LCOV - code coverage report
Current view: top level - tools - BiasRepresentation.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 129 170 75.9 %
Date: 2024-10-18 13:59:31 Functions: 12 19 63.2 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2012-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "BiasRepresentation.h"
      23             : #include "core/Value.h"
      24             : #include "Communicator.h"
      25             : #include <iostream>
      26             : #include "KernelFunctions.h"
      27             : #include "File.h"
      28             : #include "Grid.h"
      29             : 
      30             : namespace PLMD {
      31             : 
      32             : /// the constructor here
      33           4 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc ):hasgrid(false),rescaledToBias(false),mycomm(cc) {
      34           4 :   lowI_=0.0;
      35           4 :   uppI_=0.0;
      36           4 :   doInt_=false;
      37           4 :   ndim=tmpvalues.size();
      38          12 :   for(int i=0; i<ndim; i++) {
      39           8 :     values.push_back(tmpvalues[i]);
      40           8 :     names.push_back(values[i]->getName());
      41             :   }
      42           4 : }
      43             : 
      44             : /// overload the constructor: add the sigma  at constructor time
      45           1 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc, const std::vector<double> & sigma ):
      46           1 :   hasgrid(false), rescaledToBias(false), histosigma(sigma),mycomm(cc)
      47             : {
      48           1 :   lowI_=0.0;
      49           1 :   uppI_=0.0;
      50           1 :   doInt_=false;
      51           1 :   ndim=tmpvalues.size();
      52           3 :   for(int i=0; i<ndim; i++) {
      53           2 :     values.push_back(tmpvalues[i]);
      54           2 :     names.push_back(values[i]->getName());
      55             :   }
      56           1 : }
      57             : 
      58             : /// overload the constructor: add the grid at constructor time
      59           8 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc, const std::vector<std::string> & gmin, const std::vector<std::string> & gmax,
      60           8 :                                        const std::vector<unsigned> & nbin, bool doInt, double lowI, double uppI):
      61           8 :   hasgrid(false), rescaledToBias(false), mycomm(cc)
      62             : {
      63           8 :   ndim=tmpvalues.size();
      64          23 :   for(int i=0; i<ndim; i++) {
      65          15 :     values.push_back(tmpvalues[i]);
      66          15 :     names.push_back(values[i]->getName());
      67             :   }
      68           8 :   doInt_=doInt;
      69           8 :   lowI_=lowI;
      70           8 :   uppI_=uppI;
      71             :   // initialize the grid
      72           8 :   addGrid(gmin,gmax,nbin);
      73           8 : }
      74             : 
      75             : /// overload the constructor with some external sigmas: needed for histogram
      76           1 : BiasRepresentation::BiasRepresentation(const std::vector<Value*> & tmpvalues, Communicator &cc, const std::vector<std::string> & gmin, const std::vector<std::string> & gmax,
      77           1 :                                        const std::vector<unsigned> & nbin, const std::vector<double> & sigma):
      78           1 :   hasgrid(false), rescaledToBias(false),histosigma(sigma),mycomm(cc)
      79             : {
      80           1 :   lowI_=0.0;
      81           1 :   uppI_=0.0;
      82           1 :   doInt_=false;
      83           1 :   ndim=tmpvalues.size();
      84           3 :   for(int  i=0; i<ndim; i++) {
      85           2 :     values.push_back(tmpvalues[i]);
      86           2 :     names.push_back(values[i]->getName());
      87             :   }
      88             :   // initialize the grid
      89           1 :   addGrid(gmin,gmax,nbin);
      90           1 : }
      91             : 
      92           9 : void BiasRepresentation::addGrid(const std::vector<std::string> & gmin, const std::vector<std::string> & gmax, const std::vector<unsigned> & nbin ) {
      93           9 :   plumed_massert(hills.size()==0,"you can set the grid before loading the hills");
      94           9 :   plumed_massert(hasgrid==false,"to build the grid you should not having the grid in this bias representation");
      95             :   std::string ss; ss="file.free";
      96          26 :   std::vector<Value*> vv; for(unsigned i=0; i<values.size(); i++) vv.push_back(values[i]);
      97          18 :   BiasGrid_=Tools::make_unique<Grid>(ss,vv,gmin,gmax,nbin,false,true);
      98           9 :   hasgrid=true;
      99           9 : }
     100             : 
     101        5563 : bool BiasRepresentation::hasSigmaInInput() {
     102        5563 :   if(histosigma.size()==0) {return false;} else {return true;}
     103             : }
     104             : 
     105           1 : void BiasRepresentation::setRescaledToBias(bool rescaled) {
     106           1 :   plumed_massert(hills.size()==0,"you can set the rescaling function only before loading hills");
     107           1 :   rescaledToBias=rescaled;
     108           1 : }
     109             : 
     110           0 : const bool & BiasRepresentation::isRescaledToBias() {
     111           0 :   return rescaledToBias;
     112             : }
     113             : 
     114           0 : unsigned BiasRepresentation::getNumberOfDimensions() {
     115           0 :   return values.size();
     116             : }
     117             : 
     118           0 : std::vector<std::string> BiasRepresentation::getNames() {
     119           0 :   return names;
     120             : }
     121             : 
     122           0 : const std::string & BiasRepresentation::getName(unsigned i) {
     123           0 :   return names[i];
     124             : }
     125             : 
     126           0 : const std::vector<Value*>& BiasRepresentation::getPtrToValues() {
     127           0 :   return values;
     128             : }
     129             : 
     130           0 : Value*  BiasRepresentation::getPtrToValue(unsigned i) {
     131           0 :   return values[i];
     132             : }
     133             : 
     134        1092 : std::unique_ptr<KernelFunctions> BiasRepresentation::readFromPoint(IFile *ifile) {
     135        1092 :   std::vector<double> cc( names.size() );
     136        3276 :   for(unsigned i=0; i<names.size(); ++i) {
     137        2184 :     ifile->scanField(names[i],cc[i]);
     138             :   }
     139        1092 :   double h=1.0;
     140        2184 :   return Tools::make_unique<KernelFunctions>(cc,histosigma,"stretched-gaussian","DIAGONAL",h);
     141             : }
     142             : 
     143        5563 : void BiasRepresentation::pushKernel( IFile *ifile ) {
     144        5563 :   std::unique_ptr<KernelFunctions> kk;
     145             :   // here below the reading of the kernel is completely hidden
     146        5563 :   if(histosigma.size()==0) {
     147        4471 :     ifile->allowIgnoredFields();
     148        8942 :     kk=KernelFunctions::read(ifile,true,names);
     149             :   } else {
     150             :     // when doing histogram assume gaussian with a given diagonal sigma
     151             :     // and neglect all the rest
     152        2184 :     kk=readFromPoint(ifile);
     153             :   }
     154             :   // the bias factor is not something about the kernels but
     155             :   // must be stored to keep the  bias/free energy duality
     156             :   std::string dummy; double dummyd;
     157       11126 :   if(ifile->FieldExist("biasf")) {
     158        5563 :     ifile->scanField("biasf",dummy);
     159        5563 :     Tools::convert(dummy,dummyd);
     160           0 :   } else {dummyd=1.0;}
     161        5563 :   biasf.push_back(dummyd);
     162             :   // the domain does not pertain to the kernel but to the values here defined
     163             :   std::string mins,maxs,minv,maxv,mini,maxi; mins="min_"; maxs="max_";
     164       16688 :   for(int i=0 ; i<ndim; i++) {
     165       11125 :     if(values[i]->isPeriodic()) {
     166       22216 :       ifile->scanField(mins+names[i],minv);
     167       22216 :       ifile->scanField(maxs+names[i],maxv);
     168             :       // verify that the domain is correct
     169       11108 :       values[i]->getDomain(mini,maxi);
     170       11108 :       plumed_massert(mini==minv,"the input periodicity in hills and in value definition does not match"  );
     171       11108 :       plumed_massert(maxi==maxv,"the input periodicity in hills and in value definition does not match"  );
     172             :     }
     173             :   }
     174             :   // if grid is defined then it should be added on the grid
     175             :   //cerr<<"now with "<<hills.size()<<endl;
     176        5563 :   if(hasgrid) {
     177             :     std::vector<unsigned> nneighb;
     178        3375 :     if(doInt_&&(kk->getCenter()[0]+kk->getContinuousSupport()[0] > uppI_ || kk->getCenter()[0]-kk->getContinuousSupport()[0] < lowI_ )) {
     179           0 :       nneighb=BiasGrid_->getNbin();
     180        6750 :     } else nneighb=kk->getSupport(BiasGrid_->getDx());
     181        3375 :     std::vector<Grid::index_t> neighbors=BiasGrid_->getNeighbors(kk->getCenter(),nneighb);
     182        3375 :     std::vector<double> der(ndim);
     183        3375 :     std::vector<double> xx(ndim);
     184        3375 :     if(mycomm.Get_size()==1) {
     185     1027680 :       for(unsigned i=0; i<neighbors.size(); ++i) {
     186     1024305 :         Grid::index_t ineigh=neighbors[i];
     187     3072823 :         for(int j=0; j<ndim; ++j) {der[j]=0.0;}
     188     1024305 :         BiasGrid_->getPoint(ineigh,xx);
     189             :         // assign xx to a new vector of values
     190     3072823 :         for(int j=0; j<ndim; ++j) {values[j]->set(xx[j]);}
     191             :         double bias;
     192     1024305 :         if(doInt_) bias=kk->evaluate(values,der,true,doInt_,lowI_,uppI_);
     193     1024305 :         else bias=kk->evaluate(values,der,true);
     194     1024305 :         if(rescaledToBias) {
     195       45234 :           double f=(biasf.back()-1.)/(biasf.back());
     196       45234 :           bias*=f;
     197      135702 :           for(int j=0; j<ndim; ++j) {der[j]*=f;}
     198             :         }
     199     1024305 :         BiasGrid_->addValueAndDerivatives(ineigh,bias,der);
     200             :       }
     201             :     } else {
     202           0 :       unsigned stride=mycomm.Get_size();
     203           0 :       unsigned rank=mycomm.Get_rank();
     204           0 :       std::vector<double> allder(ndim*neighbors.size(),0.0);
     205           0 :       std::vector<double> allbias(neighbors.size(),0.0);
     206           0 :       std::vector<double> tmpder(ndim);
     207           0 :       for(unsigned i=rank; i<neighbors.size(); i+=stride) {
     208           0 :         Grid::index_t ineigh=neighbors[i];
     209           0 :         BiasGrid_->getPoint(ineigh,xx);
     210           0 :         for(int j=0; j<ndim; ++j) {values[j]->set(xx[j]);}
     211           0 :         if(doInt_) allbias[i]=kk->evaluate(values,der,true,doInt_,lowI_,uppI_);
     212           0 :         else allbias[i]=kk->evaluate(values,der,true);
     213           0 :         if(rescaledToBias) {
     214           0 :           double f=(biasf.back()-1.)/(biasf.back());
     215           0 :           allbias[i]*=f;
     216           0 :           for(int j=0; j<ndim; ++j) {tmpder[j]*=f;}
     217             :         }
     218             :         // this solution with the temporary vector is rather bad, probably better to take
     219             :         // a pointer of double as it was in old gaussian
     220           0 :         for(int j=0; j<ndim; ++j) { allder[ndim*i+j]=tmpder[j]; tmpder[j]=0.;}
     221             :       }
     222           0 :       mycomm.Sum(allbias);
     223           0 :       mycomm.Sum(allder);
     224           0 :       for(unsigned i=0; i<neighbors.size(); ++i) {
     225           0 :         Grid::index_t ineigh=neighbors[i];
     226           0 :         for(int j=0; j<ndim; ++j) {der[j]=allder[ndim*i+j];}
     227           0 :         BiasGrid_->addValueAndDerivatives(ineigh,allbias[i],der);
     228             :       }
     229             :     }
     230             :   }
     231        5563 :   hills.emplace_back(std::move(kk));
     232        5563 : }
     233             : 
     234        5578 : int BiasRepresentation::getNumberOfKernels() {
     235        5578 :   return hills.size();
     236             : }
     237             : 
     238          10 : Grid* BiasRepresentation::getGridPtr() {
     239          10 :   plumed_massert(hasgrid,"if you want the grid pointer then you should have defined a grid before");
     240          10 :   return BiasGrid_.get();
     241             : }
     242             : 
     243           5 : void BiasRepresentation::getMinMaxBin(std::vector<double> &vmin, std::vector<double> &vmax, std::vector<unsigned> &vbin) {
     244             :   std::vector<double> ss,cc,binsize;
     245           5 :   vmin.clear(); vmin.resize(ndim,10.e20);
     246           5 :   vmax.clear(); vmax.resize(ndim,-10.e20);
     247           5 :   vbin.clear(); vbin.resize(ndim);
     248           5 :   binsize.clear(); binsize.resize(ndim,10.e20);
     249             :   int ndiv=10; // adjustable parameter: division per support
     250        2193 :   for(unsigned i=0; i<hills.size(); i++) {
     251        2188 :     if(histosigma.size()!=0) {
     252         546 :       ss=histosigma;
     253             :     } else {
     254        3284 :       ss=hills[i]->getContinuousSupport();
     255             :     }
     256        2188 :     cc=hills[i]->getCenter();
     257        6564 :     for(int j=0; j<ndim; j++) {
     258        4376 :       double dmin=cc[j]-ss[j];
     259        4376 :       double dmax=cc[j]+ss[j];
     260        4376 :       double ddiv=ss[j]/double(ndiv);
     261        4376 :       if(dmin<vmin[j])vmin[j]=dmin;
     262        4376 :       if(dmax>vmax[j])vmax[j]=dmax;
     263        4376 :       if(ddiv<binsize[j])binsize[j]=ddiv;
     264             :     }
     265             :   }
     266          15 :   for(int j=0; j<ndim; j++) {
     267             :     // reset to periodicity
     268          10 :     if(values[j]->isPeriodic()) {
     269             :       double minv,maxv;
     270           8 :       values[j]->getDomain(minv,maxv);
     271           8 :       if(minv>vmin[j])vmin[j]=minv;
     272           8 :       if(maxv<vmax[j])vmax[j]=maxv;
     273             :     }
     274          10 :     vbin[j]=static_cast<unsigned>(std::ceil((vmax[j]-vmin[j])/binsize[j]) );
     275             :   }
     276           5 : }
     277             : 
     278           0 : void BiasRepresentation::clear() {
     279           0 :   hills.clear();
     280             :   // clear the grid
     281           0 :   if(hasgrid) {
     282           0 :     BiasGrid_->clear();
     283             :   }
     284           0 : }
     285             : 
     286             : 
     287             : }

Generated by: LCOV version 1.16