LCOV - code coverage report
Current view: top level - refdist - Kernel.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 105 140 75.0 %
Date: 2025-04-08 18:07:56 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2017 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "core/ActionShortcut.h"
      23             : #include "core/PlumedMain.h"
      24             : #include "core/ActionSet.h"
      25             : #include "core/ActionRegister.h"
      26             : #include "core/ActionWithValue.h"
      27             : #include "tools/IFile.h"
      28             : 
      29             : #include <cmath>
      30             : 
      31             : namespace PLMD {
      32             : namespace refdist {
      33             : 
      34             : //+PLUMEDOC FUNCTION KERNEL
      35             : /*
      36             : Transform a set of input coordinates using a kernel function
      37             : 
      38             : This action takes a vector of arguments in input, $s$, the square of the [NORMALIZED_EUCLIDEAN_DISTANCE](NORMALIZED_EUCLIDEAN_DISTANCE.md) or
      39             : [MAHALANOBIS_DISTANCE](MAHALANOBIS_DISTANCE.md) between the instataneous values of these arguments
      40             : and a set of reference values for them is then computed. If this squared distance is $x$ then the final quantity that is returned
      41             : by this function is:
      42             : 
      43             : $$
      44             : f = w K(x)
      45             : $$
      46             : 
      47             : where $w$ is a scalar that the user specifies using the `WEIGHT` keyword and $K$ can be a function of $x$ that the user
      48             : specifies using the `FUNC` keyword or one of the Kernel functions options from the following table that are available internally:
      49             : 
      50             : | Instruction | Function |
      51             : |:-----------:|:---------|
      52             : | FUNC=gaussian | $\exp(-x/2)$ |
      53             : | FUNC=von-misses | $\exp(-x/2)$ |
      54             : | FUNC=triangular | $1-\sqrt{x} \quad \textrm{if} \quad x<1 \quad \textrm{otherwise} \quad 0$ |
      55             : 
      56             : The `von-misses` options here is used if the input arguments have a periodic domain.  This instruction changes the way the
      57             : [MAHALANOBIS_DISTANCE](MAHALANOBIS_DISTANCE.md) is computed so that the method that is appropriate for using with periodic
      58             : variables is employed in place of the default method.
      59             : 
      60             : ## Examples
      61             : 
      62             : The following example demonstrates how this action can be used to evaluate a Kernel that is a function of one argument:
      63             : 
      64             : ```plumed
      65             : d: DISTANCE ATOMS=1,2
      66             : k: KERNEL ARG=d TYPE=gaussian CENTER=1 SIGMA=0.1
      67             : ```
      68             : 
      69             : The [NORMALIZED_EUCLIDEAN_DISTANCE](NORMALIZED_EUCLIDEAN_DISTANCE.md) between the instantaneous distance and the point 1 is evaluated here.
      70             : The metric vector that is used to evaluate this distance is taking the reciprocal of the square of the input SIGMA value. Lastly, the height of the Gaussian, $w$,
      71             : in the expression above is set equal to one.  If you would like the total volume of the Gaussian to be equal to one you use the `NORMALIZED` keyword as shown here:
      72             : 
      73             : ```plumed
      74             : d: DISTANCE ATOMS=1,2
      75             : k: KERNEL ARG=d TYPE=gaussian CENTER=1 SIGMA=0.1 NORMALIZED
      76             : ```
      77             : 
      78             : If your Kernel is a function of two arguments you can use the [NORMALIZED_EUCLIDEAN_DISTANCE](NORMALIZED_EUCLIDEAN_DISTANCE.md) to evaluate the
      79             : distance as is done in the following example:
      80             : 
      81             : ```plumed
      82             : d1: DISTANCE ATOMS=1,2
      83             : d2: DISTANCE ATOMS=3,4
      84             : k: KERNEL ARG=d1,d2 TYPE=gaussian CENTER=1,1 SIGMA=0.1,0.1
      85             : ```
      86             : 
      87             : or you can use the [MAHALANOBIS_DISTANCE](MAHALANOBIS_DISTANCE.md) as is done here:
      88             : 
      89             : ```plumed
      90             : phi: TORSION ATOMS=1,2,3,4
      91             : psi: TORSION ATOMS=5,6,7,8
      92             : k: KERNEL ...
      93             :    ARG=phi,psi TYPE=von-misses
      94             :    CENTER=-1.09648066E+0000,-7.17867907E-0001
      95             :    COVAR=1.40523052E-0001,-1.05385552E-0001,-1.05385552E-0001,1.63290557E-0001
      96             : ...
      97             : ```
      98             : 
      99             : To switch to using the [MAHALANOBIS_DISTANCE](MAHALANOBIS_DISTANCE.md) you use `COVAR` instead of `SIGMA` and specify the covariance matrix of the kernel.
     100             : The metric that is used when evaluating the distance is the inverse of the input covariance matrix.
     101             : 
     102             : Notice that you specify the Kernel function in a separate PLUMED input file by using an input like the one shown below:
     103             : 
     104             : ```plumed
     105             : #SETTINGS INPUTFILES=regtest/pamm/rt-pamm-periodic/2D-testc-0.75.pammp
     106             : phi: TORSION ATOMS=1,2,3,4
     107             : psi: TORSION ATOMS=5,6,7,8
     108             : k: KERNEL ARG=phi,psi REFERENCE=regtest/pamm/rt-pamm-periodic/2D-testc-0.75.pammp NUMBER=3
     109             : ```
     110             : 
     111             : This command computes the same Kernel that was computed in the previous input.  The keyword `REFERENCE` specifies that the parameters are to be read
     112             : from the file and the keyword `NUMBER` indicates that the parameters are found on the third line of that file.
     113             : 
     114             : Lastly, note that you can use vectors in the input to this shortcut as shown here:
     115             : 
     116             : ```plumed
     117             : #SETTINGS INPUTFILES=regtest/pamm/rt-pamm-periodic/2D-testc-0.75.pammp
     118             : phi: TORSION ATOMS1=1,2,3,4 ATOMS2=9,10,11,12 ATOMS3=17,18,19,20
     119             : psi: TORSION ATOMS1=5,6,7,8 ATOMS2=13,14,15,16 ATOMS3=21,22,23,24
     120             : k: KERNEL ARG=phi,psi REFERENCE=regtest/pamm/rt-pamm-periodic/2D-testc-0.75.pammp NUMBER=3
     121             : ```
     122             : 
     123             : The output `k` here is a vector with three components. The first component is the kernel evaluated with the torsion involving atoms 1, 2, 3 and 4 and the
     124             : torsion involving atoms 5, 6, 7 and 8.  The second component is the kernel evaluated with the torsion involving atoms 9, 10, 11 and 12 and the
     125             : torsion involving atoms 13, 14, 15 and 16. The third component is the kernel evaluated with the torsion involving atoms 17, 18, 19 and 20 and the
     126             : torsion involving atoms 21, 22, 23 and 24.
     127             : 
     128             : */
     129             : //+ENDPLUMEDOC
     130             : 
     131             : 
     132             : class Kernel : public ActionShortcut {
     133             : public:
     134             :   static std::string fixArgumentDot( const std::string& argin );
     135             :   explicit Kernel(const ActionOptions&);
     136             :   static void registerKeywords(Keywords& keys);
     137             : };
     138             : 
     139             : 
     140             : PLUMED_REGISTER_ACTION(Kernel,"KERNEL")
     141             : 
     142          20 : void Kernel::registerKeywords(Keywords& keys) {
     143          20 :   ActionShortcut::registerKeywords( keys );
     144          40 :   keys.addInputKeyword("numbered","ARG","scalar/vector","the arguments that should be used as input to this method");
     145          20 :   keys.add("compulsory","TYPE","gaussian","the type of kernel to use");
     146          20 :   keys.add("compulsory","CENTER","the position of the center of the kernel");
     147          20 :   keys.add("optional","SIGMA","square root of variance of the cluster");
     148          20 :   keys.add("compulsory","COVAR","the covariance of the kernel");
     149          20 :   keys.add("compulsory","WEIGHT","1.0","the weight to multiply this kernel function by");
     150          20 :   keys.add("optional","REFERENCE","the file from which to read the kernel parameters");
     151          20 :   keys.add("compulsory","NUMBER","1","if there are multiple sets of kernel parameters in the input file which set of kernel parameters would you like to read in here");
     152          20 :   keys.addFlag("NORMALIZED",false,"would you like the kernel function to be normalized");
     153          40 :   keys.setValueDescription("scalar/vector","the value of the kernel evaluated at the argument values");
     154          20 :   keys.needsAction("CONSTANT");
     155          20 :   keys.needsAction("CUSTOM");
     156          20 :   keys.needsAction("NORMALIZED_EUCLIDEAN_DISTANCE");
     157          20 :   keys.needsAction("PRODUCT");
     158          20 :   keys.needsAction("INVERT_MATRIX");
     159          20 :   keys.needsAction("MAHALANOBIS_DISTANCE");
     160          20 :   keys.needsAction("DIAGONALIZE");
     161          20 :   keys.needsAction("CONCATENATE");
     162          20 :   keys.needsAction("DETERMINANT");
     163          20 :   keys.needsAction("BESSEL");
     164          20 : }
     165             : 
     166          32 : std::string Kernel::fixArgumentDot( const std::string& argin ) {
     167          32 :   std::string argout = argin;
     168          32 :   std::size_t dot=argin.find(".");
     169          32 :   if( dot!=std::string::npos ) {
     170           0 :     argout = argin.substr(0,dot) + "_" + argin.substr(dot+1);
     171             :   }
     172          32 :   return argout;
     173             : }
     174             : 
     175           9 : Kernel::Kernel(const ActionOptions&ao):
     176             :   Action(ao),
     177           9 :   ActionShortcut(ao) {
     178             :   // Read in the arguments
     179             :   std::vector<std::string> argnames;
     180          18 :   parseVector("ARG",argnames);
     181           9 :   if( argnames.size()==0 ) {
     182           0 :     error("no arguments were specified");
     183             :   }
     184             :   // Now sort out the parameters
     185             :   double weight;
     186             :   std::string fname;
     187          18 :   parse("REFERENCE",fname);
     188             :   bool usemahalanobis=false;
     189           9 :   if( fname.length()>0 ) {
     190           9 :     IFile ifile;
     191           9 :     ifile.open(fname);
     192           9 :     ifile.allowIgnoredFields();
     193             :     unsigned number;
     194           9 :     parse("NUMBER",number);
     195             :     bool readline=false;
     196             :     // Create actions to hold the position of the center
     197          31 :     for(unsigned line=0; line<number; ++line) {
     198          90 :       for(unsigned i=0; i<argnames.size(); ++i) {
     199             :         std::string val;
     200          59 :         ifile.scanField(argnames[i], val);
     201          59 :         if( line==number-1 ) {
     202          32 :           readInputLine( getShortcutLabel() + "_" + fixArgumentDot(argnames[i]) + "_ref: CONSTANT VALUES=" + val );
     203             :         }
     204             :       }
     205          62 :       if( ifile.FieldExist("sigma_" + argnames[0]) ) {
     206             :         std::string varstr;
     207           0 :         for(unsigned i=0; i<argnames.size(); ++i) {
     208             :           std::string val;
     209           0 :           ifile.scanField("sigma_" + argnames[i], val);
     210           0 :           if( i==0 ) {
     211             :             varstr = val;
     212             :           } else {
     213           0 :             varstr += "," + val;
     214             :           }
     215             :         }
     216           0 :         if( line==number-1 ) {
     217           0 :           readInputLine( getShortcutLabel() + "_var: CONSTANT VALUES=" + varstr );
     218             :         }
     219             :       } else {
     220             :         std::string varstr, nvals;
     221          31 :         Tools::convert( argnames.size(), nvals );
     222          31 :         usemahalanobis=(argnames.size()>1);
     223          90 :         for(unsigned i=0; i<argnames.size(); ++i) {
     224         174 :           for(unsigned j=0; j<argnames.size(); j++) {
     225             :             std::string val;
     226         230 :             ifile.scanField("sigma_" +argnames[i] + "_" + argnames[j], val );
     227         115 :             if(i==0 && j==0 ) {
     228             :               varstr = val;
     229             :             } else {
     230         168 :               varstr += "," + val;
     231             :             }
     232             :           }
     233             :         }
     234          31 :         if( line==number-1 ) {
     235           9 :           if( !usemahalanobis ) {
     236           4 :             readInputLine( getShortcutLabel() + "_var: CONSTANT VALUES=" + varstr );
     237             :           } else {
     238          14 :             readInputLine( getShortcutLabel() + "_cov: CONSTANT NCOLS=" + nvals + " NROWS=" + nvals + " VALUES=" + varstr );
     239             :           }
     240             :         }
     241             :       }
     242          31 :       if( line==number-1 ) {
     243             :         readline=true;
     244             :         break;
     245             :       }
     246          22 :       ifile.scanField();
     247             :     }
     248           9 :     if( !readline ) {
     249           0 :       error("could not read reference configuration");
     250             :     }
     251           9 :     ifile.scanField();
     252           9 :     ifile.close();
     253           9 :   } else {
     254             :     // Create actions to hold the position of the center
     255           0 :     std::vector<std::string> center(argnames.size());
     256           0 :     parseVector("CENTER",center);
     257           0 :     for(unsigned i=0; i<argnames.size(); ++i) {
     258           0 :       readInputLine( getShortcutLabel() + "_" + fixArgumentDot(argnames[i]) + "_ref: CONSTANT VALUES=" + center[i] );
     259             :     }
     260             :     std::vector<std::string> sig;
     261           0 :     parseVector("SIGMA",sig);
     262           0 :     if( sig.size()==0 ) {
     263             :       // Create actions to hold the covariance
     264             :       std::string cov;
     265           0 :       parse("COVAR",cov);
     266           0 :       usemahalanobis=(argnames.size()>1);
     267           0 :       if( !usemahalanobis ) {
     268           0 :         readInputLine( getShortcutLabel() + "_var: CONSTANT VALUES=" + cov );
     269             :       } else {
     270             :         std::string nvals;
     271           0 :         Tools::convert( argnames.size(), nvals );
     272           0 :         readInputLine( getShortcutLabel() + "_cov: CONSTANT NCOLS=" + nvals + " NROWS=" + nvals + " VALUES=" + cov );
     273             :       }
     274           0 :     } else if( sig.size()==argnames.size() ) {
     275             :       // And actions to hold the standard deviation
     276           0 :       std::string valstr = sig[0];
     277           0 :       for(unsigned i=1; i<sig.size(); ++i) {
     278           0 :         valstr += "," + sig[i];
     279             :       }
     280           0 :       readInputLine( getShortcutLabel() + "_sigma: CONSTANT VALUES=" + valstr );
     281           0 :       readInputLine( getShortcutLabel() + "_var: CUSTOM ARG=" + getShortcutLabel() + "_sigma FUNC=x*x PERIODIC=NO");
     282             :     } else {
     283           0 :       error("sigma has wrong length");
     284             :     }
     285           0 :   }
     286             : 
     287             :   // Create the reference point and arguments
     288             :   std::string refpoint, argstr;
     289          25 :   for(unsigned i=0; i<argnames.size(); ++i) {
     290          16 :     if( i==0 ) {
     291             :       argstr = argnames[0];
     292          18 :       refpoint = getShortcutLabel() + "_" + fixArgumentDot(argnames[i]) + "_ref";
     293             :     } else {
     294          14 :       argstr += "," + argnames[1];
     295          14 :       refpoint += "," + getShortcutLabel() + "_" + fixArgumentDot(argnames[i]) + "_ref";
     296             :     }
     297             :   }
     298             : 
     299             :   // Get the information on the kernel type
     300             :   std::string func_str, ktype;
     301          18 :   parse("TYPE",ktype);
     302          16 :   if( ktype=="gaussian" || ktype=="von-misses" ) {
     303             :     func_str = "exp(-x/2)";
     304           0 :   } else if( ktype=="triangular" ) {
     305             :     func_str = "step(1.-sqrt(x))*(1.-sqrt(x))";
     306             :   } else {
     307             :     func_str = ktype;
     308             :   }
     309           9 :   std::string vm_str="";
     310           9 :   if(  ktype=="von-misses" ) {
     311             :     vm_str=" VON_MISSES";
     312             :   }
     313             : 
     314           9 :   unsigned nvals = argnames.size();
     315             :   bool norm;
     316           9 :   parseFlag("NORMALIZED",norm);
     317           9 :   if( !usemahalanobis ) {
     318             :     // Invert the variance
     319           4 :     readInputLine( getShortcutLabel() + "_icov: CUSTOM ARG=" + getShortcutLabel() + "_var FUNC=1/x PERIODIC=NO");
     320             :     // Compute the distance between the center of the basin and the current configuration
     321           4 :     readInputLine( getShortcutLabel() + "_dist_2: NORMALIZED_EUCLIDEAN_DISTANCE SQUARED" + vm_str +" ARG1=" + argstr + " ARG2=" + refpoint + " METRIC=" + getShortcutLabel() + "_icov");
     322             :     // And compute a determinent for the input covariance matrix if it is required
     323           2 :     if( norm ) {
     324           2 :       if( ktype=="von-misses" ) {
     325           0 :         readInputLine( getShortcutLabel() + "_vec: CUSTOM ARG=" + getShortcutLabel() + "_icov FUNC=x PERIODIC=NO" );
     326             :       } else {
     327           4 :         readInputLine( getShortcutLabel() + "_det: PRODUCT ARG=" + getShortcutLabel() + "_var");
     328             :       }
     329             :     }
     330             :   } else {
     331             :     // Invert the input covariance matrix
     332          14 :     readInputLine( getShortcutLabel() + "_icov: INVERT_MATRIX ARG=" + getShortcutLabel() + "_cov" );
     333             :     // Compute the distance between the center of the basin and the current configuration
     334          14 :     readInputLine( getShortcutLabel() + "_dist_2: MAHALANOBIS_DISTANCE SQUARED ARG1=" + argstr + " ARG2=" + refpoint + " METRIC=" + getShortcutLabel() + "_icov " + vm_str );
     335             :     // And compute a determinent for the input covariance matrix if it is required
     336           7 :     if( norm ) {
     337           7 :       if( ktype=="von-misses" ) {
     338          14 :         readInputLine( getShortcutLabel() + "_det: DIAGONALIZE ARG=" + getShortcutLabel() + "_cov VECTORS=all" );
     339           7 :         std::string num, argnames= getShortcutLabel() + "_det.vals-1";
     340          14 :         for(unsigned i=1; i<nvals; ++i) {
     341           7 :           Tools::convert( i+1, num );
     342          14 :           argnames += "," + getShortcutLabel() + "_det.vals-" + num;
     343             :         }
     344          14 :         readInputLine( getShortcutLabel() + "_comp: CONCATENATE ARG=" + argnames );
     345          14 :         readInputLine( getShortcutLabel() + "_vec: CUSTOM ARG=" + getShortcutLabel() + "_comp FUNC=1/x PERIODIC=NO");
     346             :       } else {
     347           0 :         readInputLine( getShortcutLabel() + "_det: DETERMINANT ARG=" + getShortcutLabel() + "_cov");
     348             :       }
     349             :     }
     350             :   }
     351             : 
     352             :   // Compute the Gaussian
     353             :   std::string wstr;
     354           9 :   parse("WEIGHT",wstr);
     355           9 :   if( norm ) {
     356           9 :     if( ktype=="gaussian" ) {
     357             :       std::string pstr;
     358           2 :       Tools::convert( sqrt(pow(2*pi,nvals)), pstr );
     359           4 :       readInputLine( getShortcutLabel() + "_vol: CUSTOM ARG=" + getShortcutLabel() + "_det FUNC=(sqrt(x)*" + pstr + ") PERIODIC=NO");
     360           7 :     } else if( ktype=="von-misses" ) {
     361             :       std::string wstr, min, max;
     362           7 :       ActionWithValue* av=plumed.getActionSet().selectWithLabel<ActionWithValue*>( getShortcutLabel() + "_dist_2_diff" );
     363           7 :       plumed_assert( av );
     364           7 :       if( !av->copyOutput(0)->isPeriodic() ) {
     365           0 :         error("VON_MISSES only works with periodic variables");
     366             :       }
     367           7 :       av->copyOutput(0)->getDomain(min,max);
     368          14 :       readInputLine( getShortcutLabel() + "_bes: BESSEL ORDER=0 ARG=" + getShortcutLabel() + "_vec");
     369          14 :       readInputLine( getShortcutLabel() + "_cc: CUSTOM ARG=" + getShortcutLabel() + "_bes FUNC=("+max+"-"+min+")*x PERIODIC=NO");
     370          14 :       readInputLine( getShortcutLabel() + "_vol: PRODUCT ARG=" + getShortcutLabel() + "_cc");
     371             :     } else {
     372           0 :       error("only gaussian and von-misses kernels are normalizable");
     373             :     }
     374             :     // And the (suitably normalized) kernel
     375          18 :     readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_dist_2," + getShortcutLabel() + "_vol FUNC=" + wstr + "*exp(-x/2)/y PERIODIC=NO");
     376             :   } else {
     377           0 :     readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_dist_2 FUNC=" + wstr + "*" + func_str + " PERIODIC=NO");
     378             :   }
     379           9 :   checkRead();
     380             : 
     381           9 : }
     382             : 
     383             : }
     384             : }
     385             : 
     386             : 

Generated by: LCOV version 1.16