LCOV - code coverage report
Current view: top level - refdist - NormalizedEuclideanDistance.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 39 39 100.0 %
Date: 2025-04-08 21:11:17 Functions: 2 3 66.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2018 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "core/ActionRegister.h"
      23             : #include "core/ActionShortcut.h"
      24             : #include "core/ActionWithValue.h"
      25             : #include "core/PlumedMain.h"
      26             : #include "core/ActionSet.h"
      27             : 
      28             : //+PLUMEDOC FUNCTION NORMALIZED_EUCLIDEAN_DISTANCE
      29             : /*
      30             : Calculate the normalised euclidean distance between two points in CV space
      31             : 
      32             : If we have two $n$-dimensional vectors $u$ and $v$ and an $n$ dimensional vector of inverse covariance values, $a$,
      33             : we can calculate the normalised Euclidean distance between the two points as
      34             : 
      35             : $$
      36             : d = \sqrt{ \sum_{i=1}^n a_i (u_i - v_i)^2 }
      37             : $$
      38             : 
      39             : which can be expressed in matrix form as:
      40             : 
      41             : $$
      42             : d^2 = (u-v)^T a \odot (u-v)
      43             : $$
      44             : 
      45             : where $\odot$ here is used to indicate the [Hadamard product](https://en.wikipedia.org/wiki/Hadamard_product_(matrices))
      46             : of the two vectors.
      47             : 
      48             : The inputs below shows an example where this is used to calculate the Normalized Euclidean distance
      49             : between the instaneous values of some torsional angles and some reference values
      50             : for these torsion.  The inverse covriance values are provided in the constant value with label `m`.
      51             : In this first example the input values are vectors:
      52             : 
      53             : ```plumed
      54             : m: CONSTANT VALUES=0.1,0.2,0.3
      55             : c: CONSTANT VALUES=1,2,3
      56             : d: DISTANCE ATOMS1=1,2 ATOMS2=3,4 ATOMS3=5,6
      57             : dd: NORMALIZED_EUCLIDEAN_DISTANCE ARG1=c ARG2=d METRIC=m
      58             : PRINT ARG=dd FILE=colvar
      59             : ```
      60             : 
      61             : while this second example does the same thing but uses scalars in input.
      62             : 
      63             : ```plumed
      64             : m: CONSTANT VALUES=0.1,0.2,0.3
      65             : c1: CONSTANT VALUE=1
      66             : d1: DISTANCE ATOMS=1,2
      67             : c2: CONSTANT VALUE=2
      68             : d2: DISTANCE ATOMS=3,4
      69             : c3: CONSTANT VALUE=3
      70             : d3: DISTANCE ATOMS=5,6
      71             : dd: NORMALIZED_EUCLIDEAN_DISTANCE ARG1=c1,c2,c3 ARG2=d1,d2,d3 METRIC=m
      72             : PRINT ARG=dd FILE=colvar
      73             : ```
      74             : 
      75             : ## Calculating multiple distances
      76             : 
      77             : Suppose that we now have $m$ reference configurations we can define the following $m$ distances
      78             : from these reference configurations:
      79             : 
      80             : $$
      81             : d_j^2 = (u-v_j)^T a \odot (u-v_j)
      82             : $$
      83             : 
      84             : Lets suppose that we put the $m$, $n$-dimensional $(u-v_j)$ vectors in this expression into a
      85             : $n\times m$ matrix, $A$, by using the [DISPLACEMENT](DISPLACEMENT.md) command.  It is then
      86             : straightforward to show that the $d_j^2$ values in the above expression are the diagonal
      87             : elements of the matrix product $A^T K \odot A$, where $K$ is an $n \times $m$ matrix that contains
      88             : $m$ copies of the inverse covariance matrix $a$ in its columns.
      89             : 
      90             : We can use this idea to calculate multiple NORMALIZED_EUCLIDEAN_DISTANCE values in the following inputs.
      91             : This first example calculates the three distances between the instaneoues values of two torsions
      92             : and three reference configurations.
      93             : 
      94             : ```plumed
      95             : m: CONSTANT VALUES=0.1,0.2
      96             : ref_psi: CONSTANT VALUES=2.25,1.3,-1.5
      97             : ref_phi: CONSTANT VALUES=-1.91,-0.6,2.4
      98             : 
      99             : psi: TORSION ATOMS=1,2,3,4
     100             : phi: TORSION ATOMS=13,14,15,16
     101             : 
     102             : dd: NORMALIZED_EUCLIDEAN_DISTANCE ARG1=psi,phi ARG2=ref_psi,ref_phi METRIC=m
     103             : PRINT ARG=dd FILE=colvar
     104             : ```
     105             : 
     106             : This section example calculates the three distances between a single reference value for the two
     107             : torsions and three instances of this pair of torsions.
     108             : 
     109             : ```plumed
     110             : m: CONSTANT VALUES=0.1,0.2
     111             : ref_psi: CONSTANT VALUES=2.25
     112             : ref_phi: CONSTANT VALUES=-1.91
     113             : 
     114             : psi: TORSION ATOMS1=1,2,3,4 ATOMS2=5,6,7,8 ATOMS3=9,10,11,12
     115             : phi: TORSION ATOMS1=13,14,15,16 ATOMS2=17,18,19,20 ATOMS3=21,22,23,24
     116             : 
     117             : dd: NORMALIZED_EUCLIDEAN_DISTANCE ARG1=psi,phi ARG2=ref_psi,ref_phi METRIC=m
     118             : PRINT ARG=dd FILE=colvar
     119             : ```
     120             : 
     121             : This final example then computes three distances between three pairs of torsional angles and threee
     122             : reference values for these three values.
     123             : 
     124             : ```plumed
     125             : m: CONSTANT VALUES=0.1,0.2
     126             : ref_psi: CONSTANT VALUES=2.25,1.3,-1.5
     127             : ref_phi: CONSTANT VALUES=-1.91,-0.6,2.4
     128             : 
     129             : psi: TORSION ATOMS1=1,2,3,4 ATOMS2=5,6,7,8 ATOMS3=9,10,11,12
     130             : phi: TORSION ATOMS1=13,14,15,16 ATOMS2=17,18,19,20 ATOMS3=21,22,23,24
     131             : 
     132             : dd: NORMALIZED_EUCLIDEAN_DISTANCE ARG1=psi,phi ARG2=ref_psi,ref_phi METRIC=m
     133             : PRINT ARG=dd FILE=colvar
     134             : ```
     135             : 
     136             : */
     137             : //+ENDPLUMEDOC
     138             : 
     139             : namespace PLMD {
     140             : namespace refdist {
     141             : 
     142             : class NormalizedEuclideanDistance : public ActionShortcut {
     143             : public:
     144             :   static void registerKeywords( Keywords& keys );
     145             :   explicit NormalizedEuclideanDistance(const ActionOptions&ao);
     146             : };
     147             : 
     148             : PLUMED_REGISTER_ACTION(NormalizedEuclideanDistance,"NORMALIZED_EUCLIDEAN_DISTANCE")
     149             : 
     150          13 : void NormalizedEuclideanDistance::registerKeywords( Keywords& keys ) {
     151          13 :   ActionShortcut::registerKeywords(keys);
     152          13 :   keys.add("compulsory","ARG1","The poin that we are calculating the distance from");
     153          13 :   keys.add("compulsory","ARG2","The point that we are calculating the distance to");
     154          13 :   keys.add("compulsory","METRIC","The inverse covariance matrix that should be used when calculating the distance");
     155          13 :   keys.addFlag("SQUARED",false,"The squared distance should be calculated");
     156          26 :   keys.setValueDescription("scalar/vector","the normalized euclidean distances between the input vectors");
     157          13 :   keys.needsAction("DISPLACEMENT");
     158          13 :   keys.needsAction("CUSTOM");
     159          13 :   keys.needsAction("OUTER_PRODUCT");
     160          13 :   keys.needsAction("TRANSPOSE");
     161          13 :   keys.needsAction("MATRIX_PRODUCT_DIAGONAL");
     162          13 :   keys.needsAction("ONES");
     163          13 : }
     164             : 
     165           8 : NormalizedEuclideanDistance::NormalizedEuclideanDistance( const ActionOptions& ao):
     166             :   Action(ao),
     167           8 :   ActionShortcut(ao) {
     168             :   std::string arg1, arg2, metstr;
     169           8 :   parse("ARG1",arg1);
     170           8 :   parse("ARG2",arg2);
     171           8 :   parse("METRIC",metstr);
     172             :   // Vectors are in rows here
     173          16 :   readInputLine( getShortcutLabel() + "_diff: DISPLACEMENT ARG1=" + arg1 + " ARG2=" + arg2 );
     174             :   // Vectors are in columns here
     175          16 :   readInputLine( getShortcutLabel() + "_diffT: TRANSPOSE ARG=" + getShortcutLabel() + "_diff");
     176             :   // Get the action that computes the differences
     177           8 :   ActionWithValue* av = plumed.getActionSet().selectWithLabel<ActionWithValue*>( getShortcutLabel() + "_diffT");
     178           8 :   plumed_assert( av );
     179             :   // If this is a matrix we need create a matrix to multiply by
     180           8 :   if( av->copyOutput(0)->getRank()==2 ) {
     181             :     // Create some ones
     182             :     std::string nones;
     183           4 :     Tools::convert( av->copyOutput(0)->getShape()[1], nones );
     184           8 :     readInputLine( getShortcutLabel() + "_ones: ONES SIZE=" + nones);
     185             :     // Now do some multiplication to create a matrix that can be multiplied by our "inverse variance" vector
     186           4 :     if( av->copyOutput(0)->getShape()[0]==1 ) {
     187           4 :       readInputLine( getShortcutLabel() + "_" + metstr + "T: CUSTOM ARG=" + metstr + "," + getShortcutLabel() + "_ones FUNC=x*y PERIODIC=NO");
     188           4 :       readInputLine( getShortcutLabel() + "_" + metstr + ": TRANSPOSE ARG=" + getShortcutLabel() + "_" + metstr + "T");
     189             :     } else {
     190           4 :       readInputLine( getShortcutLabel() + "_" + metstr + ": OUTER_PRODUCT ARG=" + metstr + "," + getShortcutLabel() + "_ones");
     191             :     }
     192           8 :     metstr = getShortcutLabel() + "_" + metstr;
     193             :   }
     194             :   // Now do the multiplication
     195          16 :   readInputLine( getShortcutLabel() + "_sdiff: CUSTOM ARG=" + metstr + "," + getShortcutLabel() +"_diffT FUNC=x*y PERIODIC=NO");
     196             :   bool squared;
     197           8 :   parseFlag("SQUARED",squared);
     198           8 :   std::string olab = getShortcutLabel();
     199           8 :   if( !squared ) {
     200             :     olab += "_2";
     201             :   }
     202          16 :   readInputLine( olab + ": MATRIX_PRODUCT_DIAGONAL ARG=" + getShortcutLabel() +"_diff," + getShortcutLabel() + "_sdiff");
     203           8 :   if( !squared ) {
     204          10 :     readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_2 FUNC=sqrt(x) PERIODIC=NO");
     205             :   }
     206           8 : }
     207             : 
     208             : }
     209             : }

Generated by: LCOV version 1.16