Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2012-2017 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "function/FunctionTemplateBase.h" 23 : #include "function/FunctionShortcut.h" 24 : #include "function/FunctionOfMatrix.h" 25 : #include "core/ActionRegister.h" 26 : 27 : #include <complex> 28 : 29 : namespace PLMD { 30 : namespace symfunc { 31 : 32 : //+PLUMEDOC MCOLVAR CYLINDRICAL_HARMONIC 33 : /* 34 : Calculate the cylindrical harmonic function 35 : 36 : This action allows you to the value of the following complex function. The action outputs 37 : two components that are the real and imaginary parts of the following function: 38 : 39 : $$ 40 : z = w (\frac{x}{r} + \frac{y}{r} i )^n \qquad \textrm{where} \qquad r = \sqrt(x^2 + y^2} 41 : $$ 42 : 43 : In this expression $n$ is a parameter that is specified using the DEGREE keyword. $x$ and $y$ are the input arguments and $w$ is an optional input weight, which is set equal to 44 : one if only two arguments are provided in input. At present, the arguments for this action must be matrices. 45 : These arguments must all have the same shape as the two output components will also be matrices that are 46 : calculated by applying the function above to each of the elements of the input matrix in turn. 47 : 48 : The following intput provides an example that demonstrates how this function is used: 49 : 50 : ```plumed 51 : d: DISTANCE_MATRIX GROUP=1-10 COMPONENTS 52 : c: CYLINDRICAL_HARMONIC DEGREE=6 ARG=d.x,d.y 53 : PRINT ARG=c.rm FILE=real_part 54 : PRINT ARG=c.im FILE=imaginary_part 55 : ``` 56 : 57 : The DISTANCE_MATRIX command in the above input computes 3 $10\times10$ matrices. Two of these $10\times10$ matrices are used in the input to the cylindrical harmonic command, 58 : which in turn outputs two $10\times10$ matrices that contain the real and imaginary parts when the function above is applied element-wise to the above input. These two $10\times10$ 59 : matrices are then output to two separate files. 60 : 61 : In the above example the weights for every distance is set equal to one. The following example shows how an argument can be used to set the $w$ values to use when computing the function 62 : above. 63 : 64 : ```plumed 65 : s: CONTACT_MATRIX GROUP=1-10 SWITCH={RATIONAL R_0=1.0} 66 : sc: CONTACT_MATRIX GROUP=1-10 SWITCH={RATIONAL R_0=1.0} COMPONENTS 67 : c: CYLINDRICAL_HARMONIC DEGREE=6 ARG=sc.x,sc.y,s 68 : PRINT ARG=c.rm FILE=real_part 69 : PRINT ARG=c.im FILE=imaginary_part 70 : ``` 71 : 72 : */ 73 : //+ENDPLUMEDOC 74 : 75 : //+PLUMEDOC MCOLVAR CYLINDRICAL_HARMONIC_MATRIX 76 : /* 77 : Calculate the cylindrical harmonic function from the elements in two input matrices 78 : 79 : \par Examples 80 : 81 : 82 : */ 83 : //+ENDPLUMEDOC 84 : 85 : 86 12 : class CylindricalHarmonic : public function::FunctionTemplateBase { 87 : private: 88 : int tmom; 89 : public: 90 : void registerKeywords( Keywords& keys ) override; 91 : void read( ActionWithArguments* action ) override; 92 : void setPeriodicityForOutputs( ActionWithValue* action ) override; 93 : void calc( const ActionWithArguments* action, const std::vector<double>& args, std::vector<double>& vals, Matrix<double>& derivatives ) const override; 94 : }; 95 : 96 : typedef function::FunctionShortcut<CylindricalHarmonic> CyHarmShortcut; 97 : PLUMED_REGISTER_ACTION(CyHarmShortcut,"CYLINDRICAL_HARMONIC") 98 : typedef function::FunctionOfMatrix<CylindricalHarmonic> MatrixCyHarm; 99 : PLUMED_REGISTER_ACTION(MatrixCyHarm,"CYLINDRICAL_HARMONIC_MATRIX") 100 : 101 9 : void CylindricalHarmonic::registerKeywords( Keywords& keys ) { 102 9 : keys.add("compulsory","DEGREE","the value of the n parameter in the equation above"); 103 18 : keys.addOutputComponent("rm","default","matrix","the real part of the cylindrical harmonic"); 104 18 : keys.addOutputComponent("im","default","matrix","the imaginary part of the cylindrical harmonic"); 105 9 : } 106 : 107 2 : void CylindricalHarmonic::read( ActionWithArguments* action ) { 108 2 : parse(action,"DEGREE",tmom); 109 2 : action->log.printf(" calculating %dth order cylindrical harmonic with %s and %s as input \n", tmom, action->getPntrToArgument(0)->getName().c_str(), action->getPntrToArgument(1)->getName().c_str() ); 110 2 : if( action->getNumberOfArguments()==3 ) { 111 1 : action->log.printf(" multiplying cylindrical harmonic by weight from %s \n", action->getPntrToArgument(2)->getName().c_str() ); 112 : } 113 2 : } 114 : 115 2 : void CylindricalHarmonic::setPeriodicityForOutputs( ActionWithValue* action ) { 116 2 : action->componentIsNotPeriodic("rm"); 117 2 : action->componentIsNotPeriodic("im"); 118 2 : } 119 : 120 943610 : void CylindricalHarmonic::calc( const ActionWithArguments* action, const std::vector<double>& args, std::vector<double>& vals, Matrix<double>& derivatives ) const { 121 943610 : double dlen2 = args[0]*args[0] + args[1]*args[1]; 122 943610 : double dlen = sqrt( dlen2 ); 123 943610 : double dlen3 = dlen2*dlen; 124 943610 : std::complex<double> com1( args[0]/dlen,args[1]/dlen ); 125 : double weight=1; 126 943610 : if( args.size()==3 ) { 127 798000 : weight=args[2]; 128 : } 129 943610 : std::complex<double> ppp = pow( com1, tmom-1 ), ii( 0, 1 ); 130 : double real_z = real( ppp*com1 ), imag_z = imag( ppp*com1 ); 131 943610 : std::complex<double> dp_x = static_cast<double>(tmom)*ppp*( (1.0/dlen)-(args[0]*args[0])/dlen3-ii*(args[0]*args[1])/dlen3 ); 132 943610 : std::complex<double> dp_y = static_cast<double>(tmom)*ppp*( ii*(1.0/dlen)-(args[0]*args[1])/dlen3-ii*(args[1]*args[1])/dlen3 ); 133 943610 : vals[0] = weight*real_z; 134 943610 : derivatives(0,0) = weight*real(dp_x); 135 943610 : derivatives(0,1) = weight*real(dp_y); 136 943610 : vals[1] = weight*imag_z; 137 943610 : derivatives(1,0) = weight*imag(dp_x); 138 943610 : derivatives(1,1) = weight*imag(dp_y); 139 943610 : if( args.size()==3 ) { 140 798000 : derivatives(0,2) = real_z; 141 798000 : derivatives(1,2) = imag_z; 142 : } 143 943610 : } 144 : 145 : } 146 : } 147 :