LCOV - code coverage report
Current view: top level - opes - OPESmetad.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 787 822 95.7 %
Date: 2025-03-25 09:33:27 Functions: 27 28 96.4 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2020-2021 of Michele Invernizzi.
       3             : 
       4             :    This file is part of the OPES plumed module.
       5             : 
       6             :    The OPES plumed module is free software: you can redistribute it and/or modify
       7             :    it under the terms of the GNU Lesser General Public License as published by
       8             :    the Free Software Foundation, either version 3 of the License, or
       9             :    (at your option) any later version.
      10             : 
      11             :    The OPES plumed module is distributed in the hope that it will be useful,
      12             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      13             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14             :    GNU Lesser General Public License for more details.
      15             : 
      16             :    You should have received a copy of the GNU Lesser General Public License
      17             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      18             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      19             : #include "bias/Bias.h"
      20             : #include "core/PlumedMain.h"
      21             : #include "core/ActionRegister.h"
      22             : #include "tools/Communicator.h"
      23             : #include "tools/File.h"
      24             : #include "tools/OpenMP.h"
      25             : 
      26             : namespace PLMD {
      27             : namespace opes {
      28             : 
      29             : //+PLUMEDOC OPES_BIAS OPES_METAD
      30             : /*
      31             : On-the-fly probability enhanced sampling with metadynamics-like target distribution.
      32             : 
      33             : This On-the-fly probability enhanced sampling (\ref OPES "OPES") method with metadynamics-like target distribution is described in \cite Invernizzi2020rethinking.
      34             : 
      35             : This \ref OPES_METAD action samples target distributions defined via their marginal \f$p^{\text{tg}}(\mathbf{s})\f$ over some collective variables (CVs), \f$\mathbf{s}=\mathbf{s}(\mathbf{x})\f$.
      36             : By default \ref OPES_METAD targets the well-tempered distribution, \f$p^{\text{WT}}(\mathbf{s})\propto [P(\mathbf{s})]^{1/\gamma}\f$, where \f$\gamma\f$ is known as BIASFACTOR.
      37             : Similarly to \ref METAD, \ref OPES_METAD optimizes the bias on-the-fly, with a given PACE.
      38             : It does so by reweighting via kernel density estimation the unbiased distribution in the CV space, \f$P(\mathbf{s})\f$.
      39             : A compression algorithm is used to prevent the number of kernels from growing linearly with the simulation time.
      40             : The bias at step \f$n\f$ is
      41             : \f[
      42             : V_n(\mathbf{s}) = (1-1/\gamma)\frac{1}{\beta}\log\left(\frac{P_n(\mathbf{s})}{Z_n}+\epsilon\right)\, .
      43             : \f]
      44             : See Ref.\cite Invernizzi2020rethinking for a complete description of the method.
      45             : 
      46             : As an intuitive picture, rather than gradually filling the metastable basins, \ref OPES_METAD quickly tries to get a coarse idea of the full free energy surface (FES), and then slowly refines its details.
      47             : It has a fast initial exploration phase, and then becomes extremely conservative and does not significantly change the shape of the deposited bias any more, reaching a regime of quasi-static bias.
      48             : For this reason, it is possible to use standard umbrella sampling reweighting (see \ref REWEIGHT_BIAS) to analyse the trajectory.
      49             : At <a href="https://github.com/invemichele/opes/tree/master/postprocessing">this link</a> you can find some python scripts that work in a similar way to \ref sum_hills, but the preferred way to obtain a FES with OPES is via reweighting (see \ref opes-metad).
      50             : The estimated \f$c(t)\f$ is printed for reference only, since it should converge to a fixed value as the bias converges.
      51             : This \f$c(t)\f$ should NOT be used for reweighting.
      52             : Similarly, the \f$Z_n\f$ factor is printed only for reference, and it should converge when no new region of the CV-space is explored.
      53             : 
      54             : Notice that \ref OPES_METAD is more sensitive to degenerate CVs than \ref METAD.
      55             : If the employed CVs map different metastable basins onto the same CV-space region, then \ref OPES_METAD will remain stuck rather than completely reshaping the bias.
      56             : This can be useful to diagnose problems with your collective variable.
      57             : If it is not possible to improve the set of CVs and remove this degeneracy, then you might instead consider to use \ref OPES_METAD_EXPLORE or \ref METAD.
      58             : In this way you will be able to obtain an estimate of the FES, but be aware that you most likely will not reach convergence and thus this estimate will be subjected to systematic errors (see e.g. Fig.3 in \cite Pietrucci2017review).
      59             : On the contrary, if your CVs are not degenerate but only suboptimal, you should converge faster by using \ref OPES_METAD instead of \ref METAD \cite Invernizzi2020rethinking.
      60             : 
      61             : The parameter BARRIER should be set to be at least equal to the highest free energy barrier you wish to overcome.
      62             : If it is much lower than that, you will not cross the barrier, if it is much higher, convergence might take a little longer.
      63             : If the system has a basin that is clearly more stable than the others, it is better to start the simulation from there.
      64             : 
      65             : By default, the kernels SIGMA is adaptive, estimated from the fluctuations over ADAPTIVE_SIGMA_STRIDE simulation steps (similar to \ref METAD ADAPTIVE=DIFF, but contrary to that, no artifacts are introduced and the bias will converge to the correct one).
      66             : However, notice that depending on the system this might not be the optimal choice for SIGMA.
      67             : 
      68             : You can target a uniform flat distribution by explicitly setting BIASFACTOR=inf.
      69             : However, this should be useful only in very specific cases.
      70             : 
      71             : It is possible to take into account also of other bias potentials besides the one of \ref OPES_METAD during the internal reweighting for \f$P(\mathbf{s})\f$ estimation.
      72             : To do so, one has to add those biases with the EXTRA_BIAS keyword, as in the example below.
      73             : This allows one to define a custom target distribution by adding another bias potential equal to the desired target free energy and setting BIASFACTOR=inf (see example below).
      74             : Another possible usage of EXTRA_BIAS is to make sure that \ref OPES_METAD does not push against another fixed bias added to restrain the CVs range (e.g. \ref UPPER_WALLS).
      75             : 
      76             : Through the EXCLUDED_REGION keywork, it is possible to specify a region of CV space where no kernels will be deposited.
      77             : This can be useful for example for making sure the bias does not modify the transition region, thus allowing for rate calculation.
      78             : See below for an example of how to use this keyword.
      79             : 
      80             : Restart can be done from a KERNELS file, but it might be not perfect (due to limited precision when printing kernels to file, or if adaptive SIGMA is used).
      81             : For an exact restart you must use STATE_RFILE to read a checkpoint with all the needed info.
      82             : To save such checkpoints, define a STATE_WFILE and choose how often to print them with STATE_WSTRIDE.
      83             : By default this file is overwritten, but you can instead append to it using the flag STORE_STATES.
      84             : 
      85             : Multiple walkers are supported only with MPI communication, via the keyword WALKERS_MPI.
      86             : 
      87             : \par Examples
      88             : 
      89             : Several examples can be found on the <a href="https://www.plumed-nest.org/browse.html">PLUMED-NEST website</a>, by searching for the OPES keyword.
      90             : The \ref opes-metad can also be useful to get started with the method.
      91             : 
      92             : The following is a minimal working example:
      93             : 
      94             : \plumedfile
      95             : cv: DISTANCE ATOMS=1,2
      96             : opes: OPES_METAD ARG=cv PACE=200 BARRIER=40
      97             : PRINT STRIDE=200 FILE=COLVAR ARG=*
      98             : \endplumedfile
      99             : 
     100             : Another more articulated one:
     101             : 
     102             : \plumedfile
     103             : phi: TORSION ATOMS=5,7,9,15
     104             : psi: TORSION ATOMS=7,9,15,17
     105             : opes: OPES_METAD ...
     106             :   FILE=Kernels.data
     107             :   TEMP=300
     108             :   ARG=phi,psi
     109             :   PACE=500
     110             :   BARRIER=50
     111             :   SIGMA=0.15,0.15
     112             :   SIGMA_MIN=0.01,0.01
     113             :   STATE_RFILE=Restart.data
     114             :   STATE_WFILE=State.data
     115             :   STATE_WSTRIDE=500*100
     116             :   STORE_STATES
     117             :   WALKERS_MPI
     118             :   NLIST
     119             : ...
     120             : PRINT FMT=%g STRIDE=500 FILE=Colvar.data ARG=phi,psi,opes.*
     121             : \endplumedfile
     122             : 
     123             : Next is an example of how to define a custom target distribution different from the well-tempered one.
     124             : Here we chose to focus more on the transition state, that is around \f$\phi=0\f$.
     125             : Our target distribution is a Gaussian centered there, thus the target free energy we want to sample is a parabola, \f$F^{\text{tg}}(\mathbf{s})=-\frac{1}{\beta} \log [p^{\text{tg}}(\mathbf{s})]\f$.
     126             : 
     127             : \plumedfile
     128             : phi: TORSION ATOMS=5,7,9,15
     129             : FtgValue: CUSTOM ARG=phi PERIODIC=NO FUNC=(x/0.4)^2
     130             : Ftg: BIASVALUE ARG=FtgValue
     131             : opes: OPES_METAD ...
     132             :   ARG=phi
     133             :   PACE=500
     134             :   BARRIER=50
     135             :   SIGMA=0.2
     136             :   BIASFACTOR=inf
     137             :   EXTRA_BIAS=Ftg.bias
     138             : ...
     139             : PRINT FMT=%g STRIDE=500 FILE=COLVAR ARG=phi,Ftg.bias,opes.bias
     140             : \endplumedfile
     141             : 
     142             : Notice that in order to reweight for the unbiased \f$P(\mathbf{s})\f$ during postprocessing, the total bias `Ftg.bias+opes.bias` must be used.
     143             : 
     144             : Finally, an example of how to use the EXCLUDED_REGION keyword.
     145             : It expects a characteristic function that is different from zero in the region to be excluded.
     146             : You can use \ref CUSTOM and a combination of the step function to define it.
     147             : With the following input no kernel is deposited in the transition state region of alanine dipeptide, defined by the interval \f$\phi \in [-0.6, 0.7]\f$:
     148             : 
     149             : \plumedfile
     150             : phi: TORSION ATOMS=5,7,9,15
     151             : psi: TORSION ATOMS=7,9,15,17
     152             : xx: CUSTOM PERIODIC=NO ARG=phi FUNC=step(x+0.6)-step(x-0.7)
     153             : opes: OPES_METAD ...
     154             :   ARG=phi,psi
     155             :   PACE=500
     156             :   BARRIER=30
     157             :   EXCLUDED_REGION=xx
     158             :   NLIST
     159             : ...
     160             : PRINT FMT=%g STRIDE=500 FILE=COLVAR ARG=phi,psi,xx,opes.*
     161             : \endplumedfile
     162             : 
     163             : */
     164             : //+ENDPLUMEDOC
     165             : 
     166             : template <class mode>
     167             : class OPESmetad : public bias::Bias {
     168             : 
     169             : private:
     170             :   bool isFirstStep_;
     171             :   unsigned NumOMP_;
     172             :   unsigned NumParallel_;
     173             :   unsigned rank_;
     174             :   unsigned NumWalkers_;
     175             :   unsigned walker_rank_;
     176             :   unsigned long long counter_;
     177             :   std::size_t ncv_;
     178             : 
     179             :   double kbt_;
     180             :   double biasfactor_;
     181             :   double bias_prefactor_;
     182             :   unsigned stride_;
     183             :   std::vector<double> sigma0_;
     184             :   std::vector<double> sigma_min_;
     185             :   unsigned adaptive_sigma_stride_;
     186             :   unsigned long long adaptive_counter_;
     187             :   std::vector<double> av_cv_;
     188             :   std::vector<double> av_M2_;
     189             :   bool fixed_sigma_;
     190             :   bool adaptive_sigma_;
     191             :   double epsilon_;
     192             :   double sum_weights_;
     193             :   double sum_weights2_;
     194             : 
     195             :   bool no_Zed_;
     196             :   double Zed_;
     197             :   double KDEnorm_;
     198             : 
     199             :   double threshold2_;
     200             :   bool recursive_merge_;
     201             : //kernels are truncated diagonal Gaussians
     202        1050 :   struct kernel {
     203             :     double height;
     204             :     std::vector<double> center;
     205             :     std::vector<double> sigma;
     206        1050 :     kernel(double h, const std::vector<double>& c,const std::vector<double>& s):
     207        1050 :       height(h),center(c),sigma(s) {}
     208             :   };
     209             :   double cutoff2_;
     210             :   double val_at_cutoff_;
     211             :   void mergeKernels(kernel&,const kernel&); //merge the second one into the first one
     212             :   double evaluateKernel(const kernel&,const std::vector<double>&) const;
     213             :   double evaluateKernel(const kernel&,const std::vector<double>&,std::vector<double>&,std::vector<double>&);
     214             :   std::vector<kernel> kernels_; //all compressed kernels
     215             :   OFile kernelsOfile_;
     216             : //neighbour list stuff
     217             :   bool nlist_;
     218             :   double nlist_param_[2];
     219             :   std::vector<unsigned> nlist_index_;
     220             :   std::vector<double> nlist_center_;
     221             :   std::vector<double> nlist_dev2_;
     222             :   unsigned nlist_steps_;
     223             :   bool nlist_update_;
     224             :   bool nlist_pace_reset_;
     225             : 
     226             :   bool calc_work_;
     227             :   double work_;
     228             :   double old_KDEnorm_;
     229             :   std::vector<kernel> delta_kernels_;
     230             : 
     231             :   Value* excluded_region_;
     232             :   std::vector<Value*> extra_biases_;
     233             : 
     234             :   OFile stateOfile_;
     235             :   int wStateStride_;
     236             :   bool storeOldStates_;
     237             : 
     238             :   double getProbAndDerivatives(const std::vector<double>&,std::vector<double>&);
     239             :   void addKernel(const double,const std::vector<double>&,const std::vector<double>&);
     240             :   void addKernel(const double,const std::vector<double>&,const std::vector<double>&,const double); //also print to file
     241             :   unsigned getMergeableKernel(const std::vector<double>&,const unsigned);
     242             :   void updateNlist(const std::vector<double>&);
     243             :   void dumpStateToFile();
     244             : 
     245             : public:
     246             :   explicit OPESmetad(const ActionOptions&);
     247             :   void calculate() override;
     248             :   void update() override;
     249             :   static void registerKeywords(Keywords& keys);
     250             : };
     251             : 
     252             : struct convergence {
     253             :   static const bool explore=false;
     254             : };
     255             : typedef OPESmetad<convergence> OPESmetad_c;
     256             : PLUMED_REGISTER_ACTION(OPESmetad_c,"OPES_METAD")
     257             : 
     258             : //OPES_METAD_EXPLORE is very similar from the point of view of the code,
     259             : //but conceptually it is better to make it a separate BIAS action
     260             : 
     261             : //+PLUMEDOC OPES_BIAS OPES_METAD_EXPLORE
     262             : /*
     263             : On-the-fly probability enhanced sampling with well-tempered target distribution in exploreation mode.
     264             : 
     265             : On-the-fly probability enhanced sampling with well-tempered target distribution (\ref OPES "OPES") with well-tempered target distribution, exploration mode \cite Invernizzi2022explore .
     266             : 
     267             : This \ref OPES_METAD_EXPLORE action samples the well-tempered target distribution, that is defined via its marginal \f$p^{\text{WT}}(\mathbf{s})\propto [P(\mathbf{s})]^{1/\gamma}\f$ over some collective variables (CVs), \f$\mathbf{s}=\mathbf{s}(\mathbf{x})\f$.
     268             : While \ref OPES_METAD does so by estimating the unbiased distribution \f$P(\mathbf{s})\f$, \ref OPES_METAD_EXPLORE instead estimates on-the-fly the target \f$p^{\text{WT}}(\mathbf{s})\f$ and uses it to define the bias.
     269             : The bias at step \f$n\f$ is
     270             : \f[
     271             : V_n(\mathbf{s}) = (\gamma-1)\frac{1}{\beta}\log\left(\frac{p^{\text{WT}}_n(\mathbf{s})}{Z_n}+\epsilon\right)\, .
     272             : \f]
     273             : See Ref.\cite Invernizzi2022explore for a complete description of the method.
     274             : 
     275             : Intuitively, while \ref OPES_METAD aims at quickly converging the reweighted free energy, \ref OPES_METAD_EXPLORE aims at quickly sampling the target well-tempered distribution.
     276             : Given enough simulation time, both will converge to the same bias potential but they do so in a qualitatively different way.
     277             : Compared to \ref OPES_METAD, \ref OPES_METAD_EXPLORE is more similar to \ref METAD, because it allows the bias to vary significantly, thus enhancing exploration.
     278             : This goes at the expenses of a typically slower convergence of the reweight estimate.
     279             : \ref OPES_METAD_EXPLORE can be useful e.g.~for simulating a new system with an unknown BARRIER, or for quickly testing the effectiveness of a new CV that might be degenerate.
     280             : 
     281             : Similarly to \ref OPES_METAD, also \ref OPES_METAD_EXPLORE uses a kernel density estimation with the same on-the-fly compression algorithm.
     282             : The only difference is that the kernels are not weighted, since it estimates the sampled distribution and not the reweighted unbiased one.
     283             : 
     284             : All the options of \ref OPES_METAD are also available in \ref OPES_METAD_EXPLORE, except for those that modify the target distribution, since only a well-tempered target is allowed in this case.
     285             : 
     286             : \par Examples
     287             : 
     288             : The following is a minimal working example:
     289             : 
     290             : \plumedfile
     291             : cv: DISTANCE ATOMS=1,2
     292             : opes: OPES_METAD_EXPLORE ARG=cv PACE=500 BARRIER=40
     293             : PRINT STRIDE=100 FILE=COLVAR ARG=cv,opes.*
     294             : \endplumedfile
     295             : */
     296             : //+ENDPLUMEDOC
     297             : 
     298             : struct exploration {
     299             :   static const bool explore=true;
     300             : };
     301             : typedef OPESmetad<exploration> OPESmetad_e;
     302             : PLUMED_REGISTER_ACTION(OPESmetad_e,"OPES_METAD_EXPLORE")
     303             : 
     304             : template <class mode>
     305          25 : void OPESmetad<mode>::registerKeywords(Keywords& keys) {
     306          25 :   Bias::registerKeywords(keys);
     307          25 :   keys.add("compulsory","TEMP","-1","temperature. If not set, it is taken from MD engine, but not all MD codes provide it");
     308          25 :   keys.add("compulsory","PACE","the frequency for kernel deposition");
     309          25 :   std::string info_sigma("the initial widths of the kernels");
     310             :   if(mode::explore) {
     311             :     info_sigma+=", divided by the square root of gamma";
     312             :   }
     313             :   info_sigma+=". If not set, an adaptive sigma will be used with the given ADAPTIVE_SIGMA_STRIDE";
     314          25 :   keys.add("compulsory","SIGMA","ADAPTIVE",info_sigma);
     315          25 :   keys.add("compulsory","BARRIER","the free energy barrier to be overcome. It is used to set BIASFACTOR, EPSILON, and KERNEL_CUTOFF to reasonable values");
     316          25 :   keys.add("compulsory","COMPRESSION_THRESHOLD","1","merge kernels if closer than this threshold, in units of sigma");
     317             : //extra options
     318          25 :   keys.add("optional","ADAPTIVE_SIGMA_STRIDE","number of steps for measuring adaptive sigma. Default is 10xPACE");
     319          25 :   keys.add("optional","SIGMA_MIN","never reduce SIGMA below this value");
     320          25 :   std::string info_biasfactor("the gamma bias factor used for the well-tempered target distribution. ");
     321             :   if(mode::explore) {
     322             :     info_biasfactor+="Cannot be 'inf'";
     323             :   } else {
     324             :     info_biasfactor+="Set to 'inf' for uniform flat target";
     325             :   }
     326          25 :   keys.add("optional","BIASFACTOR",info_biasfactor);
     327          25 :   keys.add("optional","EPSILON","the value of the regularization constant for the probability");
     328          25 :   keys.add("optional","KERNEL_CUTOFF","truncate kernels at this distance, in units of sigma");
     329          25 :   keys.add("optional","NLIST_PARAMETERS","( default=3.0,0.5 ) the two cutoff parameters for the kernels neighbor list");
     330          25 :   keys.addFlag("NLIST",false,"use neighbor list for kernels summation, faster but experimental");
     331          25 :   keys.addFlag("NLIST_PACE_RESET",false,"force the reset of the neighbor list at each PACE. Can be useful with WALKERS_MPI");
     332          25 :   keys.addFlag("FIXED_SIGMA",false,"do not decrease sigma as the simulation proceeds. Can be added in a RESTART, to keep in check the number of compressed kernels");
     333          25 :   keys.addFlag("RECURSIVE_MERGE_OFF",false,"do not recursively attempt kernel merging when a new one is added");
     334          25 :   keys.addFlag("NO_ZED",false,"do not normalize over the explored CV space, Z_n=1");
     335             : //kernels and state files
     336          25 :   keys.add("compulsory","FILE","KERNELS","a file in which the list of all deposited kernels is stored");
     337          25 :   keys.add("optional","FMT","specify format for KERNELS file");
     338          25 :   keys.add("optional","STATE_RFILE","read from this file the compressed kernels and all the info needed to RESTART the simulation");
     339          25 :   keys.add("optional","STATE_WFILE","write to this file the compressed kernels and all the info needed to RESTART the simulation");
     340          25 :   keys.add("optional","STATE_WSTRIDE","number of MD steps between writing the STATE_WFILE. Default is only on CPT events (but not all MD codes set them)");
     341          25 :   keys.addFlag("STORE_STATES",false,"append to STATE_WFILE instead of ovewriting it each time");
     342             : //miscellaneous
     343          50 :   keys.addInputKeyword("optional","EXCLUDED_REGION","scalar","kernels are not deposited when the action provided here has a nonzero value, see example above");
     344             :   if(!mode::explore) {
     345          32 :     keys.addInputKeyword("optional","EXTRA_BIAS","scalar","consider also these other bias potentials for the internal reweighting. This can be used e.g. for sampling a custom target distribution (see example above)");
     346             :   }
     347          25 :   keys.addFlag("CALC_WORK",false,"calculate the total accumulated work done by the bias since last restart");
     348          25 :   keys.addFlag("WALKERS_MPI",false,"switch on MPI version of multiple walkers");
     349          25 :   keys.addFlag("SERIAL",false,"perform calculations in serial");
     350          25 :   keys.use("RESTART");
     351          25 :   keys.use("UPDATE_FROM");
     352          25 :   keys.use("UPDATE_UNTIL");
     353             : 
     354             : //output components
     355          50 :   keys.addOutputComponent("rct","default","scalar","estimate of c(t). log(exp(beta V)/beta, should become flat as the simulation converges. Do NOT use for reweighting");
     356          50 :   keys.addOutputComponent("zed","default","scalar","estimate of Z_n. should become flat once no new CV-space region is explored");
     357          50 :   keys.addOutputComponent("neff","default","scalar","effective sample size");
     358          50 :   keys.addOutputComponent("nker","default","scalar","total number of compressed kernels used to represent the bias");
     359          50 :   keys.addOutputComponent("work","CALC_WORK","scalar","total accumulated work done by the bias");
     360          50 :   keys.addOutputComponent("nlker","NLIST","scalar","number of kernels in the neighbor list");
     361          50 :   keys.addOutputComponent("nlsteps","NLIST","scalar","number of steps from last neighbor list update");
     362          25 : }
     363             : 
     364             : template <class mode>
     365          21 : OPESmetad<mode>::OPESmetad(const ActionOptions& ao)
     366             :   : PLUMED_BIAS_INIT(ao)
     367          21 :   , isFirstStep_(true)
     368          21 :   , counter_(1)
     369          21 :   , ncv_(getNumberOfArguments())
     370          21 :   , Zed_(1)
     371          21 :   , work_(0)
     372          21 :   , excluded_region_(NULL) {
     373          42 :   std::string error_in_input1("Error in input in action "+getName()+" with label "+getLabel()+": the keyword ");
     374          21 :   std::string error_in_input2(" could not be read correctly");
     375             : 
     376             : //set kbt_
     377          21 :   const double kB=getKBoltzmann();
     378          21 :   kbt_=getkBT();
     379             : 
     380             : //other compulsory input
     381          21 :   parse("PACE",stride_);
     382             : 
     383          21 :   double barrier=0;
     384          21 :   parse("BARRIER",barrier);
     385          21 :   plumed_massert(barrier>=0,"the BARRIER should be greater than zero");
     386             : 
     387          21 :   biasfactor_=barrier/kbt_;
     388             :   std::string biasfactor_str;
     389          42 :   parse("BIASFACTOR",biasfactor_str);
     390          38 :   if(biasfactor_str=="inf" || biasfactor_str=="INF") {
     391           4 :     biasfactor_=std::numeric_limits<double>::infinity();
     392           4 :     bias_prefactor_=1;
     393             :   } else {
     394          17 :     if(biasfactor_str.length()>0) {
     395           3 :       plumed_massert(Tools::convertNoexcept(biasfactor_str,biasfactor_),error_in_input1+"BIASFACTOR"+error_in_input2);
     396             :     }
     397          17 :     plumed_massert(biasfactor_>1,"BIASFACTOR must be greater than one (use 'inf' for uniform target)");
     398          17 :     bias_prefactor_=1-1./biasfactor_;
     399             :   }
     400             :   if(mode::explore) {
     401           7 :     plumed_massert(!std::isinf(biasfactor_),"BIASFACTOR=inf is not compatible with EXPLORE mode");
     402           7 :     bias_prefactor_=biasfactor_-1;
     403             :   }
     404             : 
     405          21 :   adaptive_sigma_=false;
     406          21 :   adaptive_sigma_stride_=0;
     407          42 :   parse("ADAPTIVE_SIGMA_STRIDE",adaptive_sigma_stride_);
     408             :   std::vector<std::string> sigma_str;
     409          21 :   parseVector("SIGMA",sigma_str);
     410          21 :   sigma0_.resize(ncv_);
     411             :   double dummy;
     412          21 :   if(sigma_str.size()==1 && !Tools::convertNoexcept(sigma_str[0],dummy)) {
     413          11 :     plumed_massert(sigma_str[0]=="ADAPTIVE" || sigma_str[0]=="adaptive",error_in_input1+"SIGMA"+error_in_input2);
     414          11 :     plumed_massert(!std::isinf(biasfactor_),"cannot use BIASFACTOR=inf with adaptive SIGMA");
     415          11 :     adaptive_counter_=0;
     416          11 :     if(adaptive_sigma_stride_==0) {
     417           2 :       adaptive_sigma_stride_=10*stride_;  //NB: this is arbitrary, chosen from few tests
     418             :     }
     419          11 :     av_cv_.resize(ncv_,0);
     420          11 :     av_M2_.resize(ncv_,0);
     421          11 :     plumed_massert(adaptive_sigma_stride_>=stride_,"better to chose ADAPTIVE_SIGMA_STRIDE > PACE");
     422          11 :     adaptive_sigma_=true;
     423             :   } else {
     424          10 :     plumed_massert(sigma_str.size()==ncv_,"number of SIGMA parameters does not match number of arguments");
     425          10 :     plumed_massert(adaptive_sigma_stride_==0,"if SIGMA is not ADAPTIVE you cannot set an ADAPTIVE_SIGMA_STRIDE");
     426          29 :     for(unsigned i=0; i<ncv_; i++) {
     427          19 :       plumed_massert(Tools::convertNoexcept(sigma_str[i],sigma0_[i]),error_in_input1+"SIGMA"+error_in_input2);
     428             :       if(mode::explore) {
     429           6 :         sigma0_[i]*=std::sqrt(biasfactor_);  //the sigma of the target is broader Ftg(s)=1/gamma*F(s)
     430             :       }
     431             :     }
     432             :   }
     433          42 :   parseVector("SIGMA_MIN",sigma_min_);
     434          21 :   plumed_massert(sigma_min_.size()==0 || sigma_min_.size()==ncv_,"number of SIGMA_MIN does not match number of arguments");
     435          21 :   if(sigma_min_.size()>0 && !adaptive_sigma_) {
     436           3 :     for(unsigned i=0; i<ncv_; i++) {
     437           2 :       plumed_massert(sigma_min_[i]<=sigma0_[i],"SIGMA_MIN should be smaller than SIGMA");
     438             :     }
     439             :   }
     440             : 
     441          21 :   epsilon_=std::exp(-barrier/bias_prefactor_/kbt_);
     442          21 :   parse("EPSILON",epsilon_);
     443          21 :   plumed_massert(epsilon_>0,"you must choose a value for EPSILON greater than zero. Is your BARRIER too high?");
     444          21 :   sum_weights_=std::pow(epsilon_,bias_prefactor_); //to avoid NANs we start with counter_=1 and w0=exp(beta*V0)
     445          21 :   sum_weights2_=sum_weights_*sum_weights_;
     446             : 
     447          21 :   double cutoff=sqrt(2.*barrier/bias_prefactor_/kbt_);
     448             :   if(mode::explore) {
     449           7 :     cutoff=sqrt(2.*barrier/kbt_);  //otherwise it is too small
     450             :   }
     451          21 :   parse("KERNEL_CUTOFF",cutoff);
     452          21 :   plumed_massert(cutoff>0,"you must choose a value for KERNEL_CUTOFF greater than zero");
     453          21 :   cutoff2_=cutoff*cutoff;
     454          21 :   val_at_cutoff_=std::exp(-0.5*cutoff2_);
     455             : 
     456          21 :   threshold2_=1;
     457          21 :   parse("COMPRESSION_THRESHOLD",threshold2_);
     458          21 :   threshold2_*=threshold2_;
     459          21 :   if(threshold2_!=0) {
     460          21 :     plumed_massert(threshold2_>0 && threshold2_<cutoff2_,"COMPRESSION_THRESHOLD cannot be bigger than the KERNEL_CUTOFF");
     461             :   }
     462             : 
     463             : //setup neighbor list
     464          21 :   nlist_=false;
     465          21 :   parseFlag("NLIST",nlist_);
     466          21 :   nlist_pace_reset_=false;
     467          21 :   parseFlag("NLIST_PACE_RESET",nlist_pace_reset_);
     468          21 :   if(nlist_pace_reset_) {
     469           2 :     nlist_=true;
     470             :   }
     471             :   std::vector<double> nlist_param;
     472          42 :   parseVector("NLIST_PARAMETERS",nlist_param);
     473          21 :   if(nlist_param.size()==0) {
     474          17 :     nlist_param_[0]=3.0;//*cutoff2_ -> max distance of neighbors
     475          17 :     nlist_param_[1]=0.5;//*nlist_dev2_[i] -> condition for rebuilding
     476             :   } else {
     477           4 :     nlist_=true;
     478           4 :     plumed_massert(nlist_param.size()==2,"two cutoff parameters are needed for the neighbor list");
     479           4 :     plumed_massert(nlist_param[0]>1.0,"the first of NLIST_PARAMETERS must be greater than 1. The smaller the first, the smaller should be the second as well");
     480           4 :     const double min_PARAM_1=(1.-1./std::sqrt(nlist_param[0]))+0.16;
     481           4 :     plumed_massert(nlist_param[1]>0,"the second of NLIST_PARAMETERS must be greater than 0");
     482           4 :     plumed_massert(nlist_param[1]<=min_PARAM_1,"the second of NLIST_PARAMETERS must be smaller to avoid systematic errors. Largest suggested value is: 1.16-1/sqrt(PARAM_0) = "+std::to_string(min_PARAM_1));
     483           4 :     nlist_param_[0]=nlist_param[0];
     484           4 :     nlist_param_[1]=nlist_param[1];
     485             :   }
     486          21 :   nlist_center_.resize(ncv_);
     487          21 :   nlist_dev2_.resize(ncv_,0.);
     488          21 :   nlist_steps_=0;
     489          21 :   nlist_update_=true;
     490             : 
     491             : //optional stuff
     492          21 :   no_Zed_=false;
     493          21 :   parseFlag("NO_ZED",no_Zed_);
     494          21 :   if(no_Zed_) {
     495             :     //this makes it more gentle in the initial phase
     496           6 :     sum_weights_=1;
     497           6 :     sum_weights2_=1;
     498             :   }
     499          21 :   fixed_sigma_=false;
     500          21 :   parseFlag("FIXED_SIGMA",fixed_sigma_);
     501          21 :   bool recursive_merge_off=false;
     502          21 :   parseFlag("RECURSIVE_MERGE_OFF",recursive_merge_off);
     503          21 :   recursive_merge_=!recursive_merge_off;
     504          42 :   parseFlag("CALC_WORK",calc_work_);
     505             : 
     506             : //options involving extra arguments
     507             :   std::vector<Value*> args;
     508          42 :   parseArgumentList("EXCLUDED_REGION",args);
     509          21 :   if(args.size()>0) {
     510           2 :     plumed_massert(args.size()==1,"only one characteristic function should define the region to be excluded");
     511           2 :     requestExtraDependencies(args);
     512           2 :     excluded_region_=args[0];
     513             :   }
     514             :   if(!mode::explore) {
     515          28 :     parseArgumentList("EXTRA_BIAS",extra_biases_);
     516          14 :     if(extra_biases_.size()>0) {
     517           2 :       requestExtraDependencies(extra_biases_);
     518             :     }
     519             :   }
     520             : 
     521             : //kernels file
     522             :   std::string kernelsFileName;
     523          42 :   parse("FILE",kernelsFileName);
     524             :   std::string fmt;
     525          42 :   parse("FMT",fmt);
     526             : 
     527             : //output checkpoint of current state
     528             :   std::string restartFileName;
     529          42 :   parse("STATE_RFILE",restartFileName);
     530             :   std::string stateFileName;
     531          21 :   parse("STATE_WFILE",stateFileName);
     532          21 :   wStateStride_=0;
     533          21 :   parse("STATE_WSTRIDE",wStateStride_);
     534          21 :   storeOldStates_=false;
     535          21 :   parseFlag("STORE_STATES",storeOldStates_);
     536          21 :   if(wStateStride_!=0 || storeOldStates_) {
     537          10 :     plumed_massert(stateFileName.length()>0,"filename for storing simulation status not specified, use STATE_WFILE");
     538             :   }
     539          21 :   if(wStateStride_>0) {
     540          10 :     plumed_massert(wStateStride_>=(int)stride_,"STATE_WSTRIDE is in units of MD steps, thus it is suggested to use a multiple of PACE");
     541             :   }
     542          21 :   if(stateFileName.length()>0 && wStateStride_==0) {
     543           1 :     wStateStride_=-1;  //will print only on CPT events (checkpoints set by some MD engines, like gromacs)
     544             :   }
     545             : 
     546             : //multiple walkers //TODO implement also external mw for cp2k
     547          21 :   bool walkers_mpi=false;
     548          21 :   parseFlag("WALKERS_MPI",walkers_mpi);
     549          21 :   if(walkers_mpi) {
     550             :     //If this Action is not compiled with MPI the user is informed and we exit gracefully
     551          10 :     plumed_massert(Communicator::plumedHasMPI(),"Invalid walkers configuration: WALKERS_MPI flag requires MPI compilation");
     552          10 :     plumed_massert(Communicator::initialized(),"Invalid walkers configuration: WALKERS_MPI needs the communicator correctly initialized.");
     553             : 
     554          10 :     if(comm.Get_rank()==0) { //multi_sim_comm works on first rank only
     555          10 :       NumWalkers_=multi_sim_comm.Get_size();
     556          10 :       walker_rank_=multi_sim_comm.Get_rank();
     557             :     }
     558          10 :     comm.Bcast(NumWalkers_,0); //if each walker has more than one processor update them all
     559          10 :     comm.Bcast(walker_rank_,0);
     560             :   } else {
     561          11 :     NumWalkers_=1;
     562          11 :     walker_rank_=0;
     563             :   }
     564             : 
     565             : //parallelization stuff
     566          21 :   NumOMP_=OpenMP::getNumThreads();
     567          21 :   NumParallel_=comm.Get_size();
     568          21 :   rank_=comm.Get_rank();
     569          21 :   bool serial=false;
     570          21 :   parseFlag("SERIAL",serial);
     571          21 :   if(serial) {
     572           4 :     NumOMP_=1;
     573           4 :     NumParallel_=1;
     574           4 :     rank_=0;
     575             :   }
     576             : 
     577          21 :   checkRead();
     578             : 
     579             : //restart if needed
     580             :   bool convertKernelsToState=false;
     581          21 :   if(getRestart()) {
     582             :     bool stateRestart=true;
     583          11 :     if(restartFileName.length()==0) {
     584             :       stateRestart=false;
     585             :       restartFileName=kernelsFileName;
     586             :     }
     587          11 :     IFile ifile;
     588          11 :     ifile.link(*this);
     589          11 :     if(ifile.FileExist(restartFileName)) {
     590          11 :       bool tmp_nlist=nlist_;
     591          11 :       nlist_=false; // NLIST is not needed while restarting
     592          11 :       ifile.open(restartFileName);
     593          11 :       log.printf("  RESTART - make sure all used options are compatible\n");
     594          11 :       log.printf("    restarting from: %s\n",restartFileName.c_str());
     595          11 :       std::string action_name=getName();
     596          11 :       if(stateRestart) {
     597           6 :         log.printf("    it should be a STATE file (not a KERNELS file)\n");
     598             :         action_name+="_state";
     599             :       } else {
     600           5 :         log.printf(" +++ WARNING +++ RESTART from KERNELS might be approximate, use STATE_WFILE and STATE_RFILE to restart from the exact state\n");
     601             :         action_name+="_kernels";
     602             :       }
     603             :       std::string old_action_name;
     604          11 :       ifile.scanField("action",old_action_name);
     605          11 :       plumed_massert(action_name==old_action_name,"RESTART - mismatch between old and new action name. Expected '"+action_name+"', but found '"+old_action_name+"'");
     606             :       std::string old_biasfactor_str;
     607          22 :       ifile.scanField("biasfactor",old_biasfactor_str);
     608          21 :       if(old_biasfactor_str=="inf" || old_biasfactor_str=="INF") {
     609           1 :         if(!std::isinf(biasfactor_)) {
     610           0 :           log.printf(" +++ WARNING +++ previous bias factor was inf while now it is %g\n",biasfactor_);
     611             :         }
     612             :       } else {
     613             :         double old_biasfactor;
     614          10 :         ifile.scanField("biasfactor",old_biasfactor);
     615          10 :         if(std::abs(biasfactor_-old_biasfactor)>1e-6*biasfactor_) {
     616           0 :           log.printf(" +++ WARNING +++ previous bias factor was %g while now it is %g. diff = %g\n",old_biasfactor,biasfactor_,biasfactor_-old_biasfactor);
     617             :         }
     618             :       }
     619             :       double old_epsilon;
     620          11 :       ifile.scanField("epsilon",old_epsilon);
     621          11 :       if(std::abs(epsilon_-old_epsilon)>1e-6*epsilon_) {
     622           8 :         log.printf(" +++ WARNING +++ previous epsilon was %g while now it is %g. diff = %g\n",old_epsilon,epsilon_,epsilon_-old_epsilon);
     623             :       }
     624             :       double old_cutoff;
     625          11 :       ifile.scanField("kernel_cutoff",old_cutoff);
     626          11 :       if(std::abs(cutoff-old_cutoff)>1e-6*cutoff) {
     627           0 :         log.printf(" +++ WARNING +++ previous kernel_cutoff was %g while now it is %g. diff = %g\n",old_cutoff,cutoff,cutoff-old_cutoff);
     628             :       }
     629             :       double old_threshold;
     630          11 :       const double threshold=sqrt(threshold2_);
     631          11 :       ifile.scanField("compression_threshold",old_threshold);
     632          11 :       if(std::abs(threshold-old_threshold)>1e-6*threshold) {
     633           0 :         log.printf(" +++ WARNING +++ previous compression_threshold was %g while now it is %g. diff = %g\n",old_threshold,threshold,threshold-old_threshold);
     634             :       }
     635          11 :       if(stateRestart) {
     636           6 :         ifile.scanField("zed",Zed_);
     637           6 :         ifile.scanField("sum_weights",sum_weights_);
     638           6 :         ifile.scanField("sum_weights2",sum_weights2_);
     639           6 :         ifile.scanField("counter",counter_);
     640           6 :         if(adaptive_sigma_) {
     641           6 :           ifile.scanField("adaptive_counter",adaptive_counter_);
     642           6 :           if(NumWalkers_==1) {
     643           6 :             for(unsigned i=0; i<ncv_; i++) {
     644           8 :               ifile.scanField("sigma0_"+getPntrToArgument(i)->getName(),sigma0_[i]);
     645           8 :               ifile.scanField("av_cv_"+getPntrToArgument(i)->getName(),av_cv_[i]);
     646           8 :               ifile.scanField("av_M2_"+getPntrToArgument(i)->getName(),av_M2_[i]);
     647             :             }
     648             :           } else {
     649          12 :             for(unsigned w=0; w<NumWalkers_; w++)
     650          24 :               for(unsigned i=0; i<ncv_; i++) {
     651             :                 double tmp0,tmp1,tmp2;
     652          32 :                 const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
     653          16 :                 ifile.scanField("sigma0_"+arg_iw,tmp0);
     654          16 :                 ifile.scanField("av_cv_"+arg_iw,tmp1);
     655          16 :                 ifile.scanField("av_M2_"+arg_iw,tmp2);
     656          16 :                 if(w==walker_rank_) {
     657           8 :                   sigma0_[i]=tmp0;
     658           8 :                   av_cv_[i]=tmp1;
     659           8 :                   av_M2_[i]=tmp2;
     660             :                 }
     661             :               }
     662             :           }
     663             :         }
     664             :       }
     665          33 :       for(unsigned i=0; i<ncv_; i++) {
     666          22 :         if(getPntrToArgument(i)->isPeriodic()) {
     667             :           std::string arg_min,arg_max;
     668          22 :           getPntrToArgument(i)->getDomain(arg_min,arg_max);
     669             :           std::string file_min,file_max;
     670          44 :           ifile.scanField("min_"+getPntrToArgument(i)->getName(),file_min);
     671          22 :           ifile.scanField("max_"+getPntrToArgument(i)->getName(),file_max);
     672          22 :           plumed_massert(file_min==arg_min,"RESTART - mismatch between old and new ARG periodicity");
     673          22 :           plumed_massert(file_max==arg_max,"RESTART - mismatch between old and new ARG periodicity");
     674             :         }
     675             :       }
     676          11 :       if(stateRestart) {
     677             :         double time;
     678          60 :         while(ifile.scanField("time",time)) {
     679          24 :           std::vector<double> center(ncv_);
     680          24 :           std::vector<double> sigma(ncv_);
     681             :           double height;
     682          72 :           for(unsigned i=0; i<ncv_; i++) {
     683          48 :             ifile.scanField(getPntrToArgument(i)->getName(),center[i]);
     684             :           }
     685          72 :           for(unsigned i=0; i<ncv_; i++) {
     686          96 :             ifile.scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
     687             :           }
     688          24 :           ifile.scanField("height",height);
     689          24 :           ifile.scanField();
     690          24 :           kernels_.emplace_back(height,center,sigma);
     691             :         }
     692           6 :         log.printf("    a total of %lu kernels where read\n",kernels_.size());
     693             :       } else {
     694           5 :         ifile.allowIgnoredFields(); //this allows for multiple restart, but without checking for consistency between them!
     695             :         double time;
     696         270 :         while(ifile.scanField("time",time)) {
     697         130 :           std::vector<double> center(ncv_);
     698         130 :           std::vector<double> sigma(ncv_);
     699             :           double height;
     700             :           double logweight;
     701         390 :           for(unsigned i=0; i<ncv_; i++) {
     702         260 :             ifile.scanField(getPntrToArgument(i)->getName(),center[i]);
     703             :           }
     704         390 :           for(unsigned i=0; i<ncv_; i++) {
     705         520 :             ifile.scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
     706             :           }
     707         130 :           if(counter_==(1+walker_rank_) && adaptive_sigma_) {
     708           0 :             sigma0_=sigma;
     709             :           }
     710         130 :           ifile.scanField("height",height);
     711         130 :           ifile.scanField("logweight",logweight);
     712         130 :           ifile.scanField();
     713         130 :           addKernel(height,center,sigma);
     714         130 :           const double weight=std::exp(logweight);
     715         130 :           sum_weights_+=weight; //this sum is slightly inaccurate, because when printing some precision is lost
     716         130 :           sum_weights2_+=weight*weight;
     717         130 :           counter_++;
     718             :         }
     719           5 :         KDEnorm_=mode::explore?counter_:sum_weights_;
     720           5 :         if(!no_Zed_) {
     721           2 :           double sum_uprob=0;
     722          48 :           for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
     723        1104 :             for(unsigned kk=0; kk<kernels_.size(); kk++) {
     724        1058 :               sum_uprob+=evaluateKernel(kernels_[kk],kernels_[k].center);
     725             :             }
     726           2 :           if(NumParallel_>1) {
     727           0 :             comm.Sum(sum_uprob);
     728             :           }
     729           2 :           Zed_=sum_uprob/KDEnorm_/kernels_.size();
     730             :         }
     731           5 :         log.printf("    a total of %llu kernels where read, and compressed to %lu\n",counter_-1,kernels_.size());
     732             :         convertKernelsToState=true;
     733             :       }
     734          11 :       ifile.reset(false);
     735          11 :       ifile.close();
     736          11 :       nlist_=tmp_nlist;
     737             :     } else { //same behaviour as METAD
     738           0 :       plumed_merror("RESTART requested, but file '"+restartFileName+"' was not found!\n  Set RESTART=NO or provide a restart file");
     739             :     }
     740          11 :     if(NumWalkers_>1) { //make sure that all walkers are doing the same thing
     741           6 :       const unsigned kernels_size=kernels_.size();
     742           6 :       std::vector<unsigned> all_kernels_size(NumWalkers_);
     743           6 :       if(comm.Get_rank()==0) {
     744           6 :         multi_sim_comm.Allgather(kernels_size,all_kernels_size);
     745             :       }
     746           6 :       comm.Bcast(all_kernels_size,0);
     747             :       bool same_number_of_kernels=true;
     748          12 :       for(unsigned w=1; w<NumWalkers_; w++)
     749           6 :         if(all_kernels_size[0]!=all_kernels_size[w]) {
     750             :           same_number_of_kernels=false;
     751             :         }
     752           6 :       plumed_massert(same_number_of_kernels,"RESTART - not all walkers are reading the same file!");
     753             :     }
     754          21 :   } else if(restartFileName.length()>0) {
     755           4 :     log.printf(" +++ WARNING +++ the provided STATE_RFILE will be ignored, since RESTART was not requested\n");
     756             :   }
     757             : 
     758             : //sync all walkers to avoid opening files before reading is over (see also METAD)
     759          21 :   comm.Barrier();
     760          21 :   if(comm.Get_rank()==0 && walkers_mpi) {
     761          10 :     multi_sim_comm.Barrier();
     762             :   }
     763             : 
     764             : //setup output kernels file
     765          21 :   kernelsOfile_.link(*this);
     766          21 :   if(NumWalkers_>1) {
     767          10 :     if(walker_rank_>0) {
     768             :       kernelsFileName="/dev/null";  //only first walker writes on file
     769             :     }
     770          20 :     kernelsOfile_.enforceSuffix("");
     771             :   }
     772          21 :   kernelsOfile_.open(kernelsFileName);
     773          21 :   if(fmt.length()>0) {
     774          42 :     kernelsOfile_.fmtField(" "+fmt);
     775             :   }
     776             :   kernelsOfile_.setHeavyFlush(); //do I need it?
     777             :   //define and set const fields
     778          21 :   kernelsOfile_.addConstantField("action");
     779          21 :   kernelsOfile_.addConstantField("biasfactor");
     780          21 :   kernelsOfile_.addConstantField("epsilon");
     781          21 :   kernelsOfile_.addConstantField("kernel_cutoff");
     782          21 :   kernelsOfile_.addConstantField("compression_threshold");
     783          61 :   for(unsigned i=0; i<ncv_; i++) {
     784          40 :     kernelsOfile_.setupPrintValue(getPntrToArgument(i));
     785             :   }
     786          42 :   kernelsOfile_.printField("action",getName()+"_kernels");
     787          21 :   kernelsOfile_.printField("biasfactor",biasfactor_);
     788          21 :   kernelsOfile_.printField("epsilon",epsilon_);
     789          21 :   kernelsOfile_.printField("kernel_cutoff",sqrt(cutoff2_));
     790          21 :   kernelsOfile_.printField("compression_threshold",sqrt(threshold2_));
     791             : 
     792             : //open file for storing state
     793          21 :   if(wStateStride_!=0) {
     794          11 :     stateOfile_.link(*this);
     795          11 :     if(NumWalkers_>1) {
     796           8 :       if(walker_rank_>0) {
     797             :         stateFileName="/dev/null";  //only first walker writes on file
     798             :       }
     799          16 :       stateOfile_.enforceSuffix("");
     800             :     }
     801          11 :     stateOfile_.open(stateFileName);
     802          11 :     if(fmt.length()>0) {
     803          22 :       stateOfile_.fmtField(" "+fmt);
     804             :     }
     805          11 :     if(convertKernelsToState) {
     806           0 :       dumpStateToFile();
     807             :     }
     808             :   }
     809             : 
     810             : //set initial old values
     811          21 :   KDEnorm_=mode::explore?counter_:sum_weights_;
     812          21 :   old_KDEnorm_=KDEnorm_;
     813             : 
     814             : //add and set output components
     815          42 :   addComponent("rct");
     816          21 :   componentIsNotPeriodic("rct");
     817          42 :   getPntrToComponent("rct")->set(kbt_*std::log(sum_weights_/counter_));
     818          42 :   addComponent("zed");
     819          21 :   componentIsNotPeriodic("zed");
     820          42 :   getPntrToComponent("zed")->set(Zed_);
     821          42 :   addComponent("neff");
     822          21 :   componentIsNotPeriodic("neff");
     823          42 :   getPntrToComponent("neff")->set(std::pow(1+sum_weights_,2)/(1+sum_weights2_));
     824          42 :   addComponent("nker");
     825          21 :   componentIsNotPeriodic("nker");
     826          21 :   getPntrToComponent("nker")->set(kernels_.size());
     827          21 :   if(calc_work_) {
     828          14 :     addComponent("work");
     829          14 :     componentIsNotPeriodic("work");
     830             :   }
     831          21 :   if(nlist_) {
     832          10 :     addComponent("nlker");
     833          10 :     componentIsNotPeriodic("nlker");
     834          10 :     addComponent("nlsteps");
     835          10 :     componentIsNotPeriodic("nlsteps");
     836             :   }
     837             : 
     838             : //printing some info
     839          21 :   log.printf("  temperature = %g\n",kbt_/kB);
     840          21 :   log.printf("  beta = %g\n",1./kbt_);
     841          21 :   log.printf("  depositing new kernels with PACE = %u\n",stride_);
     842          21 :   log.printf("  expected BARRIER is %g\n",barrier);
     843          21 :   log.printf("  using target distribution with BIASFACTOR gamma = %g\n",biasfactor_);
     844          21 :   if(std::isinf(biasfactor_)) {
     845           4 :     log.printf("    (thus a uniform flat target distribution, no well-tempering)\n");
     846             :   }
     847          21 :   if(excluded_region_!=NULL) {
     848           2 :     log.printf(" -- EXCLUDED_REGION: kernels will be deposited only when '%s' is equal to zero\n",excluded_region_->getName().c_str());
     849             :   }
     850          21 :   if(extra_biases_.size()>0) {
     851           2 :     log.printf(" -- EXTRA_BIAS: ");
     852           5 :     for(unsigned e=0; e<extra_biases_.size(); e++) {
     853           3 :       log.printf("%s ",extra_biases_[e]->getName().c_str());
     854             :     }
     855           2 :     log.printf("will be reweighted\n");
     856             :   }
     857          21 :   if(adaptive_sigma_) {
     858          11 :     log.printf("  adaptive SIGMA will be used, with ADAPTIVE_SIGMA_STRIDE = %u\n",adaptive_sigma_stride_);
     859          11 :     unsigned x=std::ceil(adaptive_sigma_stride_/stride_);
     860          11 :     log.printf("    thus the first x kernel depositions will be skipped, x = ADAPTIVE_SIGMA_STRIDE/PACE = %u\n",x);
     861             :   } else {
     862          10 :     log.printf("  kernels have initial SIGMA = ");
     863          29 :     for(unsigned i=0; i<ncv_; i++) {
     864          19 :       log.printf(" %g",sigma0_[i]);
     865             :     }
     866          10 :     log.printf("\n");
     867             :   }
     868          21 :   if(sigma_min_.size()>0) {
     869           3 :     log.printf("  kernels have a SIGMA_MIN = ");
     870           9 :     for(unsigned i=0; i<ncv_; i++) {
     871           6 :       log.printf(" %g",sigma_min_[i]);
     872             :     }
     873           3 :     log.printf("\n");
     874             :   }
     875          21 :   if(fixed_sigma_) {
     876           6 :     log.printf(" -- FIXED_SIGMA: sigma will not decrease as the simulation proceeds\n");
     877             :   }
     878          21 :   log.printf("  kernels are truncated with KERNELS_CUTOFF = %g\n",cutoff);
     879          21 :   if(cutoff<3.5) {
     880           0 :     log.printf(" +++ WARNING +++ probably kernels are truncated too much\n");
     881             :   }
     882          21 :   log.printf("  the value at cutoff is = %g\n",val_at_cutoff_);
     883          21 :   log.printf("  regularization EPSILON = %g\n",epsilon_);
     884          21 :   if(val_at_cutoff_>epsilon_*(1+1e-6)) {
     885           0 :     log.printf(" +++ WARNING +++ the KERNEL_CUTOFF might be too small for the given EPSILON\n");
     886             :   }
     887          21 :   log.printf("  kernels will be compressed when closer than COMPRESSION_THRESHOLD = %g\n",sqrt(threshold2_));
     888          21 :   if(threshold2_==0) {
     889           0 :     log.printf(" +++ WARNING +++ kernels will never merge, expect slowdowns\n");
     890             :   }
     891          21 :   if(!recursive_merge_) {
     892           6 :     log.printf(" -- RECURSIVE_MERGE_OFF: only one merge for each new kernel will be attempted. This is faster only if total number of kernels does not grow too much\n");
     893             :   }
     894          21 :   if(nlist_) {
     895           5 :     log.printf(" -- NLIST: using neighbor list for kernels, with parameters: %g,%g\n",nlist_param_[0],nlist_param_[1]);
     896             :   }
     897          21 :   if(nlist_pace_reset_) {
     898           2 :     log.printf(" -- NLIST_PACE_RESET: forcing the neighbor list to update every PACE\n");
     899             :   }
     900          21 :   if(no_Zed_) {
     901           6 :     log.printf(" -- NO_ZED: using fixed normalization factor = %g\n",Zed_);
     902             :   }
     903          21 :   if(wStateStride_>0) {
     904          10 :     log.printf("  state checkpoints are written on file %s every %d MD steps\n",stateFileName.c_str(),wStateStride_);
     905             :   }
     906          21 :   if(wStateStride_==-1) {
     907           1 :     log.printf("  state checkpoints are written on file %s only on CPT events (or never if MD code does define them!)\n",stateFileName.c_str());
     908             :   }
     909          21 :   if(walkers_mpi) {
     910          10 :     log.printf(" -- WALKERS_MPI: if multiple replicas are present, they will share the same bias via MPI\n");
     911             :   }
     912          21 :   if(NumWalkers_>1) {
     913          10 :     log.printf("  using multiple walkers\n");
     914          10 :     log.printf("    number of walkers: %u\n",NumWalkers_);
     915          10 :     log.printf("    walker rank: %u\n",walker_rank_);
     916             :   }
     917          21 :   int mw_warning=0;
     918          21 :   if(!walkers_mpi && comm.Get_rank()==0 && multi_sim_comm.Get_size()>(int)NumWalkers_) {
     919           0 :     mw_warning=1;
     920             :   }
     921          21 :   comm.Bcast(mw_warning,0);
     922          21 :   if(mw_warning) { //log.printf messes up with comm, so never use it without Bcast!
     923           0 :     log.printf(" +++ WARNING +++ multiple replicas will NOT communicate unless the flag WALKERS_MPI is used\n");
     924             :   }
     925          21 :   if(NumParallel_>1) {
     926           4 :     log.printf("  using multiple MPI processes per simulation: %u\n",NumParallel_);
     927             :   }
     928          21 :   if(NumOMP_>1) {
     929          17 :     log.printf("  using multiple OpenMP threads per simulation: %u\n",NumOMP_);
     930             :   }
     931          21 :   if(serial) {
     932           4 :     log.printf(" -- SERIAL: no loop parallelization, despite %d MPI processes and %u OpenMP threads available\n",comm.Get_size(),OpenMP::getNumThreads());
     933             :   }
     934          21 :   log.printf("  Bibliography: ");
     935          42 :   log<<plumed.cite("M. Invernizzi and M. Parrinello, J. Phys. Chem. Lett. 11, 2731-2736 (2020)");
     936          14 :   if(mode::explore || adaptive_sigma_) {
     937          28 :     log<<plumed.cite("M. Invernizzi and M. Parrinello, J. Chem. Theory Comput. 18, 3988-3996 (2022)");
     938             :   }
     939          21 :   log.printf("\n");
     940          42 : }
     941             : 
     942             : template <class mode>
     943        1071 : void OPESmetad<mode>::calculate() {
     944             : //get cv
     945        1071 :   std::vector<double> cv(ncv_);
     946        3111 :   for(unsigned i=0; i<ncv_; i++) {
     947        2040 :     cv[i]=getArgument(i);
     948             :   }
     949             : 
     950             : //check neighbor list
     951        1071 :   if(nlist_) {
     952         255 :     nlist_steps_++;
     953         255 :     if(getExchangeStep()) {
     954           0 :       nlist_update_=true;
     955             :     } else {
     956         275 :       for(unsigned i=0; i<ncv_; i++) {
     957         270 :         const double diff_i=difference(i,cv[i],nlist_center_[i]);
     958         270 :         if(diff_i*diff_i>nlist_param_[1]*nlist_dev2_[i]) {
     959         250 :           nlist_update_=true;
     960         250 :           break;
     961             :         }
     962             :       }
     963             :     }
     964         255 :     if(nlist_update_) {
     965         250 :       updateNlist(cv);
     966             :     }
     967             :   }
     968             : 
     969             : //set bias and forces
     970        1071 :   std::vector<double> der_prob(ncv_,0);
     971        1071 :   const double prob=getProbAndDerivatives(cv,der_prob);
     972        1071 :   const double bias=kbt_*bias_prefactor_*std::log(prob/Zed_+epsilon_);
     973        1071 :   setBias(bias);
     974        3111 :   for(unsigned i=0; i<ncv_; i++) {
     975        2040 :     setOutputForce(i,-kbt_*bias_prefactor_/(prob/Zed_+epsilon_)*der_prob[i]/Zed_);
     976             :   }
     977        1071 : }
     978             : 
     979             : template <class mode>
     980        1071 : void OPESmetad<mode>::update() {
     981        1071 :   if(isFirstStep_) { //same in MetaD, useful for restarts?
     982          21 :     isFirstStep_=false;
     983          21 :     return;
     984             :   }
     985             : 
     986             : //update variance if adaptive sigma
     987        1050 :   if(adaptive_sigma_) {
     988         550 :     adaptive_counter_++;
     989         550 :     unsigned tau=adaptive_sigma_stride_;
     990         550 :     if(adaptive_counter_<adaptive_sigma_stride_) {
     991          45 :       tau=adaptive_counter_;
     992             :     }
     993        1600 :     for(unsigned i=0; i<ncv_; i++) {
     994             :       //Welford's online algorithm for standard deviation
     995        1050 :       const double cv_i=getArgument(i);
     996        1050 :       const double diff_i=difference(i,av_cv_[i],cv_i);
     997        1050 :       av_cv_[i]+=diff_i/tau; //exponentially decaying average
     998        1050 :       av_M2_[i]+=diff_i*difference(i,av_cv_[i],cv_i);
     999             :     }
    1000         550 :     if(adaptive_counter_<adaptive_sigma_stride_ && counter_==1) { //counter_>1 if restarting
    1001             :       return;  //do not apply bias before having measured sigma
    1002             :     }
    1003             :   }
    1004             : 
    1005             : //do update
    1006        1005 :   if(getStep()%stride_==0 && (excluded_region_==NULL || excluded_region_->get()==0)) {
    1007         257 :     old_KDEnorm_=KDEnorm_;
    1008         257 :     delta_kernels_.clear();
    1009         257 :     unsigned old_nker=kernels_.size();
    1010             : 
    1011             :     //get new kernel height
    1012         257 :     double log_weight=getOutputQuantity(0)/kbt_; //first value is always the current bias
    1013         277 :     for(unsigned e=0; e<extra_biases_.size(); e++) {
    1014          20 :       log_weight+=extra_biases_[e]->get()/kbt_;  //extra biases contribute to the weight
    1015             :     }
    1016         257 :     double height=std::exp(log_weight);
    1017             : 
    1018             :     //update sum_weights_ and neff
    1019         257 :     double sum_heights=height;
    1020         257 :     double sum_heights2=height*height;
    1021         257 :     if(NumWalkers_>1) {
    1022         126 :       if(comm.Get_rank()==0) {
    1023         126 :         multi_sim_comm.Sum(sum_heights);
    1024         126 :         multi_sim_comm.Sum(sum_heights2);
    1025             :       }
    1026         126 :       comm.Bcast(sum_heights,0);
    1027         126 :       comm.Bcast(sum_heights2,0);
    1028             :     }
    1029         257 :     counter_+=NumWalkers_;
    1030         257 :     sum_weights_+=sum_heights;
    1031         257 :     sum_weights2_+=sum_heights2;
    1032         257 :     const double neff=std::pow(1+sum_weights_,2)/(1+sum_weights2_); //adding 1 makes it more robust at the start
    1033         257 :     getPntrToComponent("rct")->set(kbt_*std::log(sum_weights_/counter_));
    1034         257 :     getPntrToComponent("neff")->set(neff);
    1035             :     if(mode::explore) {
    1036          68 :       KDEnorm_=counter_;
    1037          68 :       height=1; //plain KDE, bias reweight does not enter here
    1038             :     } else {
    1039         189 :       KDEnorm_=sum_weights_;
    1040             :     }
    1041             : 
    1042             :     //if needed, rescale sigma and height
    1043         257 :     std::vector<double> sigma=sigma0_;
    1044         257 :     if(adaptive_sigma_) {
    1045          93 :       const double factor=mode::explore?1:biasfactor_;
    1046         131 :       if(counter_==1+NumWalkers_) { //first time only
    1047          14 :         for(unsigned i=0; i<ncv_; i++) {
    1048           9 :           av_M2_[i]*=biasfactor_;  //from unbiased, thus must be adjusted
    1049             :         }
    1050          14 :         for(unsigned i=0; i<ncv_; i++) {
    1051           9 :           sigma0_[i]=std::sqrt(av_M2_[i]/adaptive_counter_/factor);
    1052             :         }
    1053           5 :         if(sigma_min_.size()==0) {
    1054          14 :           for(unsigned i=0; i<ncv_; i++) {
    1055           9 :             plumed_massert(sigma0_[i]>1e-6,"ADAPTIVE SIGMA is suspiciously small for CV i="+std::to_string(i)+"\nManually provide SIGMA or set a safe SIGMA_MIN to avoid possible issues");
    1056             :           }
    1057             :         } else {
    1058           0 :           for(unsigned i=0; i<ncv_; i++) {
    1059           0 :             sigma0_[i]=std::max(sigma0_[i],sigma_min_[i]);
    1060             :           }
    1061             :         }
    1062             :       }
    1063         388 :       for(unsigned i=0; i<ncv_; i++) {
    1064         257 :         sigma[i]=std::sqrt(av_M2_[i]/adaptive_counter_/factor);
    1065             :       }
    1066         131 :       if(sigma_min_.size()==0) {
    1067         238 :         for(unsigned i=0; i<ncv_; i++) {
    1068         157 :           if(sigma[i]<1e-6) {
    1069           0 :             log.printf("+++ WARNING +++ the ADAPTIVE SIGMA is suspiciously small, you should set a safe SIGMA_MIN. 1e-6 will be used here\n");
    1070           0 :             sigma[i]=1e-6;
    1071           0 :             sigma_min_.resize(ncv_,1e-6);
    1072             :           }
    1073             :         }
    1074             :       } else {
    1075         150 :         for(unsigned i=0; i<ncv_; i++) {
    1076         100 :           sigma[i]=std::max(sigma[i],sigma_min_[i]);
    1077             :         }
    1078             :       }
    1079             :     }
    1080         257 :     if(!fixed_sigma_) {
    1081          38 :       const double size=mode::explore?counter_:neff; //for EXPLORE neff is not relevant
    1082         197 :       const double s_rescaling=std::pow(size*(ncv_+2.)/4.,-1./(4+ncv_));
    1083         576 :       for(unsigned i=0; i<ncv_; i++) {
    1084         379 :         sigma[i]*=s_rescaling;
    1085             :       }
    1086         197 :       if(sigma_min_.size()>0) {
    1087         150 :         for(unsigned i=0; i<ncv_; i++) {
    1088         100 :           sigma[i]=std::max(sigma[i],sigma_min_[i]);
    1089             :         }
    1090             :       }
    1091             :     }
    1092             :     //the height should be divided by sqrt(2*pi)*sigma0_,
    1093             :     //but this overall factor would be canceled when dividing by Zed
    1094             :     //thus we skip it altogether, but keep any other sigma rescaling
    1095         756 :     for(unsigned i=0; i<ncv_; i++) {
    1096         499 :       height*=(sigma0_[i]/sigma[i]);
    1097             :     }
    1098             : 
    1099             :     //get new kernel center
    1100         257 :     std::vector<double> center(ncv_);
    1101         756 :     for(unsigned i=0; i<ncv_; i++) {
    1102         499 :       center[i]=getArgument(i);
    1103             :     }
    1104             : 
    1105             :     //add new kernel(s)
    1106         257 :     if(NumWalkers_==1) {
    1107         131 :       addKernel(height,center,sigma,log_weight);
    1108             :     } else {
    1109         126 :       std::vector<double> all_height(NumWalkers_,0.0);
    1110         126 :       std::vector<double> all_center(NumWalkers_*ncv_,0.0);
    1111         126 :       std::vector<double> all_sigma(NumWalkers_*ncv_,0.0);
    1112         126 :       std::vector<double> all_logweight(NumWalkers_,0.0);
    1113         126 :       if(comm.Get_rank()==0) {
    1114         126 :         multi_sim_comm.Allgather(height,all_height);
    1115         126 :         multi_sim_comm.Allgather(center,all_center);
    1116         126 :         multi_sim_comm.Allgather(sigma,all_sigma);
    1117         126 :         multi_sim_comm.Allgather(log_weight,all_logweight);
    1118             :       }
    1119         126 :       comm.Bcast(all_height,0);
    1120         126 :       comm.Bcast(all_center,0);
    1121         126 :       comm.Bcast(all_sigma,0);
    1122         126 :       comm.Bcast(all_logweight,0);
    1123         126 :       if(nlist_) {
    1124             :         //gather all the nlist_index_, so merging can be done using it
    1125          50 :         std::vector<int> all_nlist_size(NumWalkers_);
    1126          50 :         if(comm.Get_rank()==0) {
    1127          50 :           all_nlist_size[walker_rank_]=nlist_index_.size();
    1128          50 :           multi_sim_comm.Sum(all_nlist_size);
    1129             :         }
    1130          50 :         comm.Bcast(all_nlist_size,0);
    1131             :         unsigned tot_size=0;
    1132         150 :         for(unsigned w=0; w<NumWalkers_; w++) {
    1133         100 :           tot_size+=all_nlist_size[w];
    1134             :         }
    1135          50 :         if(tot_size>0) {
    1136          50 :           std::vector<int> disp(NumWalkers_);
    1137         100 :           for(unsigned w=0; w<NumWalkers_-1; w++) {
    1138          50 :             disp[w+1]=disp[w]+all_nlist_size[w];
    1139             :           }
    1140          50 :           std::vector<unsigned> all_nlist_index(tot_size);
    1141          50 :           if(comm.Get_rank()==0) {
    1142          50 :             multi_sim_comm.Allgatherv(nlist_index_,all_nlist_index,&all_nlist_size[0],&disp[0]);
    1143             :           }
    1144          50 :           comm.Bcast(all_nlist_index,0);
    1145          50 :           std::set<unsigned> nlist_index_set(all_nlist_index.begin(),all_nlist_index.end()); //remove duplicates and sort
    1146          50 :           nlist_index_.assign(nlist_index_set.begin(),nlist_index_set.end());
    1147             :         }
    1148             :       }
    1149         378 :       for(unsigned w=0; w<NumWalkers_; w++) {
    1150         252 :         std::vector<double> center_w(all_center.begin()+ncv_*w,all_center.begin()+ncv_*(w+1));
    1151         252 :         std::vector<double> sigma_w(all_sigma.begin()+ncv_*w,all_sigma.begin()+ncv_*(w+1));
    1152         252 :         addKernel(all_height[w],center_w,sigma_w,all_logweight[w]);
    1153             :       }
    1154             :     }
    1155         257 :     getPntrToComponent("nker")->set(kernels_.size());
    1156         257 :     if(nlist_) {
    1157         106 :       getPntrToComponent("nlker")->set(nlist_index_.size());
    1158         106 :       if(nlist_pace_reset_) {
    1159          50 :         nlist_update_=true;
    1160             :       }
    1161             :     }
    1162             : 
    1163             :     //update Zed_
    1164         257 :     if(!no_Zed_) {
    1165         197 :       double sum_uprob=0;
    1166         197 :       const unsigned ks=kernels_.size();
    1167         197 :       const unsigned ds=delta_kernels_.size();
    1168         197 :       const bool few_kernels=(ks*ks<(3*ks*ds+2*ds*ds*NumParallel_+100)); //this seems reasonable, but is not rigorous...
    1169         197 :       if(few_kernels) { //really needed? Probably is almost always false
    1170         147 :         #pragma omp parallel num_threads(NumOMP_)
    1171             :         {
    1172             :           #pragma omp for reduction(+:sum_uprob) nowait
    1173             :           for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1174             :             for(unsigned kk=0; kk<kernels_.size(); kk++) {
    1175             :               sum_uprob+=evaluateKernel(kernels_[kk],kernels_[k].center);
    1176             :             }
    1177             :         }
    1178         147 :         if(NumParallel_>1) {
    1179          50 :           comm.Sum(sum_uprob);
    1180             :         }
    1181             :       } else {
    1182             :         // Here instead of redoing the full summation, we add only the changes, knowing that
    1183             :         // uprob = old_uprob + delta_uprob
    1184             :         // and we also need to consider that in the new sum there are some novel centers and some disappeared ones
    1185          50 :         double delta_sum_uprob=0;
    1186          50 :         if(!nlist_) {
    1187           0 :           #pragma omp parallel num_threads(NumOMP_)
    1188             :           {
    1189             :             #pragma omp for reduction(+:delta_sum_uprob) nowait
    1190             :             for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1191             :               for(unsigned d=0; d<delta_kernels_.size(); d++) {
    1192             :                 const double sign=delta_kernels_[d].height<0?-1:1; //take away contribution from kernels that are gone, and add the one from new ones
    1193             :                 delta_sum_uprob+=evaluateKernel(delta_kernels_[d],kernels_[k].center)+sign*evaluateKernel(kernels_[k],delta_kernels_[d].center);
    1194             :               }
    1195             :             }
    1196             :           }
    1197             :         } else {
    1198          50 :           #pragma omp parallel num_threads(NumOMP_)
    1199             :           {
    1200             :             #pragma omp for reduction(+:delta_sum_uprob) nowait
    1201             :             for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1202             :               const unsigned k=nlist_index_[nk];
    1203             :               for(unsigned d=0; d<delta_kernels_.size(); d++) {
    1204             :                 const double sign=delta_kernels_[d].height<0?-1:1; //take away contribution from kernels that are gone, and add the one from new ones
    1205             :                 delta_sum_uprob+=evaluateKernel(delta_kernels_[d],kernels_[k].center)+sign*evaluateKernel(kernels_[k],delta_kernels_[d].center);
    1206             :               }
    1207             :             }
    1208             :           }
    1209             :         }
    1210          50 :         if(NumParallel_>1) {
    1211           0 :           comm.Sum(delta_sum_uprob);
    1212             :         }
    1213          50 :         #pragma omp parallel num_threads(NumOMP_)
    1214             :         {
    1215             :           #pragma omp for reduction(+:delta_sum_uprob)
    1216             :           for(unsigned d=0; d<delta_kernels_.size(); d++) {
    1217             :             for(unsigned dd=0; dd<delta_kernels_.size(); dd++) {
    1218             :               //now subtract the delta_uprob added before, but not needed
    1219             :               const double sign=delta_kernels_[d].height<0?-1:1;
    1220             :               delta_sum_uprob-=sign*evaluateKernel(delta_kernels_[dd],delta_kernels_[d].center);
    1221             :             }
    1222             :           }
    1223             :         }
    1224          50 :         sum_uprob=Zed_*old_KDEnorm_*old_nker+delta_sum_uprob;
    1225             :       }
    1226         197 :       Zed_=sum_uprob/KDEnorm_/kernels_.size();
    1227         394 :       getPntrToComponent("zed")->set(Zed_);
    1228             :     }
    1229             : 
    1230             :     //calculate work if requested
    1231         257 :     if(calc_work_) {
    1232          70 :       std::vector<double> dummy(ncv_); //derivatives are not actually needed
    1233          70 :       const double prob=getProbAndDerivatives(center,dummy);
    1234          70 :       const double new_bias=kbt_*bias_prefactor_*std::log(prob/Zed_+epsilon_);
    1235          70 :       work_+=new_bias-getOutputQuantity(0);
    1236         140 :       getPntrToComponent("work")->set(work_);
    1237             :     }
    1238             :   }
    1239             : 
    1240             : //dump state if requested
    1241        1005 :   if( (wStateStride_>0 && getStep()%wStateStride_==0) || (wStateStride_==-1 && getCPT()) ) {
    1242          18 :     dumpStateToFile();
    1243             :   }
    1244             : }
    1245             : 
    1246             : template <class mode>
    1247        1141 : double OPESmetad<mode>::getProbAndDerivatives(const std::vector<double>& cv,std::vector<double>& der_prob) {
    1248        1141 :   double prob=0.0;
    1249        1141 :   if(!nlist_) {
    1250         886 :     if(NumOMP_==1 || (unsigned)kernels_.size()<2*NumOMP_*NumParallel_) {
    1251             :       // for performances and thread safety
    1252         707 :       std::vector<double> dist(ncv_);
    1253        2647 :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1254        1940 :         prob+=evaluateKernel(kernels_[k],cv,der_prob,dist);
    1255             :       }
    1256             :     } else {
    1257         179 :       #pragma omp parallel num_threads(NumOMP_)
    1258             :       {
    1259             :         std::vector<double> omp_deriv(der_prob.size(),0.);
    1260             :         // for performances and thread safety
    1261             :         std::vector<double> dist(ncv_);
    1262             :         #pragma omp for reduction(+:prob) nowait
    1263             :         for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1264             :           prob+=evaluateKernel(kernels_[k],cv,omp_deriv,dist);
    1265             :         }
    1266             :         #pragma omp critical
    1267             :         for(unsigned i=0; i<ncv_; i++) {
    1268             :           der_prob[i]+=omp_deriv[i];
    1269             :         }
    1270             :       }
    1271             :     }
    1272             :   } else {
    1273         255 :     if(NumOMP_==1 || (unsigned)nlist_index_.size()<2*NumOMP_*NumParallel_) {
    1274             :       // for performances and thread safety
    1275         230 :       std::vector<double> dist(ncv_);
    1276         660 :       for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1277         430 :         prob+=evaluateKernel(kernels_[nlist_index_[nk]],cv,der_prob,dist);
    1278             :       }
    1279             :     } else {
    1280          25 :       #pragma omp parallel num_threads(NumOMP_)
    1281             :       {
    1282             :         std::vector<double> omp_deriv(der_prob.size(),0.);
    1283             :         // for performances and thread safety
    1284             :         std::vector<double> dist(ncv_);
    1285             :         #pragma omp for reduction(+:prob) nowait
    1286             :         for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1287             :           prob+=evaluateKernel(kernels_[nlist_index_[nk]],cv,omp_deriv,dist);
    1288             :         }
    1289             :         #pragma omp critical
    1290             :         for(unsigned i=0; i<ncv_; i++) {
    1291             :           der_prob[i]+=omp_deriv[i];
    1292             :         }
    1293             :       }
    1294             :     }
    1295             :   }
    1296        1141 :   if(NumParallel_>1) {
    1297         224 :     comm.Sum(prob);
    1298         224 :     comm.Sum(der_prob);
    1299             :   }
    1300             : //normalize the estimate
    1301        1141 :   prob/=KDEnorm_;
    1302        3311 :   for(unsigned i=0; i<ncv_; i++) {
    1303        2170 :     der_prob[i]/=KDEnorm_;
    1304             :   }
    1305             : 
    1306        1141 :   return prob;
    1307             : }
    1308             : 
    1309             : template <class mode>
    1310         513 : void OPESmetad<mode>::addKernel(const double height,const std::vector<double>& center,const std::vector<double>& sigma) {
    1311             :   bool no_match=true;
    1312         513 :   if(threshold2_!=0) {
    1313         513 :     unsigned taker_k=getMergeableKernel(center,kernels_.size());
    1314         513 :     if(taker_k<kernels_.size()) {
    1315             :       no_match=false;
    1316         388 :       delta_kernels_.emplace_back(-1*kernels_[taker_k].height,kernels_[taker_k].center,kernels_[taker_k].sigma);
    1317         776 :       mergeKernels(kernels_[taker_k],kernel(height,center,sigma));
    1318         388 :       delta_kernels_.push_back(kernels_[taker_k]);
    1319         388 :       if(recursive_merge_) { //the overhead is worth it if it keeps low the total number of kernels
    1320             :         unsigned giver_k=taker_k;
    1321         337 :         taker_k=getMergeableKernel(kernels_[giver_k].center,giver_k);
    1322         337 :         while(taker_k<kernels_.size()) {
    1323           0 :           delta_kernels_.pop_back();
    1324           0 :           delta_kernels_.emplace_back(-1*kernels_[taker_k].height,kernels_[taker_k].center,kernels_[taker_k].sigma);
    1325           0 :           if(taker_k>giver_k) { //saves time when erasing
    1326             :             std::swap(taker_k,giver_k);
    1327             :           }
    1328           0 :           mergeKernels(kernels_[taker_k],kernels_[giver_k]);
    1329           0 :           delta_kernels_.push_back(kernels_[taker_k]);
    1330           0 :           kernels_.erase(kernels_.begin()+giver_k);
    1331           0 :           if(nlist_) {
    1332             :             unsigned giver_nk=0;
    1333             :             bool found_giver=false;
    1334           0 :             for(unsigned nk=0; nk<nlist_index_.size(); nk++) {
    1335           0 :               if(found_giver) {
    1336           0 :                 nlist_index_[nk]--;  //all the indexes shift due to erase
    1337             :               }
    1338           0 :               if(nlist_index_[nk]==giver_k) {
    1339             :                 giver_nk=nk;
    1340             :                 found_giver=true;
    1341             :               }
    1342             :             }
    1343             :             plumed_dbg_massert(found_giver,"problem with merging and NLIST");
    1344           0 :             nlist_index_.erase(nlist_index_.begin()+giver_nk);
    1345             :           }
    1346             :           giver_k=taker_k;
    1347           0 :           taker_k=getMergeableKernel(kernels_[giver_k].center,giver_k);
    1348             :         }
    1349             :       }
    1350             :     }
    1351             :   }
    1352             :   if(no_match) {
    1353         125 :     kernels_.emplace_back(height,center,sigma);
    1354         125 :     delta_kernels_.emplace_back(height,center,sigma);
    1355         125 :     if(nlist_) {
    1356          12 :       nlist_index_.push_back(kernels_.size()-1);
    1357             :     }
    1358             :   }
    1359         513 : }
    1360             : 
    1361             : template <class mode>
    1362         383 : void OPESmetad<mode>::addKernel(const double height,const std::vector<double>& center,const std::vector<double>& sigma,const double logweight) {
    1363         383 :   addKernel(height,center,sigma);
    1364             : //write to file
    1365         383 :   kernelsOfile_.printField("time",getTime());
    1366        1134 :   for(unsigned i=0; i<ncv_; i++) {
    1367         751 :     kernelsOfile_.printField(getPntrToArgument(i),center[i]);
    1368             :   }
    1369        1134 :   for(unsigned i=0; i<ncv_; i++) {
    1370        1502 :     kernelsOfile_.printField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
    1371             :   }
    1372         383 :   kernelsOfile_.printField("height",height);
    1373         383 :   kernelsOfile_.printField("logweight",logweight);
    1374         383 :   kernelsOfile_.printField();
    1375         383 : }
    1376             : 
    1377             : template <class mode>
    1378         850 : unsigned OPESmetad<mode>::getMergeableKernel(const std::vector<double>& giver_center,const unsigned giver_k) {
    1379             :   //returns kernels_.size() if no match is found
    1380         850 :   unsigned min_k=kernels_.size();
    1381         850 :   double min_norm2=threshold2_;
    1382         850 :   if(!nlist_) {
    1383         550 :     #pragma omp parallel num_threads(NumOMP_)
    1384             :     {
    1385             :       unsigned min_k_omp = min_k;
    1386             :       double min_norm2_omp = threshold2_;
    1387             :       #pragma omp for nowait
    1388             :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1389             :         if(k==giver_k) { //a kernel should not be merged with itself
    1390             :           continue;
    1391             :         }
    1392             :         double norm2=0;
    1393             :         for(unsigned i=0; i<ncv_; i++) {
    1394             :           const double dist_i=difference(i,giver_center[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1395             :           norm2+=dist_i*dist_i;
    1396             :           if(norm2>=min_norm2_omp) {
    1397             :             break;
    1398             :           }
    1399             :         }
    1400             :         if(norm2<min_norm2_omp) {
    1401             :           min_norm2_omp=norm2;
    1402             :           min_k_omp=k;
    1403             :         }
    1404             :       }
    1405             :       #pragma omp critical
    1406             :       {
    1407             :         if(min_norm2_omp < min_norm2) {
    1408             :           min_norm2 = min_norm2_omp;
    1409             :           min_k = min_k_omp;
    1410             :         }
    1411             :       }
    1412             :     }
    1413             :   } else {
    1414         300 :     #pragma omp parallel num_threads(NumOMP_)
    1415             :     {
    1416             :       unsigned min_k_omp = min_k;
    1417             :       double min_norm2_omp = threshold2_;
    1418             :       #pragma omp for nowait
    1419             :       for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1420             :         const unsigned k=nlist_index_[nk];
    1421             :         if(k==giver_k) { //a kernel should not be merged with itself
    1422             :           continue;
    1423             :         }
    1424             :         double norm2=0;
    1425             :         for(unsigned i=0; i<ncv_; i++) {
    1426             :           const double dist_i=difference(i,giver_center[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1427             :           norm2+=dist_i*dist_i;
    1428             :           if(norm2>=min_norm2) {
    1429             :             break;
    1430             :           }
    1431             :         }
    1432             :         if(norm2<min_norm2_omp) {
    1433             :           min_norm2_omp=norm2;
    1434             :           min_k_omp=k;
    1435             :         }
    1436             :       }
    1437             :       #pragma omp critical
    1438             :       {
    1439             :         if(min_norm2_omp < min_norm2) {
    1440             :           min_norm2 = min_norm2_omp;
    1441             :           min_k = min_k_omp;
    1442             :         }
    1443             :       }
    1444             :     }
    1445             :   }
    1446         850 :   if(NumParallel_>1) {
    1447         134 :     std::vector<double> all_min_norm2(NumParallel_);
    1448         134 :     std::vector<unsigned> all_min_k(NumParallel_);
    1449         134 :     comm.Allgather(min_norm2,all_min_norm2);
    1450         134 :     comm.Allgather(min_k,all_min_k);
    1451             :     const unsigned best=std::distance(std::begin(all_min_norm2),std::min_element(std::begin(all_min_norm2),std::end(all_min_norm2)));
    1452         134 :     min_k=all_min_k[best];
    1453             :   }
    1454         850 :   return min_k;
    1455             : }
    1456             : 
    1457             : template <class mode>
    1458         250 : void OPESmetad<mode>::updateNlist(const std::vector<double>& new_center) {
    1459         250 :   if(kernels_.size()==0) { //no need to check for neighbors
    1460           6 :     return;
    1461             :   }
    1462             : 
    1463         244 :   nlist_center_=new_center;
    1464         244 :   nlist_index_.clear();
    1465             :   //first we gather all the nlist_index
    1466         244 :   if(NumOMP_==1 || (unsigned)kernels_.size()<2*NumOMP_*NumParallel_) {
    1467         198 :     for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1468             :       double norm2_k=0;
    1469         444 :       for(unsigned i=0; i<ncv_; i++) {
    1470         296 :         const double dist_ik=difference(i,nlist_center_[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1471         296 :         norm2_k+=dist_ik*dist_ik;
    1472             :       }
    1473         148 :       if(norm2_k<=nlist_param_[0]*cutoff2_) {
    1474         104 :         nlist_index_.push_back(k);
    1475             :       }
    1476             :     }
    1477             :   } else {
    1478         194 :     #pragma omp parallel num_threads(NumOMP_)
    1479             :     {
    1480             :       std::vector<unsigned> private_nlist_index;
    1481             :       #pragma omp for nowait
    1482             :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1483             :         double norm2_k=0;
    1484             :         for(unsigned i=0; i<ncv_; i++) {
    1485             :           const double dist_ik=difference(i,nlist_center_[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1486             :           norm2_k+=dist_ik*dist_ik;
    1487             :         }
    1488             :         if(norm2_k<=nlist_param_[0]*cutoff2_) {
    1489             :           private_nlist_index.push_back(k);
    1490             :         }
    1491             :       }
    1492             :       #pragma omp critical
    1493             :       nlist_index_.insert(nlist_index_.end(),private_nlist_index.begin(),private_nlist_index.end());
    1494             :     }
    1495         194 :     if(recursive_merge_) {
    1496         194 :       std::sort(nlist_index_.begin(),nlist_index_.end());
    1497             :     }
    1498             :   }
    1499         244 :   if(NumParallel_>1) {
    1500         100 :     std::vector<int> all_nlist_size(NumParallel_);
    1501         100 :     all_nlist_size[rank_]=nlist_index_.size();
    1502         100 :     comm.Sum(all_nlist_size);
    1503             :     unsigned tot_size=0;
    1504         300 :     for(unsigned r=0; r<NumParallel_; r++) {
    1505         200 :       tot_size+=all_nlist_size[r];
    1506             :     }
    1507         100 :     if(tot_size>0) {
    1508         100 :       std::vector<int> disp(NumParallel_);
    1509         200 :       for(unsigned r=0; r<NumParallel_-1; r++) {
    1510         100 :         disp[r+1]=disp[r]+all_nlist_size[r];
    1511             :       }
    1512         100 :       std::vector<unsigned> local_nlist_index=nlist_index_;
    1513         100 :       nlist_index_.resize(tot_size);
    1514         100 :       comm.Allgatherv(local_nlist_index,nlist_index_,&all_nlist_size[0],&disp[0]);
    1515         100 :       if(recursive_merge_) {
    1516         100 :         std::sort(nlist_index_.begin(),nlist_index_.end());
    1517             :       }
    1518             :     }
    1519             :   }
    1520             :   //calculate the square deviation
    1521         244 :   std::vector<double> dev2(ncv_,0.);
    1522         773 :   for(unsigned k=rank_; k<nlist_index_.size(); k+=NumParallel_) {
    1523        1587 :     for(unsigned i=0; i<ncv_; i++) {
    1524        1058 :       const double diff_ik=difference(i,nlist_center_[i],kernels_[nlist_index_[k]].center[i]);
    1525        1058 :       dev2[i]+=diff_ik*diff_ik;
    1526             :     }
    1527             :   }
    1528         244 :   if(NumParallel_>1) {
    1529         100 :     comm.Sum(dev2);
    1530             :   }
    1531         732 :   for(unsigned i=0; i<ncv_; i++) {
    1532         488 :     if(dev2[i]==0) { //e.g. if nlist_index_.size()==0
    1533          56 :       nlist_dev2_[i]=std::pow(kernels_.back().sigma[i],2);
    1534             :     } else {
    1535         432 :       nlist_dev2_[i]=dev2[i]/nlist_index_.size();
    1536             :     }
    1537             :   }
    1538         244 :   getPntrToComponent("nlker")->set(nlist_index_.size());
    1539         244 :   getPntrToComponent("nlsteps")->set(nlist_steps_);
    1540         244 :   nlist_steps_=0;
    1541         244 :   nlist_update_=false;
    1542             : }
    1543             : 
    1544             : template <class mode>
    1545          18 : void OPESmetad<mode>::dumpStateToFile() {
    1546             : //gather adaptive sigma info if needed
    1547             : //doing this while writing to file can lead to misterious slowdowns
    1548             :   std::vector<double> all_sigma0;
    1549             :   std::vector<double> all_av_cv;
    1550             :   std::vector<double> all_av_M2;
    1551          18 :   if(adaptive_sigma_ && NumWalkers_>1) {
    1552          16 :     all_sigma0.resize(NumWalkers_*ncv_);
    1553          16 :     all_av_cv.resize(NumWalkers_*ncv_);
    1554          16 :     all_av_M2.resize(NumWalkers_*ncv_);
    1555          16 :     if(comm.Get_rank()==0) {
    1556          16 :       multi_sim_comm.Allgather(sigma0_,all_sigma0);
    1557          16 :       multi_sim_comm.Allgather(av_cv_,all_av_cv);
    1558          16 :       multi_sim_comm.Allgather(av_M2_,all_av_M2);
    1559             :     }
    1560          16 :     comm.Bcast(all_sigma0,0);
    1561          16 :     comm.Bcast(all_av_cv,0);
    1562          16 :     comm.Bcast(all_av_M2,0);
    1563             :   }
    1564             : 
    1565             : //rewrite header or rewind file
    1566          18 :   if(storeOldStates_) {
    1567          16 :     stateOfile_.clearFields();
    1568           2 :   } else if(walker_rank_==0) {
    1569           2 :     stateOfile_.rewind();
    1570             :   }
    1571             : //define fields
    1572          18 :   stateOfile_.addConstantField("action");
    1573          18 :   stateOfile_.addConstantField("biasfactor");
    1574          18 :   stateOfile_.addConstantField("epsilon");
    1575          18 :   stateOfile_.addConstantField("kernel_cutoff");
    1576          18 :   stateOfile_.addConstantField("compression_threshold");
    1577          18 :   stateOfile_.addConstantField("zed");
    1578          18 :   stateOfile_.addConstantField("sum_weights");
    1579          18 :   stateOfile_.addConstantField("sum_weights2");
    1580          18 :   stateOfile_.addConstantField("counter");
    1581          18 :   if(adaptive_sigma_) {
    1582          18 :     stateOfile_.addConstantField("adaptive_counter");
    1583          18 :     if(NumWalkers_==1) {
    1584           6 :       for(unsigned i=0; i<ncv_; i++) {
    1585           8 :         stateOfile_.addConstantField("sigma0_"+getPntrToArgument(i)->getName());
    1586           8 :         stateOfile_.addConstantField("av_cv_"+getPntrToArgument(i)->getName());
    1587           8 :         stateOfile_.addConstantField("av_M2_"+getPntrToArgument(i)->getName());
    1588             :       }
    1589             :     } else {
    1590          48 :       for(unsigned w=0; w<NumWalkers_; w++)
    1591          96 :         for(unsigned i=0; i<ncv_; i++) {
    1592         128 :           const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
    1593          64 :           stateOfile_.addConstantField("sigma0_"+arg_iw);
    1594          64 :           stateOfile_.addConstantField("av_cv_"+arg_iw);
    1595         128 :           stateOfile_.addConstantField("av_M2_"+arg_iw);
    1596             :         }
    1597             :     }
    1598             :   }
    1599             : //print fields
    1600          54 :   for(unsigned i=0; i<ncv_; i++) { //periodicity of CVs
    1601          36 :     stateOfile_.setupPrintValue(getPntrToArgument(i));
    1602             :   }
    1603          36 :   stateOfile_.printField("action",getName()+"_state");
    1604          18 :   stateOfile_.printField("biasfactor",biasfactor_);
    1605          18 :   stateOfile_.printField("epsilon",epsilon_);
    1606          18 :   stateOfile_.printField("kernel_cutoff",sqrt(cutoff2_));
    1607          18 :   stateOfile_.printField("compression_threshold",sqrt(threshold2_));
    1608          18 :   stateOfile_.printField("zed",Zed_);
    1609          18 :   stateOfile_.printField("sum_weights",sum_weights_);
    1610          18 :   stateOfile_.printField("sum_weights2",sum_weights2_);
    1611          18 :   stateOfile_.printField("counter",counter_);
    1612          18 :   if(adaptive_sigma_) {
    1613          18 :     stateOfile_.printField("adaptive_counter",adaptive_counter_);
    1614          18 :     if(NumWalkers_==1) {
    1615           6 :       for(unsigned i=0; i<ncv_; i++) {
    1616           8 :         stateOfile_.printField("sigma0_"+getPntrToArgument(i)->getName(),sigma0_[i]);
    1617           8 :         stateOfile_.printField("av_cv_"+getPntrToArgument(i)->getName(),av_cv_[i]);
    1618           8 :         stateOfile_.printField("av_M2_"+getPntrToArgument(i)->getName(),av_M2_[i]);
    1619             :       }
    1620             :     } else {
    1621          48 :       for(unsigned w=0; w<NumWalkers_; w++)
    1622          96 :         for(unsigned i=0; i<ncv_; i++) {
    1623         128 :           const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
    1624          64 :           stateOfile_.printField("sigma0_"+arg_iw,all_sigma0[w*ncv_+i]);
    1625          64 :           stateOfile_.printField("av_cv_"+arg_iw,all_av_cv[w*ncv_+i]);
    1626         128 :           stateOfile_.printField("av_M2_"+arg_iw,all_av_M2[w*ncv_+i]);
    1627             :         }
    1628             :     }
    1629             :   }
    1630             : //print kernels
    1631          82 :   for(unsigned k=0; k<kernels_.size(); k++) {
    1632          64 :     stateOfile_.printField("time",getTime()); //this is not very usefull
    1633         192 :     for(unsigned i=0; i<ncv_; i++) {
    1634         128 :       stateOfile_.printField(getPntrToArgument(i),kernels_[k].center[i]);
    1635             :     }
    1636         192 :     for(unsigned i=0; i<ncv_; i++) {
    1637         256 :       stateOfile_.printField("sigma_"+getPntrToArgument(i)->getName(),kernels_[k].sigma[i]);
    1638             :     }
    1639          64 :     stateOfile_.printField("height",kernels_[k].height);
    1640          64 :     stateOfile_.printField();
    1641             :   }
    1642             : //make sure file is written even if small
    1643          18 :   if(!storeOldStates_) {
    1644           2 :     stateOfile_.flush();
    1645             :   }
    1646          18 : }
    1647             : 
    1648             : template <class mode>
    1649        5969 : inline double OPESmetad<mode>::evaluateKernel(const kernel& G,const std::vector<double>& x) const {
    1650             :   //NB: cannot be a method of kernel class, because uses external variables (for cutoff)
    1651             :   double norm2=0;
    1652       13923 :   for(unsigned i=0; i<ncv_; i++) {
    1653       10288 :     const double dist_i=difference(i,G.center[i],x[i])/G.sigma[i];
    1654       10288 :     norm2+=dist_i*dist_i;
    1655       10288 :     if(norm2>=cutoff2_) {
    1656             :       return 0;
    1657             :     }
    1658             :   }
    1659        3635 :   return G.height*(std::exp(-0.5*norm2)-val_at_cutoff_);
    1660             : }
    1661             : 
    1662             : template <class mode>
    1663        3364 : inline double OPESmetad<mode>::evaluateKernel(const kernel& G,const std::vector<double>& x, std::vector<double>& acc_der, std::vector<double>& dist) {
    1664             :   //NB: cannot be a method of kernel class, because uses external variables (for cutoff)
    1665             :   double norm2=0;
    1666        7483 :   for(unsigned i=0; i<ncv_; i++) {
    1667        5578 :     dist[i]=difference(i,G.center[i],x[i])/G.sigma[i];
    1668        5578 :     norm2+=dist[i]*dist[i];
    1669        5578 :     if(norm2>=cutoff2_) {
    1670             :       return 0;
    1671             :     }
    1672             :   }
    1673        1905 :   const double val=G.height*(std::exp(-0.5*norm2)-val_at_cutoff_);
    1674        5576 :   for(unsigned i=0; i<ncv_; i++) {
    1675        3671 :     acc_der[i]-=dist[i]/G.sigma[i]*val;  //NB: we accumulate the derivative into der
    1676             :   }
    1677             :   return val;
    1678             : }
    1679             : 
    1680             : template <class mode>
    1681         388 : inline void OPESmetad<mode>::mergeKernels(kernel& k1,const kernel& k2) {
    1682         388 :   const double h=k1.height+k2.height;
    1683        1159 :   for(unsigned i=0; i<k1.center.size(); i++) {
    1684         771 :     const bool isPeriodic_i=getPntrToArgument(i)->isPeriodic();
    1685         771 :     if(isPeriodic_i) {
    1686         771 :       k1.center[i]=k2.center[i]+difference(i,k2.center[i],k1.center[i]);  //fix PBC
    1687             :     }
    1688         771 :     const double c_i=(k1.height*k1.center[i]+k2.height*k2.center[i])/h;
    1689         771 :     const double ss_k1_part=k1.height*(k1.sigma[i]*k1.sigma[i]+k1.center[i]*k1.center[i]);
    1690         771 :     const double ss_k2_part=k2.height*(k2.sigma[i]*k2.sigma[i]+k2.center[i]*k2.center[i]);
    1691         771 :     const double ss_i=(ss_k1_part+ss_k2_part)/h-c_i*c_i;
    1692         771 :     if(isPeriodic_i) {
    1693         771 :       k1.center[i]=bringBackInPbc(i,c_i);
    1694             :     } else {
    1695           0 :       k1.center[i]=c_i;
    1696             :     }
    1697         771 :     k1.sigma[i]=sqrt(ss_i);
    1698             :   }
    1699         388 :   k1.height=h;
    1700         388 : }
    1701             : 
    1702             : }
    1703             : }

Generated by: LCOV version 1.16