t;
     380             : }
     381             : 
     382             : template<>
     383             : inline
     384      178307 : TensorGeneric<3,3> TensorGeneric<3,3>::inverse()const {
     385      178307 :   TensorGeneric t;
     386      178307 :   double invdet=1.0/determinant();
     387     2317991 :   for(unsigned i=0; i<3; i++) for(unsigned j=0; j<3; j++)
     388     1604763 :       t(j,i)=invdet*(   (*this)((i+1)%3,(j+1)%3)*(*this)((i+2)%3,(j+2)%3)
     389     1604763 :                         -(*this)((i+1)%3,(j+2)%3)*(*this)((i+2)%3,(j+1)%3));
     390      178307 :   return t;
     391             : }
     392             : 
     393             : template<unsigned n,unsigned m,unsigned l>
     394     5616481 : TensorGeneric<n,l> matmul(const TensorGeneric<n,m>&a,const TensorGeneric<m,l>&b) {
     395     5616481 :   TensorGeneric<n,l> t;
     396   224659240 :   for(unsigned i=0; i<n; i++) for(unsigned j=0; j<l; j++) for(unsigned k=0; k<m; k++) {
     397   151644987 :         t(i,j)+=a(i,k)*b(k,j);
     398             :       }
     399     5616481 :   return t;
     400             : }
     401             : 
     402             : template<unsigned n,unsigned m>
     403    60636639 : VectorGeneric<n> matmul(const TensorGeneric<n,m>&a,const VectorGeneric<m>&b) {
     404    60636639 :   VectorGeneric<n> t;
     405   788276307 :   for(unsigned i=0; i<n; i++) for(unsigned j=0; j<m; j++) t(i)+=a(i,j)*b(j);
     406    60636639 :   return t;
     407             : }
     408             : 
     409             : template<unsigned n,unsigned m>
     410   107695733 : VectorGeneric<n> matmul(const VectorGeneric<m>&a,const TensorGeneric<m,n>&b) {
     411   107695733 :   VectorGeneric<n> t;
     412  1401199211 :   for(unsigned i=0; i<n; i++) for(unsigned j=0; j<m; j++) t(i)+=a(j)*b(j,i);
     413   107695733 :   return t;
     414             : }
     415             : 
     416             : template<unsigned n_>
     417             : double matmul(const VectorGeneric<n_>&a,const VectorGeneric<n_>&b) {
     418             :   return dotProduct(a,b);
     419             : }
     420             : 
     421             : template<unsigned n,unsigned m,unsigned l,unsigned i>
     422             : TensorGeneric<n,i> matmul(const TensorGeneric<n,m>&a,const TensorGeneric<m,l>&b,const TensorGeneric<l,i>&c) {
     423             :   return matmul(matmul(a,b),c);
     424             : }
     425             : 
     426             : template<unsigned n,unsigned m,unsigned l>
     427      363240 : VectorGeneric<n> matmul(const TensorGeneric<n,m>&a,const TensorGeneric<m,l>&b,const VectorGeneric<l>&c) {
     428      363240 :   return matmul(matmul(a,b),c);
     429             : }
     430             : 
     431             : template<unsigned n,unsigned m,unsigned l>
     432             : VectorGeneric<l> matmul(const VectorGeneric<n>&a,const TensorGeneric<n,m>&b,const TensorGeneric<m,l>&c) {
     433             :   return matmul(matmul(a,b),c);
     434             : }
     435             : 
     436             : template<unsigned n,unsigned m>
     437             : double matmul(const VectorGeneric<n>&a,const TensorGeneric<n,m>&b,const VectorGeneric<m>&c) {
     438             :   return matmul(matmul(a,b),c);
     439             : }
     440             : 
     441             : inline
     442             : double determinant(const TensorGeneric<3,3>&t) {
     443         417 :   return t.determinant();
     444             : }
     445             : 
     446             : inline
     447             : TensorGeneric<3,3> inverse(const TensorGeneric<3,3>&t) {
     448       89354 :   return t.inverse();
     449             : }
     450             : 
     451             : template<unsigned n,unsigned m>
     452      867561 : TensorGeneric<n,m> transpose(const TensorGeneric<m,n>&t) {
     453      867561 :   return t.transpose();
     454             : }
     455             : 
     456             : template<unsigned n,unsigned m>
     457     2611634 : TensorGeneric<n,m> extProduct(const VectorGeneric<n>&v1,const VectorGeneric<m>&v2) {
     458     2611634 :   return TensorGeneric<n,m>(v1,v2);
     459             : }
     460             : 
     461             : inline
     462     5182135 : TensorGeneric<3,3> dcrossDv1(const VectorGeneric<3>&v1,const VectorGeneric<3>&v2) {
     463             :   (void) v1; // this is to avoid warnings. still the syntax of this function is a bit dummy...
     464             :   return TensorGeneric<3,3>(
     465             :            0.0, v2[2],-v2[1],
     466     5182135 :            -v2[2],   0.0, v2[0],
     467     5182135 :            v2[1],-v2[0],   0.0);
     468             : }
     469             : 
     470             : inline
     471     5759791 : TensorGeneric<3,3> dcrossDv2(const VectorGeneric<3>&v1,const VectorGeneric<3>&v2) {
     472             :   (void) v2; // this is to avoid warnings. still the syntax of this function is a bit dummy...
     473             :   return TensorGeneric<3,3>(
     474             :            0.0,-v1[2],v1[1],
     475     5759791 :            v1[2],0.0,-v1[0],
     476     5759791 :            -v1[1],v1[0],0.0);
     477             : }
     478             : 
     479             : template<unsigned n,unsigned m>
     480           0 : std::ostream & operator<<(std::ostream &os, const TensorGeneric<n,m>& t) {
     481           0 :   for(unsigned i=0; i<n; i++)for(unsigned j=0; j<m; j++) {
     482           0 :       if(i!=(n-1) || j!=(m-1)) os<<t(i,j)<<" ";
     483           0 :       else os<<t(i,j);
     484             :     }
     485           0 :   return os;
     486             : }
     487             : 
     488             : /// \ingroup TOOLBOX
     489             : typedef TensorGeneric<1,1> Tensor1d;
     490             : /// \ingroup TOOLBOX
     491             : typedef TensorGeneric<2,2> Tensor2d;
     492             : /// \ingroup TOOLBOX
     493             : typedef TensorGeneric<3,3> Tensor3d;
     494             : /// \ingroup TOOLBOX
     495             : typedef TensorGeneric<4,4> Tensor4d;
     496             : /// \ingroup TOOLBOX
     497             : typedef TensorGeneric<5,5> Tensor5d;
     498             : /// \ingroup TOOLBOX
     499             : typedef Tensor3d Tensor;
     500             : 
     501             : inline
     502      144414 : TensorGeneric<3,3> VcrossTensor(const VectorGeneric<3>&v1,const TensorGeneric<3,3>&v2) {
     503             : 
     504      144414 :   TensorGeneric<3,3> t;
     505      577656 :   for(unsigned i=0; i<3; i++) {
     506      433242 :     t.setRow(i,matmul(dcrossDv2(v1,v1),v2.getRow(i)));
     507             :   }
     508      144414 :   return t;
     509             : }
     510             : 
     511             : inline
     512       48138 : TensorGeneric<3,3> VcrossTensor(const TensorGeneric<3,3>&v2,const VectorGeneric<3>&v1) {
     513       48138 :   TensorGeneric<3,3> t;
     514      192552 :   for(unsigned i=0; i<3; i++) {
     515      144414 :     t.setRow(i,-matmul(dcrossDv2(v1,v1),v2.getRow(i)));
     516             :   }
     517       48138 :   return t;
     518             : }
     519             : 
     520             : 
     521             : inline
     522       48138 : TensorGeneric<3,3> deriNorm(const VectorGeneric<3>&v1,const TensorGeneric<3,3>&v2) {
     523             :   // delta(v) = delta(v1/v1.norm) = 1/v1.norm*(delta(v1) - (v.delta(v1))cross v;
     524       48138 :   double over_norm = 1./v1.modulo();
     525       48138 :   return over_norm*(v2 - over_norm*over_norm*(extProduct(matmul(v2,v1),v1)));
     526             : }
     527             : 
     528             : template<unsigned n,unsigned m>
     529      623758 : void diagMatSym(const TensorGeneric<n,n>&mat,VectorGeneric<m>&evals,TensorGeneric<m,n>&evec) {
     530             :   // some guess number to make sure work is large enough.
     531             :   // for correctness it should be >=20. However, it is recommended to be the block size.
     532             :   // I put some likely exaggerated number
     533             :   constexpr int bs=100;
     534             :   // temporary data, on stack so as to avoid allocations
     535             :   std::array<int,10*n> iwork;
     536             :   std::array<double,(6+bs)*n> work;
     537             :   std::array<int,2*m> isup;
     538             :   // documentation says that "matrix is destroyed" !!!
     539      623758 :   auto mat_copy=mat;
     540             :   // documentation says this is size n (even if m<n)
     541             :   std::array<double,n> evals_tmp;
     542      623758 :   int nn=n;              // dimension of matrix
     543      623758 :   double vl=0.0, vu=1.0; // ranges - not used
     544      623758 :   int one=1,mm=m;        // minimum and maximum index
     545      623758 :   double abstol=0.0;     // tolerance
     546      623758 :   int mout=0;            // number of eigenvalues found (same as mm)
     547      623758 :   int info=0;            // result
     548      623758 :   int liwork=iwork.size();
     549      623758 :   int lwork=work.size();
     550      623758 :   TensorGenericAux::local_dsyevr("V", (n==m?"A":"I"), "U", &nn, const_cast<double*>(&mat_copy[0][0]), &nn, &vl, &vu, &one, &mm,
     551      623758 :                                  &abstol, &mout, &evals_tmp[0], &evec[0][0], &nn,
     552             :                                  isup.data(), work.data(), &lwork, iwork.data(), &liwork, &info);
     553      623758 :   if(info!=0) plumed_error()<<"Error diagonalizing matrix\n"
     554             :                               <<"Matrix:\n"<<mat<<"\n"
     555             :                               <<"Info: "<<info<<"\n";
     556      623758 :   plumed_assert(mout==m);
     557     1424758 :   for(unsigned i=0; i<m; i++) evals[i]=evals_tmp[i];
     558             :   // This changes eigenvectors so that the first non-null element
     559             :   // of each of them is positive
     560             :   // We can do it because the phase is arbitrary, and helps making
     561             :   // the result reproducible
     562     1424758 :   for(unsigned i=0; i<m; ++i) {
     563             :     unsigned j=0;
     564      801593 :     for(j=0; j<n; j++) if(evec(i,j)*evec(i,j)>1e-14) break;
     565     1395931 :     if(j<n) if(evec(i,j)<0.0) for(j=0; j<n; j++) evec(i,j)*=-1;
     566             :   }
     567      623758 : }
     568             : 
     569             : static_assert(sizeof(Tensor)==9*sizeof(double), "code cannot work if this is not satisfied");
     570             : 
     571             : }
     572             : 
     573             : #endif
     574             : 

Generated by: LCOV version 1.16