LCOV - code coverage report
Current view: top level - sizeshape - pos_proj.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 185 188 98.4 %
Date: 2025-04-08 21:11:17 Functions: 8 9 88.9 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             : Copyright (c) 2024 by Glen Hocky, New York University on behalf of authors
       3             : 
       4             : The sizeshape module is free software: you can redistribute it and/or modify
       5             : it under the terms of the GNU Lesser General Public License as published by
       6             : the Free Software Foundation, either version 3 of the License, or
       7             : (at your option) any later version.
       8             : 
       9             : The sizeshape module is distributed in the hope that it will be useful,
      10             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      11             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      12             : GNU Lesser General Public License for more details.
      13             : 
      14             : You should have received a copy of the GNU Lesser General Public License
      15             : along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      16             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      17             : #include "colvar/Colvar.h"
      18             : #include "core/ActionRegister.h"
      19             : #include "tools/Pbc.h"
      20             : #include "tools/File.h"           // Input and output from files 
      21             : #include "tools/Matrix.h"         // Linear Algebra operations
      22             : #include <sstream>
      23             : #include <cmath>
      24             : #include "tools/Communicator.h"   // All the MPI related stuffs
      25             : 
      26             : namespace PLMD {
      27             : namespace sizeshape {
      28             : 
      29             : //+PLUMEDOC sizeshapeMOD_COLVAR SIZESHAPE_POSITION_LINEAR_PROJ
      30             : /*
      31             : Calculates a linear projection in the space of a given reference configurational distribution in size-and-shape space.
      32             : 
      33             : This method is described in \cite Sasmal-poslda-2023.
      34             : 
      35             : The linear projection is given by:
      36             : \f[
      37             :     l(\mathbf{x}) = \mathbf{v}\cdot(\mathbf{R}\cdot(\mathbf{x}(t) - \vec{{\zeta}}(t)) - \mathbf{\mu}),
      38             : \f]
      39             : Where \f$\mathbf{v}\f$ is a vector of linear coefficients, \f$\mathbf{x}(t)\f$ is the configuration at time t, \f$\vec{\zeta}(t)\f$ is the difference in the geometric mean of the current configuration and that of the reference configuration \f$\mathbf{\mu}\f$. \f$\vec{\zeta}(t) = \frac{1}{N} \sum_{i=1}^N \vec{x_{i}}(t) - \frac{1}{N} \sum_{i=1}^N \vec{\mu_{i}}(t)\f$, for N atoms.
      40             : 
      41             : \f$\mathbf{R}\f$ is an optimal rotation matrix that minimizes the Mahalanobis distance between the current configuration and reference. \f$\mathbf{R}\f$ is obtained by using Kabsch algorithm within the code. The Mahalanobis distance is given as:
      42             : 
      43             : \f[
      44             : d(\mathbf{x}, \mathbf{\mu}, \mathbf{\Sigma}) = \sqrt{(\mathbf{x}-\mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x}-\mathbf{\mu})}
      45             : \f]
      46             : 
      47             : where, \f$\mathbf{\Sigma}^{-1}\f$ is the \f$N\times N\f$ precision matrix. See also \ref POSITION_MAHA_DIST for information about calculating Mahalanobis distance in size-and-shape space.
      48             : 
      49             : Size-and-shape Gaussian Mixture Model (shapeGMM) \cite Heidi-shapeGMM-2022 is a probabilistic clustering technique that is used to perform structural clusteing on ensemble of molecular configurations and to obtain reference \f$(\mathbf{\mu})\f$ and precision \f$(\mathbf{\Sigma}^{-1})\f$ corresponding to each of the cluster centers. Please chcek out <a href="https://github.com/mccullaghlab/shapeGMMTorch">shapeGMMTorch-GitHub</a> and <a href="https://pypi.org/project/shapeGMMTorch/"> shapeGMMTorch-PyPI</a> for examples and informations on preforming shapeGMM clustering.
      50             : 
      51             : \par Examples
      52             : In the following example, a group is defined with atom indices of selected atoms and then linear projection is calculated for the given reference, precision and coefficients. Each file is a space separated list of 3N floating point numbers.
      53             : 
      54             : \plumedfile
      55             : UNITS LENGTH=A TIME=ps ENERGY=kcal/mol
      56             : GROUP ATOMS=18,20,22,31,33,35,44,46,48,57,59,61,70,72,74,83,85,87,96,98,100,109,111 LABEL=ga_list
      57             : #SETTINGS AUXFILE=regtest/sizeshape/rt-sizeshape/global_avg.txt
      58             : #SETTINGS AUXFILE=regtest/sizeshape/rt-sizeshape/global_precision.txt
      59             : #SETTINGS AUXFILE=regtest/sizeshape/rt-sizeshape/ld1_scalings.txt
      60             : proj: SIZESHAPE_POSITION_LINEAR_PROJ REFERENCE=global_avg.txt PRECISION=global_precision.txt COEFFS=ld1_scalings.txt GROUP=ga_list
      61             : PRINT ARG=proj STRIDE=1 FILE=COLVAR FMT=%8.8f
      62             : \endplumedfile
      63             : 
      64             : */
      65             : //+ENDPLUMEDOC
      66             : 
      67             : 
      68             : class position_linear_proj : public Colvar {
      69             : 
      70             : private:
      71             :   bool pbc, serial;
      72             :   std::string prec_f_name;                      // precision file name
      73             :   std::string ref_f_name;                       // reference file name
      74             :   std::string coeffs_f_name;                    // file containing linear coeffs
      75             :   IFile in_;                                    // create an object of class IFile
      76             :   Log out_;
      77             :   Matrix<double> ref_str;                 // coords of reference
      78             :   Matrix<double> mobile_str;              // coords of mobile
      79             :   Matrix<double> prec;                            // precision data
      80             :   Matrix<double> rotation;
      81             :   std::vector<double> linear_coeffs;            // Linear Coefficients
      82             :   Matrix<double> derv_numeric;
      83             :   void readinputs();                            // reads the input data
      84             :   double proj;                                  // projection value
      85             :   std::vector<AtomNumber> atom_list;            // list of atoms
      86             :   const double SMALL = 1.0E-30;
      87             :   const double delta = 0.00001;
      88             : public:
      89             :   static void registerKeywords( Keywords& keys );
      90             :   explicit position_linear_proj(const ActionOptions&);
      91             :   double determinant(int n, const std::vector<std::vector<double>>* B);
      92             :   void kabsch_rot_mat();                // gives rotation matrix
      93             :   double cal_position_linear_proj();    // calculates the linear projection
      94             :   void numeric_grad();                  // calculates the numeric gradient
      95             :   // active methods:
      96             :   void calculate() override;
      97             : };
      98             : 
      99             : PLUMED_REGISTER_ACTION(position_linear_proj, "SIZESHAPE_POSITION_LINEAR_PROJ")
     100             : 
     101             : // register keywords function
     102           7 : void position_linear_proj::registerKeywords( Keywords& keys ) {
     103           7 :   Colvar::registerKeywords( keys );
     104           7 :   keys.add("compulsory", "PRECISION", "Precision Matrix (inverse of covariance)." );
     105           7 :   keys.add("compulsory", "REFERENCE", "Coordinates of the reference structure.");
     106           7 :   keys.add("atoms","GROUP","Group of atoms being used");
     107           7 :   keys.add("compulsory", "COEFFS", "Vector of linear coefficients.");
     108           7 :   keys.addFlag("SERIAL",false,"Perform the calculation in serial, for debug purposes only.");
     109          14 :   keys.setValueDescription("scalar","the linear projection");
     110           7 : }
     111             : 
     112             : // constructor function
     113           5 : position_linear_proj::position_linear_proj(const ActionOptions&ao):
     114             :   PLUMED_COLVAR_INIT(ao),
     115           5 :   pbc(true),
     116           5 :   serial(false),
     117           5 :   proj(0),
     118          10 :   prec_f_name(""),
     119           5 :   ref_f_name(""),
     120          15 :   coeffs_f_name("") { // Note! no comma here in the last line.
     121           5 :   parseFlag("SERIAL",serial);
     122           5 :   parseAtomList("GROUP",atom_list);
     123           5 :   parse("REFERENCE", ref_f_name);
     124           5 :   parse("PRECISION", prec_f_name);
     125           5 :   parse("COEFFS", coeffs_f_name);
     126           5 :   bool nopbc=!pbc;
     127           5 :   parseFlag("NOPBC",nopbc);
     128           5 :   pbc=!nopbc;
     129             : 
     130           5 :   checkRead();
     131             : 
     132           5 :   log.printf("  of %u atoms\n",static_cast<unsigned>(atom_list.size()));
     133         120 :   for(unsigned int i=0; i<atom_list.size(); ++i) {
     134         115 :     log.printf("  %d", atom_list[i].serial());
     135             :   }
     136             : 
     137           5 :   if(pbc) {
     138           5 :     log.printf("\n using periodic boundary conditions\n");
     139             :   } else {
     140           0 :     log.printf("\n without periodic boundary conditions\n");
     141             :   }
     142             : 
     143           5 :   addValueWithDerivatives();
     144           5 :   setNotPeriodic();
     145             : 
     146           5 :   requestAtoms(atom_list);
     147             : 
     148             :   // call the readinputs() function here
     149           5 :   readinputs();
     150             : 
     151           5 : }
     152             : 
     153             : // read inputs function
     154           5 : void position_linear_proj::readinputs() {
     155             :   unsigned N=getNumberOfAtoms();
     156             :   // read ref coords
     157           5 :   in_.open(ref_f_name);
     158             : 
     159             :   ref_str.resize(N,3);
     160             :   prec.resize(N,N);
     161             :   derv_numeric.resize(N,3);
     162             : 
     163             :   std::string line_, val_;
     164             :   unsigned c_=0;
     165             : 
     166         120 :   while (c_ < N) {
     167         115 :     in_.getline(line_);
     168             :     std::vector<std::string> items_;
     169         115 :     std::stringstream check_(line_);
     170             : 
     171         460 :     while(std::getline(check_, val_, ' ')) {
     172         345 :       items_.push_back(val_);
     173             :     }
     174         460 :     for(int i=0; i<3; ++i) {
     175         345 :       ref_str(c_,i) = std::stold(items_[i]);
     176             :     }
     177         115 :     c_ += 1;
     178         115 :   }
     179           5 :   in_.close();
     180             : 
     181             :   //read precision
     182           5 :   in_.open(prec_f_name);
     183             : 
     184             :   std::string line, val;
     185             :   unsigned int c = 0;
     186             : 
     187         120 :   while(c < N) {
     188         115 :     in_.getline(line);
     189             : 
     190             :     // vector for storing the objects
     191             :     std::vector<std::string> items;
     192             : 
     193             :     // stringstream helps to treat a string like an ifstream!
     194         115 :     std::stringstream check(line);
     195             : 
     196        2760 :     while (std::getline(check, val, ' ')) {
     197        2645 :       items.push_back(val);
     198             :     }
     199             : 
     200        2760 :     for(unsigned int i=0; i<N; ++i) {
     201        2645 :       prec(c, i) = std::stold(items[i]);
     202             :     }
     203             : 
     204         115 :     c += 1;
     205             : 
     206         115 :   }
     207           5 :   in_.close();
     208             : 
     209             :   // read in the linear coeffs
     210           5 :   in_.open(coeffs_f_name);
     211             :   unsigned n_=0;
     212             :   std::string l_;
     213         350 :   while (n_ < N*3) {
     214         345 :     in_.getline(l_);
     215         345 :     linear_coeffs.push_back(std::stod(l_));
     216         345 :     n_ += 1;
     217             :   }
     218           5 :   linear_coeffs.resize(N*3);
     219             : 
     220           5 :   in_.close();
     221             : 
     222           5 : }
     223             : 
     224             : 
     225             : 
     226        1430 : double position_linear_proj::determinant(int n, const std::vector<std::vector<double>>* B) {
     227             : 
     228        1430 :   std::vector<std::vector<double>> A(n, std::vector<double>(n, 0));
     229             :   // make a copy first!
     230        5720 :   for(int i=0; i<n; ++i) {
     231       17160 :     for(int j=0; j<n; ++j) {
     232       12870 :       A[i][j] = (*B)[i][j];
     233             :     }
     234             :   }
     235             : 
     236             : 
     237             :   //  It calculates determinant of a matrix using partial pivoting.
     238             : 
     239             :   double det = 1;
     240             : 
     241             :   // Row operations for i = 0, ,,,, n - 2 (n-1 not needed)
     242        4290 :   for ( int i = 0; i < n - 1; i++ ) {
     243             :     // Partial pivot: find row r below with largest element in column i
     244             :     int r = i;
     245        2860 :     double maxA = std::abs( A[i][i] );
     246        7150 :     for ( int k = i + 1; k < n; k++ ) {
     247        4290 :       double val = std::abs( A[k][i] );
     248        4290 :       if ( val > maxA ) {
     249             :         r = k;
     250             :         maxA = val;
     251             :       }
     252             :     }
     253        2860 :     if ( r != i ) {
     254       10010 :       for ( int j = i; j < n; j++ ) {
     255        7150 :         std::swap( A[i][j], A[r][j] );
     256             :       }
     257        2860 :       det = -det;
     258             :     }
     259             : 
     260             :     // Row operations to make upper-triangular
     261        2860 :     double pivot = A[i][i];
     262        2860 :     if (std::abs( pivot ) < SMALL ) {
     263             :       return 0.0;  // Singular matrix
     264             :     }
     265             : 
     266        7150 :     for ( int r = i + 1; r < n; r++ ) {                  // On lower rows
     267        4290 :       double multiple = A[r][i] / pivot;                // Multiple of row i to clear element in ith column
     268       15730 :       for ( int j = i; j < n; j++ ) {
     269       11440 :         A[r][j] -= multiple * A[i][j];
     270             :       }
     271             :     }
     272        2860 :     det *= pivot;                                        // Determinant is product of diagonal
     273             :   }
     274             : 
     275        1430 :   det *= A[n-1][n-1];
     276             : 
     277        1430 :   return det;
     278        1430 : }
     279             : 
     280             : // kabsch rotation
     281         715 : void position_linear_proj::kabsch_rot_mat() {
     282             : 
     283             :   unsigned N=getNumberOfAtoms();
     284             : 
     285             :   Matrix<double> mobile_str_T(3,N);
     286             :   Matrix<double> prec_dot_ref_str(N,3);
     287             :   Matrix<double> correlation(3,3);
     288             : 
     289             : 
     290         715 :   transpose(mobile_str, mobile_str_T);
     291         715 :   mult(prec, ref_str, prec_dot_ref_str);
     292         715 :   mult(mobile_str_T, prec_dot_ref_str, correlation);
     293             : 
     294             : 
     295         715 :   int rw = correlation.nrows();
     296         715 :   int cl = correlation.ncols();
     297         715 :   int sz = rw*cl;
     298             : 
     299             :   // SVD part (taking from plu2/src/tools/Matrix.h: pseudoInvert function)
     300             : 
     301         715 :   std::vector<double> da(sz);
     302             :   unsigned k=0;
     303             : 
     304             :   // Transfer the matrix to the local array
     305        2860 :   for (int i=0; i<cl; ++i)
     306        8580 :     for (int j=0; j<rw; ++j) {
     307        6435 :       da[k++]=static_cast<double>( correlation(j,i) );  // note! its [j][i] not [i][j]
     308             :     }
     309             : 
     310         715 :   int nsv, info, nrows=rw, ncols=cl;
     311             :   if(rw>cl) {
     312             :     nsv=cl;
     313             :   } else {
     314             :     nsv=rw;
     315             :   }
     316             : 
     317             :   // Create some containers for stuff from single value decomposition
     318         715 :   std::vector<double> S(nsv);
     319         715 :   std::vector<double> U(nrows*nrows);
     320         715 :   std::vector<double> VT(ncols*ncols);
     321         715 :   std::vector<int> iwork(8*nsv);
     322             : 
     323             :   // This optimizes the size of the work array used in lapack singular value decomposition
     324         715 :   int lwork=-1;
     325         715 :   std::vector<double> work(1);
     326         715 :   plumed_lapack_dgesdd( "A", &nrows, &ncols, da.data(), &nrows, S.data(), U.data(), &nrows, VT.data(), &ncols, work.data(), &lwork, iwork.data(), &info );
     327             :   //if(info!=0) return info;
     328         715 :   if(info!=0) {
     329           0 :     log.printf("info:", info);
     330             :   }
     331             : 
     332             :   // Retrieve correct sizes for work and rellocate
     333         715 :   lwork=(int) work[0];
     334         715 :   work.resize(lwork);
     335             : 
     336             :   // This does the singular value decomposition
     337         715 :   plumed_lapack_dgesdd( "A", &nrows, &ncols, da.data(), &nrows, S.data(), U.data(), &nrows, VT.data(), &ncols, work.data(), &lwork, iwork.data(), &info );
     338             :   //if(info!=0) return info;
     339         715 :   if(info!=0) {
     340           0 :     log.printf("info:", info);
     341             :   }
     342             : 
     343             : 
     344             :   // get U and VT in form of 2D vector (U_, VT_)
     345         715 :   std::vector<std::vector<double>> U_(nrows, std::vector<double>(nrows,0));
     346         715 :   std::vector<std::vector<double>> VT_(ncols, std::vector<double>(ncols,0));
     347             : 
     348             :   int  c=0;
     349             : 
     350        2860 :   for(int i=0; i<nrows; ++i) {
     351        8580 :     for(int j=0; j<nrows; ++j) {
     352        6435 :       U_[j][i] = U[c];
     353        6435 :       c += 1;
     354             :     }
     355             :   }
     356             :   c = 0; // note! its [j][i] not [i][j]
     357        2860 :   for(int i=0; i<ncols; ++i) {
     358        8580 :     for(int j=0; j<ncols; ++j) {
     359        6435 :       VT_[j][i] = VT[c];
     360        6435 :       c += 1;
     361             :     }
     362             :   }
     363             :   c=0; // note! its [j][i] not [i][j]
     364             : 
     365             : 
     366             :   // calculate determinants
     367         715 :   double det_u = determinant(nrows, &U_);
     368         715 :   double det_vt = determinant(ncols, &VT_);
     369             : 
     370             :   // check!
     371         715 :   if (det_u * det_vt < 0.0) {
     372        1144 :     for(int i=0; i<nrows; ++i) {
     373         858 :       U_[i][nrows-1] *= -1;
     374             :     }
     375             :   }
     376             : 
     377             : 
     378             :   //Matrix<double> rotation(3,3);
     379         715 :   rotation.resize(3,3);
     380             :   Matrix<double> u(3,3), vt(3,3);
     381        2860 :   for(int i=0; i<3; ++i) {
     382        8580 :     for(int j=0; j<3; ++j) {
     383        6435 :       u(i,j)=U_[i][j];
     384        6435 :       vt(i,j)=VT_[i][j];
     385             :     }
     386             :   }
     387             : 
     388             :   // get rotation matrix
     389         715 :   mult(u, vt, rotation);
     390             : 
     391        1430 : }
     392             : 
     393             : 
     394             : // calculates linear projection
     395         715 : double position_linear_proj::cal_position_linear_proj() {
     396             : 
     397             :   unsigned N=getNumberOfAtoms();
     398             : 
     399             :   Matrix<double> rotated_obj(N,3);
     400             :   // rotate the object
     401         715 :   mult(mobile_str, rotation, rotated_obj);
     402             : 
     403             :   // compute the displacement
     404         715 :   std::vector<double> disp(N*3);
     405             :   unsigned c=0;
     406       17160 :   for(unsigned int i=0; i<N; ++i) {
     407       65780 :     for(int j=0; j<3; ++j) {
     408       49335 :       disp[c] = (rotated_obj(i,j)-ref_str(i,j));
     409       49335 :       c+=1;
     410             :     }
     411             :   }
     412             : 
     413             :   //double proj_val = dotProduct(disp, linear_coeffs);
     414             :   double proj_val = 0.0;
     415       50050 :   for(unsigned int i=0; i<N*3; ++i) {
     416       49335 :     proj_val += (linear_coeffs[i]*disp[i]);
     417             :   }
     418             : 
     419         715 :   return proj_val;
     420             : }
     421             : 
     422             : // numeric gradient
     423          25 : void position_linear_proj::numeric_grad() {
     424             :   // This function performs numerical derivative.
     425             :   unsigned N=getNumberOfAtoms();
     426             : 
     427             :   unsigned stride;
     428             :   unsigned rank;
     429          25 :   if(serial) {
     430             :     // when using components the parallelisation do not work
     431             :     stride=1;
     432             :     rank=0;
     433             :   } else {
     434          25 :     stride=comm.Get_size();
     435          25 :     rank=comm.Get_rank();
     436             :   }
     437             : 
     438         255 :   for(unsigned i=rank; i<N; i+=stride) {
     439         920 :     for (unsigned j=0; j<3; ++j) {
     440             : 
     441         690 :       mobile_str(i,j) += delta;
     442         690 :       kabsch_rot_mat();
     443         690 :       derv_numeric(i,j) = ((cal_position_linear_proj() - proj)/delta);
     444             : 
     445         690 :       mobile_str(i,j) -= delta;
     446             :     }
     447             : 
     448             :   }
     449             : 
     450          25 :   if(!serial) {
     451          25 :     if(!derv_numeric.getVector().empty()) {
     452          25 :       comm.Sum(&derv_numeric(0,0), derv_numeric.getVector().size());
     453             :     }
     454             :   }
     455             : 
     456             : 
     457         600 :   for(unsigned i=0; i<N; ++i) {
     458         575 :     Vector vi(derv_numeric(i,0), derv_numeric(i,1), derv_numeric(i,2) );
     459         575 :     setAtomsDerivatives(i, vi);
     460             :   }
     461             : 
     462             :   // clear the matrix (very important step!!)
     463          25 :   derv_numeric *= 0;
     464          25 : }
     465             : 
     466             : 
     467             : // calculator
     468          25 : void position_linear_proj::calculate() {
     469             : 
     470          25 :   if(pbc) {
     471          25 :     makeWhole();
     472             :   }
     473             :   unsigned N=getNumberOfAtoms();
     474             : 
     475             :   mobile_str.resize(N,3);
     476             : 
     477             :   // load the mobile str
     478         600 :   for(unsigned int i=0; i<N; ++i) {
     479         575 :     Vector pos=getPosition(i);  // const PLMD::Vector
     480        2300 :     for(unsigned j=0; j<3; ++j) {
     481        1725 :       mobile_str(i,j) = pos[j];
     482             :     }
     483             :   }
     484             : 
     485             :   // translating the structure to center of geometry
     486          25 :   double center_of_geometry[3]= {0.0, 0.0, 0.0};
     487             : 
     488         600 :   for(unsigned int i=0; i<N; ++i) {
     489         575 :     center_of_geometry[0] += mobile_str(i,0);
     490         575 :     center_of_geometry[1] += mobile_str(i,1);
     491         575 :     center_of_geometry[2] += mobile_str(i,2);
     492             :   }
     493             : 
     494         600 :   for(unsigned int i=0; i<N; ++i) {
     495        2300 :     for(int j=0; j<3; ++j) {
     496        1725 :       mobile_str(i,j) -= (center_of_geometry[j]/N);
     497             :     }
     498             :   }
     499             : 
     500          25 :   kabsch_rot_mat();
     501          25 :   proj = cal_position_linear_proj();
     502             : 
     503          25 :   numeric_grad();
     504          25 :   setBoxDerivativesNoPbc();
     505          25 :   setValue(proj);
     506             : 
     507             : 
     508          25 : }
     509             : 
     510             : }
     511             : }
     512             : 
     513             : 
     514             : 

Generated by: LCOV version 1.16