LCOV - code coverage report
Current view: top level - tools - BiasRepresentation.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 137 187 73.3 %
Date: 2025-03-25 09:33:27 Functions: 12 19 63.2 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2012-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "BiasRepresentation.h"
      23             : #include "core/Value.h"
      24             : #include "Communicator.h"
      25             : #include <iostream>
      26             : #include "KernelFunctions.h"
      27             : #include "File.h"
      28             : #include "Grid.h"
      29             : 
      30             : namespace PLMD {
      31             : 
      32             : /// the constructor here
      33           4 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc ):hasgrid(false),rescaledToBias(false),mycomm(cc) {
      34           4 :   lowI_=0.0;
      35           4 :   uppI_=0.0;
      36           4 :   doInt_=false;
      37           4 :   ndim=tmpvalues.size();
      38          12 :   for(int i=0; i<ndim; i++) {
      39           8 :     values.push_back(tmpvalues[i]);
      40           8 :     names.push_back(values[i]->getName());
      41             :   }
      42           4 : }
      43             : 
      44             : /// overload the constructor: add the sigma  at constructor time
      45           1 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc, const std::vector<double> & sigma ):
      46           1 :   hasgrid(false), rescaledToBias(false), histosigma(sigma),mycomm(cc) {
      47           1 :   lowI_=0.0;
      48           1 :   uppI_=0.0;
      49           1 :   doInt_=false;
      50           1 :   ndim=tmpvalues.size();
      51           3 :   for(int i=0; i<ndim; i++) {
      52           2 :     values.push_back(tmpvalues[i]);
      53           2 :     names.push_back(values[i]->getName());
      54             :   }
      55           1 : }
      56             : 
      57             : /// overload the constructor: add the grid at constructor time
      58           8 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc, const std::vector<std::string> & gmin, const std::vector<std::string> & gmax,
      59           8 :                                        const std::vector<unsigned> & nbin, bool doInt, double lowI, double uppI):
      60           8 :   hasgrid(false), rescaledToBias(false), mycomm(cc) {
      61           8 :   ndim=tmpvalues.size();
      62          23 :   for(int i=0; i<ndim; i++) {
      63          15 :     values.push_back(tmpvalues[i]);
      64          15 :     names.push_back(values[i]->getName());
      65             :   }
      66           8 :   doInt_=doInt;
      67           8 :   lowI_=lowI;
      68           8 :   uppI_=uppI;
      69             :   // initialize the grid
      70           8 :   addGrid(gmin,gmax,nbin);
      71           8 : }
      72             : 
      73             : /// overload the constructor with some external sigmas: needed for histogram
      74           1 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc, const std::vector<std::string> & gmin, const std::vector<std::string> & gmax,
      75           1 :                                        const std::vector<unsigned> & nbin, const std::vector<double> & sigma):
      76           1 :   hasgrid(false), rescaledToBias(false),histosigma(sigma),mycomm(cc) {
      77           1 :   lowI_=0.0;
      78           1 :   uppI_=0.0;
      79           1 :   doInt_=false;
      80           1 :   ndim=tmpvalues.size();
      81           3 :   for(int  i=0; i<ndim; i++) {
      82           2 :     values.push_back(tmpvalues[i]);
      83           2 :     names.push_back(values[i]->getName());
      84             :   }
      85             :   // initialize the grid
      86           1 :   addGrid(gmin,gmax,nbin);
      87           1 : }
      88             : 
      89           9 : void BiasRepresentation::addGrid(const std::vector<std::string> & gmin, const std::vector<std::string> & gmax, const std::vector<unsigned> & nbin ) {
      90           9 :   plumed_massert(hills.size()==0,"you can set the grid before loading the hills");
      91           9 :   plumed_massert(hasgrid==false,"to build the grid you should not having the grid in this bias representation");
      92             :   std::string ss;
      93             :   ss="file.free";
      94             :   std::vector<Value*> vv;
      95          26 :   for(unsigned i=0; i<values.size(); i++) {
      96          17 :     vv.push_back(values[i]);
      97             :   }
      98          18 :   BiasGrid_=Tools::make_unique<Grid>(ss,vv,gmin,gmax,nbin,false,true);
      99           9 :   hasgrid=true;
     100           9 : }
     101             : 
     102        5563 : bool BiasRepresentation::hasSigmaInInput() {
     103        5563 :   if(histosigma.size()==0) {
     104             :     return false;
     105             :   } else {
     106        1092 :     return true;
     107             :   }
     108             : }
     109             : 
     110           1 : void BiasRepresentation::setRescaledToBias(bool rescaled) {
     111           1 :   plumed_massert(hills.size()==0,"you can set the rescaling function only before loading hills");
     112           1 :   rescaledToBias=rescaled;
     113           1 : }
     114             : 
     115           0 : const bool & BiasRepresentation::isRescaledToBias() {
     116           0 :   return rescaledToBias;
     117             : }
     118             : 
     119           0 : unsigned BiasRepresentation::getNumberOfDimensions() {
     120           0 :   return values.size();
     121             : }
     122             : 
     123           0 : std::vector<std::string> BiasRepresentation::getNames() {
     124           0 :   return names;
     125             : }
     126             : 
     127           0 : const std::string & BiasRepresentation::getName(unsigned i) {
     128           0 :   return names[i];
     129             : }
     130             : 
     131           0 : const std::vector<Value*>& BiasRepresentation::getPtrToValues() {
     132           0 :   return values;
     133             : }
     134             : 
     135           0 : Value*  BiasRepresentation::getPtrToValue(unsigned i) {
     136           0 :   return values[i];
     137             : }
     138             : 
     139        1092 : std::unique_ptr<KernelFunctions> BiasRepresentation::readFromPoint(IFile *ifile) {
     140        1092 :   std::vector<double> cc( names.size() );
     141        3276 :   for(unsigned i=0; i<names.size(); ++i) {
     142        2184 :     ifile->scanField(names[i],cc[i]);
     143             :   }
     144        1092 :   double h=1.0;
     145        2184 :   return Tools::make_unique<KernelFunctions>(cc,histosigma,"stretched-gaussian","DIAGONAL",h);
     146             : }
     147             : 
     148        5563 : void BiasRepresentation::pushKernel( IFile *ifile ) {
     149        5563 :   std::unique_ptr<KernelFunctions> kk;
     150             :   // here below the reading of the kernel is completely hidden
     151        5563 :   if(histosigma.size()==0) {
     152        4471 :     ifile->allowIgnoredFields();
     153        8942 :     kk=KernelFunctions::read(ifile,true,names);
     154             :   } else {
     155             :     // when doing histogram assume gaussian with a given diagonal sigma
     156             :     // and neglect all the rest
     157        2184 :     kk=readFromPoint(ifile);
     158             :   }
     159             :   // the bias factor is not something about the kernels but
     160             :   // must be stored to keep the  bias/free energy duality
     161             :   std::string dummy;
     162             :   double dummyd;
     163       11126 :   if(ifile->FieldExist("biasf")) {
     164        5563 :     ifile->scanField("biasf",dummy);
     165        5563 :     Tools::convert(dummy,dummyd);
     166             :   } else {
     167           0 :     dummyd=1.0;
     168             :   }
     169        5563 :   biasf.push_back(dummyd);
     170             :   // the domain does not pertain to the kernel but to the values here defined
     171             :   std::string mins,maxs,minv,maxv,mini,maxi;
     172             :   mins="min_";
     173             :   maxs="max_";
     174       16688 :   for(int i=0 ; i<ndim; i++) {
     175       11125 :     if(values[i]->isPeriodic()) {
     176       22216 :       ifile->scanField(mins+names[i],minv);
     177       22216 :       ifile->scanField(maxs+names[i],maxv);
     178             :       // verify that the domain is correct
     179       11108 :       values[i]->getDomain(mini,maxi);
     180       11108 :       plumed_massert(mini==minv,"the input periodicity in hills and in value definition does not match"  );
     181       11108 :       plumed_massert(maxi==maxv,"the input periodicity in hills and in value definition does not match"  );
     182             :     }
     183             :   }
     184             :   // if grid is defined then it should be added on the grid
     185             :   //cerr<<"now with "<<hills.size()<<endl;
     186        5563 :   if(hasgrid) {
     187             :     std::vector<unsigned> nneighb;
     188        3375 :     if(doInt_&&(kk->getCenter()[0]+kk->getContinuousSupport()[0] > uppI_ || kk->getCenter()[0]-kk->getContinuousSupport()[0] < lowI_ )) {
     189           0 :       nneighb=BiasGrid_->getNbin();
     190             :     } else {
     191        6750 :       nneighb=kk->getSupport(BiasGrid_->getDx());
     192             :     }
     193        3375 :     std::vector<Grid::index_t> neighbors=BiasGrid_->getNeighbors(kk->getCenter(),nneighb);
     194        3375 :     std::vector<double> der(ndim);
     195        3375 :     std::vector<double> xx(ndim);
     196        3375 :     if(mycomm.Get_size()==1) {
     197     1027680 :       for(unsigned i=0; i<neighbors.size(); ++i) {
     198     1024305 :         Grid::index_t ineigh=neighbors[i];
     199     3072823 :         for(int j=0; j<ndim; ++j) {
     200     2048518 :           der[j]=0.0;
     201             :         }
     202     1024305 :         BiasGrid_->getPoint(ineigh,xx);
     203             :         // assign xx to a new vector of values
     204     3072823 :         for(int j=0; j<ndim; ++j) {
     205     2048518 :           values[j]->set(xx[j]);
     206             :         }
     207             :         double bias;
     208     1024305 :         if(doInt_) {
     209           0 :           bias=kk->evaluate(values,der,true,doInt_,lowI_,uppI_);
     210             :         } else {
     211     1024305 :           bias=kk->evaluate(values,der,true);
     212             :         }
     213     1024305 :         if(rescaledToBias) {
     214       45234 :           double f=(biasf.back()-1.)/(biasf.back());
     215       45234 :           bias*=f;
     216      135702 :           for(int j=0; j<ndim; ++j) {
     217       90468 :             der[j]*=f;
     218             :           }
     219             :         }
     220     1024305 :         BiasGrid_->addValueAndDerivatives(ineigh,bias,der);
     221             :       }
     222             :     } else {
     223           0 :       unsigned stride=mycomm.Get_size();
     224           0 :       unsigned rank=mycomm.Get_rank();
     225           0 :       std::vector<double> allder(ndim*neighbors.size(),0.0);
     226           0 :       std::vector<double> allbias(neighbors.size(),0.0);
     227           0 :       std::vector<double> tmpder(ndim);
     228           0 :       for(unsigned i=rank; i<neighbors.size(); i+=stride) {
     229           0 :         Grid::index_t ineigh=neighbors[i];
     230           0 :         BiasGrid_->getPoint(ineigh,xx);
     231           0 :         for(int j=0; j<ndim; ++j) {
     232           0 :           values[j]->set(xx[j]);
     233             :         }
     234           0 :         if(doInt_) {
     235           0 :           allbias[i]=kk->evaluate(values,der,true,doInt_,lowI_,uppI_);
     236             :         } else {
     237           0 :           allbias[i]=kk->evaluate(values,der,true);
     238             :         }
     239           0 :         if(rescaledToBias) {
     240           0 :           double f=(biasf.back()-1.)/(biasf.back());
     241           0 :           allbias[i]*=f;
     242           0 :           for(int j=0; j<ndim; ++j) {
     243           0 :             tmpder[j]*=f;
     244             :           }
     245             :         }
     246             :         // this solution with the temporary vector is rather bad, probably better to take
     247             :         // a pointer of double as it was in old gaussian
     248           0 :         for(int j=0; j<ndim; ++j) {
     249           0 :           allder[ndim*i+j]=tmpder[j];
     250           0 :           tmpder[j]=0.;
     251             :         }
     252             :       }
     253           0 :       mycomm.Sum(allbias);
     254           0 :       mycomm.Sum(allder);
     255           0 :       for(unsigned i=0; i<neighbors.size(); ++i) {
     256           0 :         Grid::index_t ineigh=neighbors[i];
     257           0 :         for(int j=0; j<ndim; ++j) {
     258           0 :           der[j]=allder[ndim*i+j];
     259             :         }
     260           0 :         BiasGrid_->addValueAndDerivatives(ineigh,allbias[i],der);
     261             :       }
     262             :     }
     263             :   }
     264        5563 :   hills.emplace_back(std::move(kk));
     265        5563 : }
     266             : 
     267        5578 : int BiasRepresentation::getNumberOfKernels() {
     268        5578 :   return hills.size();
     269             : }
     270             : 
     271          10 : Grid* BiasRepresentation::getGridPtr() {
     272          10 :   plumed_massert(hasgrid,"if you want the grid pointer then you should have defined a grid before");
     273          10 :   return BiasGrid_.get();
     274             : }
     275             : 
     276           5 : void BiasRepresentation::getMinMaxBin(std::vector<double> &vmin, std::vector<double> &vmax, std::vector<unsigned> &vbin) {
     277             :   std::vector<double> ss,cc,binsize;
     278             :   vmin.clear();
     279           5 :   vmin.resize(ndim,10.e20);
     280             :   vmax.clear();
     281           5 :   vmax.resize(ndim,-10.e20);
     282             :   vbin.clear();
     283           5 :   vbin.resize(ndim);
     284             :   binsize.clear();
     285           5 :   binsize.resize(ndim,10.e20);
     286             :   int ndiv=10; // adjustable parameter: division per support
     287        2193 :   for(unsigned i=0; i<hills.size(); i++) {
     288        2188 :     if(histosigma.size()!=0) {
     289         546 :       ss=histosigma;
     290             :     } else {
     291        3284 :       ss=hills[i]->getContinuousSupport();
     292             :     }
     293        2188 :     cc=hills[i]->getCenter();
     294        6564 :     for(int j=0; j<ndim; j++) {
     295        4376 :       double dmin=cc[j]-ss[j];
     296        4376 :       double dmax=cc[j]+ss[j];
     297        4376 :       double ddiv=ss[j]/double(ndiv);
     298        4376 :       if(dmin<vmin[j]) {
     299         300 :         vmin[j]=dmin;
     300             :       }
     301        4376 :       if(dmax>vmax[j]) {
     302         236 :         vmax[j]=dmax;
     303             :       }
     304        4376 :       if(ddiv<binsize[j]) {
     305          34 :         binsize[j]=ddiv;
     306             :       }
     307             :     }
     308             :   }
     309          15 :   for(int j=0; j<ndim; j++) {
     310             :     // reset to periodicity
     311          10 :     if(values[j]->isPeriodic()) {
     312             :       double minv,maxv;
     313           8 :       values[j]->getDomain(minv,maxv);
     314           8 :       if(minv>vmin[j]) {
     315           0 :         vmin[j]=minv;
     316             :       }
     317           8 :       if(maxv<vmax[j]) {
     318           0 :         vmax[j]=maxv;
     319             :       }
     320             :     }
     321          10 :     vbin[j]=static_cast<unsigned>(std::ceil((vmax[j]-vmin[j])/binsize[j]) );
     322             :   }
     323           5 : }
     324             : 
     325           0 : void BiasRepresentation::clear() {
     326           0 :   hills.clear();
     327             :   // clear the grid
     328           0 :   if(hasgrid) {
     329           0 :     BiasGrid_->clear();
     330             :   }
     331           0 : }
     332             : 
     333             : 
     334             : }

Generated by: LCOV version 1.16