LCOV - code coverage report
Current view: top level - membranefusion - MemFusionP.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 134 151 88.7 %
Date: 2025-04-08 21:11:17 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             : Copyright (c) 2022.
       3             : 
       4             : CVs originally developed by the Jochen Hub group from the University of Saarland (Germany)
       5             : and adapted and implemented in PLUMED by Ary Lautaro Di Bartolo and Diego Masone from the
       6             : National University of Cuyo (Argentina).
       7             : 
       8             : The membranefusion module is free software: you can redistribute it and/or modify
       9             : it under the terms of the GNU Lesser General Public License as published by
      10             : the Free Software Foundation, either version 3 of the License, or
      11             : (at your option) any later version.
      12             : 
      13             : The membranefusion module is distributed in the hope that it will be useful,
      14             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      16             : GNU Lesser General Public License for more details.
      17             : 
      18             : You should have received a copy of the GNU Lesser General Public License
      19             : along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      20             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      21             : #include "colvar/Colvar.h"
      22             : #include "core/ActionRegister.h"
      23             : #include <cmath>
      24             : #ifdef _OPENMP
      25             : #if _OPENMP >= 201307
      26             : #include <omp.h>
      27             : #endif
      28             : #endif
      29             : 
      30             : namespace PLMD {
      31             : namespace membranefusion {
      32             : //+PLUMEDOC MEMBRANEFUSIONMOD_COLVAR MEMFUSIONP
      33             : /*
      34             : Calculate a CV that can induce the formation of the hemifusion stalk between two initially flat and planar bilayers.
      35             : 
      36             : Calculate the collective variable designed by Hub and collaborators \cite Hub2017 and
      37             : implemented into PLUMED by Masone and collaborators \cite DiBartolo2022 .
      38             : This CV is capable of inducing the formation of the hemifusion stalk between two initially flat and planar bilayers
      39             : surrounded by water molecules.
      40             : 
      41             : \f[
      42             : \xi_f = \frac{1}{N_{sf}} \sum_{s=0}^{N_{sf}-1} \delta_{sf} (N_{sf}^{(p)})
      43             : \f]
      44             : 
      45             : Where \f$\xi_f\f$ is the CV, \f$N_{sf}\f$ is the number of slices of the cylinder that make up the CV,
      46             : \f$\delta_{sf}\f$ is a continuos function in the interval [0 1] (\f$\delta_{sf} = 0\f$ for no beads in the slice s, and
      47             : \f$\delta_{sf} = 1\f$ for 1 or more beads in the slice s) and \f$N_{sf}^{(p)}\f$ accounts for the number of tail beads
      48             : within the slice s.
      49             : 
      50             : \par Examples
      51             : 
      52             : This example induces a hemifusion stalk (\f$\xi_f = 0.85\f$) from a pair of initially flat membranes (\f$\xi_f = 0.2\f$).
      53             : 
      54             : \plumedfile
      55             : lMem: GROUP ATOMS=1-12288 #All the lower membrane beads.
      56             : uMem: GROUP ATOMS=12289-24576 #All the upper membrane beads.
      57             : tails: GROUP ATOMS=8-24572:12,12-24576:12 #All the lipid tails beads (from the lower and upper membrane).
      58             : 
      59             : memFusion: MEMFUSIONP UMEMBRANE=uMem LMEMBRANE=lMem TAILS=tails NSMEM=70 DSMEM=0.1 HMEM=0.25 RCYLMEM=1.75 ZETAMEM=0.5
      60             : 
      61             : MOVINGRESTRAINT ...
      62             :     ARG=memFusion
      63             :     STEP0=0 AT0=0.2 KAPPA0=10000.0
      64             :     STEP1=500000 AT1=0.85 KAPPA1=10000.0
      65             : ...
      66             : 
      67             : PRINT ARG=memFusion FILE=COLVAR STRIDE=1
      68             : 
      69             : \endplumedfile
      70             : 
      71             : You can test this CV with another example in this <a href="https://github.com/lautarodibartolo/MemFusion/tree/main/ExampleParallel">GitHub folder</a>.
      72             : 
      73             : */
      74             : //+ENDPLUMEDOC
      75             : 
      76             : class memFusionP : public Colvar {
      77             :   std::vector<AtomNumber> UMEM, LMEM, TAILS;
      78             :   std::vector<double> NSMEM, DSMEM, HMEM, RCYLMEM, ZETAMEM, ONEOVERS2C2CUTOFF, XCYL, YCYL;
      79             : 
      80             : public:
      81             :   explicit memFusionP(const ActionOptions &);
      82             :   void calculate() override;
      83             :   static void registerKeywords(Keywords &keys);
      84             : };
      85             : 
      86             : PLUMED_REGISTER_ACTION(memFusionP, "MEMFUSIONP")
      87             : 
      88           3 : void memFusionP::registerKeywords(Keywords &keys) {
      89           3 :   Colvar::registerKeywords(keys);
      90           3 :   keys.add("atoms", "UMEMBRANE", "all the beads of the upper membrane");
      91           3 :   keys.add("atoms", "LMEMBRANE", "all the beads of the lower membrane");
      92           3 :   keys.add("atoms", "TAILS", "all the tail beads of the system");
      93           3 :   keys.add("compulsory", "NSMEM", "the number of slices of the membrane fusion cylinder in such a way that when the bilayers are flat and parallel the CV is equal to 0.2.");
      94           3 :   keys.add("optional", "DSMEM", "( default=0.1) thickness of the slices of the membrane fusion cylinder.");
      95           3 :   keys.add("optional", "HMEM", "( default=0.25 ) parameter of the step function θ(x,h) for the membrane fusion.");
      96           3 :   keys.add("optional", "RCYLMEM", "( default=1.75 ) the radius of the membrane fusion cylinder.");
      97           3 :   keys.add("optional", "ZETAMEM", "( default=0.5 ) occupation factor.");
      98           3 :   keys.add("optional", "ONEOVERS2C2CUTOFF", "( default=500 ) cut off large values for the derivative of the atan2 function.");
      99           3 :   keys.add("optional", "XCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     100           3 :   keys.add("optional", "YCYL", "Y coordinate of the fixed cylinder, if not present this will be calculated.");
     101           6 :   keys.setValueDescription("scalar","the value of the CV");
     102           3 : }
     103             : 
     104           1 : memFusionP::memFusionP(const ActionOptions &ao) : PLUMED_COLVAR_INIT(ao) {
     105           2 :   parseAtomList("UMEMBRANE", UMEM);
     106           1 :   if (UMEM.size() == 0) {
     107           0 :     error("UMEMBRANE has not any atom specified.");
     108             :   }
     109             : 
     110           2 :   parseAtomList("LMEMBRANE", LMEM);
     111           1 :   if (LMEM.size() == 0) {
     112           0 :     error("LMEMBRANE has not any atom specified.");
     113             :   }
     114             : 
     115           2 :   parseAtomList("TAILS", TAILS);
     116           1 :   if (TAILS.size() == 0) {
     117           0 :     error("TAILS has not any atom specified.");
     118             :   }
     119             : 
     120           2 :   parseVector("NSMEM", NSMEM);
     121           1 :   if (NSMEM.size() > 1) {
     122           0 :     error("NSMEM cannot take more than one value.");
     123             :   }
     124             : 
     125           2 :   parseVector("DSMEM", DSMEM);
     126           1 :   if (DSMEM.size() > 1) {
     127           0 :     error("DSMEM cannot take more than one value.");
     128             :   }
     129           1 :   if (DSMEM.size() == 0) {
     130           0 :     DSMEM.push_back(0.1);
     131             :   }
     132             : 
     133           2 :   parseVector("HMEM", HMEM);
     134           1 :   if (HMEM.size() > 1) {
     135           0 :     error("HMEM cannot take more than one value.");
     136             :   }
     137           1 :   if (HMEM.size() == 0) {
     138           0 :     HMEM.push_back(0.25);
     139             :   }
     140             : 
     141           2 :   parseVector("RCYLMEM", RCYLMEM);
     142           1 :   if (RCYLMEM.size() > 1) {
     143           0 :     error("RCYLMEM cannot take more than one value.");
     144             :   }
     145           1 :   if (RCYLMEM.size() == 0) {
     146           0 :     RCYLMEM.push_back(1.75);
     147             :   }
     148             : 
     149           2 :   parseVector("ZETAMEM", ZETAMEM);
     150           1 :   if (ZETAMEM.size() > 1) {
     151           0 :     error("ZETA cannot take more than one value.");
     152             :   }
     153           1 :   if (ZETAMEM.size() == 0) {
     154           0 :     ZETAMEM.push_back(0.5);
     155             :   }
     156             : 
     157           2 :   parseVector("ONEOVERS2C2CUTOFF", ONEOVERS2C2CUTOFF);
     158           1 :   if (ONEOVERS2C2CUTOFF.size() > 1) {
     159           0 :     error("ONEOVERS2C2CUTOFF cannot take more than one value.");
     160             :   }
     161           1 :   if (ONEOVERS2C2CUTOFF.size() == 0) {
     162           1 :     ONEOVERS2C2CUTOFF.push_back(500);
     163             :   }
     164             : 
     165           2 :   parseVector("XCYL", XCYL);
     166           1 :   if (XCYL.size() > 1) {
     167           0 :     error("XCYL cannot take more than one value.");
     168             :   }
     169           1 :   if (XCYL.size() == 0) {
     170           1 :     XCYL.push_back(-1.0);
     171             :   }
     172             : 
     173           2 :   parseVector("YCYL", YCYL);
     174           1 :   if (YCYL.size() > 1) {
     175           0 :     error("YCYL cannot take more than one value.");
     176             :   }
     177           1 :   if (YCYL.size() == 0) {
     178           1 :     YCYL.push_back(-1.0);
     179             :   }
     180             : 
     181           1 :   checkRead();
     182             : 
     183             :   std::vector<AtomNumber> atoms;
     184       12289 :   for (unsigned i = 0; i < UMEM.size(); i++) {
     185       12288 :     atoms.push_back(UMEM[i]);
     186             :   }
     187       12289 :   for (unsigned i = 0; i < LMEM.size(); i++) {
     188       12288 :     atoms.push_back(LMEM[i]);
     189             :   }
     190        4097 :   for (unsigned i = 0; i < TAILS.size(); i++) {
     191        4096 :     atoms.push_back(TAILS[i]);
     192             :   }
     193             : 
     194           1 :   addValueWithDerivatives();
     195           1 :   setNotPeriodic();
     196           1 :   requestAtoms(atoms);
     197           1 : }
     198             : 
     199           3 : void memFusionP::calculate() {
     200             :   /**************************
     201             :    *                        *
     202             :    *         System         *
     203             :    *                        *
     204             :    **************************/
     205             : 
     206             :   // Box dimensions.
     207           3 :   double Lx = getBox()[0][0], Ly = getBox()[1][1], Lz = getBox()[2][2];
     208             : 
     209             :   // Z center of the upper membrane (uMem) and lower membrane (lMem) for systems with PBC: https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions .
     210             :   double ZuMem, ZuMemcos = 0.0, ZuMemsin = 0.0, uMemAngle, ZlMem, ZlMemcos = 0.0, ZlMemsin = 0.0, lMemAngle;
     211             : 
     212             : #ifdef _OPENMP
     213             : #if _OPENMP >= 201307
     214           3 :   #pragma omp parallel for private(uMemAngle, lMemAngle) reduction(+:ZuMemcos, ZuMemsin, ZlMemcos, ZlMemsin)
     215             : #endif
     216             : #endif
     217             :   for (unsigned i = 0; i < UMEM.size(); i++) {
     218             :     uMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i)))[2];
     219             :     lMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + UMEM.size())))[2];
     220             :     ZuMemcos += cos(uMemAngle);
     221             :     ZuMemsin += sin(uMemAngle);
     222             :     ZlMemcos += cos(lMemAngle);
     223             :     ZlMemsin += sin(lMemAngle);
     224             :   }
     225             : 
     226           3 :   ZuMemcos = ZuMemcos / UMEM.size();
     227           3 :   ZuMemsin = ZuMemsin / UMEM.size();
     228           3 :   ZlMemcos = ZlMemcos / UMEM.size();
     229           3 :   ZlMemsin = ZlMemsin / UMEM.size();
     230             : 
     231           3 :   ZuMem = Lz * (atan2(-ZuMemsin, -ZuMemcos) + M_PI) / (2.0 * M_PI);
     232           3 :   ZlMem = Lz * (atan2(-ZlMemsin, -ZlMemcos) + M_PI) / (2.0 * M_PI);
     233             : 
     234             :   // Z center of the boths membranes (upper and lower).
     235           3 :   double ZMems = (ZuMem + ZlMem) / 2.0;
     236             : 
     237             :   /*************************
     238             :    *                        *
     239             :    *         Xi_Mem         *
     240             :    *                        *
     241             :    **************************/
     242             : 
     243             :   // Quantity of beads of the membranes.
     244           3 :   unsigned membraneBeads = UMEM.size() + LMEM.size();
     245             : 
     246             :   // Z distance from the lipid tail to the geometric center of both membranes.
     247             :   double ZTailDistance;
     248             : 
     249             :   // Z position of the first slice.
     250           3 :   double firstSliceZ_Mem = ZMems + (0.0 + 0.5 - NSMEM[0] / 2.0) * DSMEM[0];
     251             : 
     252             :   // Z distance between the first slice and the Z center of the membrane.
     253           6 :   double firstSliceZDist_Mem = pbcDistance(Vector(0.0, 0.0, firstSliceZ_Mem), Vector(0.0, 0.0, ZMems))[2];
     254             : 
     255             :   // Position in the cylinder.
     256             :   double PositionS_Mem;
     257             : 
     258             :   // Slices to analyze per particle.
     259           3 :   std::vector<unsigned> s1_Mem(TAILS.size()), s2_Mem(TAILS.size());
     260             : 
     261             :   // Mark the particles to analyze.
     262           3 :   std::vector<double> analyzeThisParticle_Mem(TAILS.size());
     263             : 
     264             :   // Eq. 7 Hub & Awasthi JCTC 2017.
     265           3 :   std::vector<double> faxial_Mem(TAILS.size() * NSMEM[0]);
     266             : 
     267             :   // Eq. 16 Hub & Awasthi JCTC 2017.
     268           3 :   std::vector<double> d_faxial_Mem_dz(TAILS.size() * NSMEM[0]);
     269             : 
     270             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     271           3 :   std::vector<double> Fs_Mem(NSMEM[0]);
     272             : 
     273             :   // Eq. 11 Hub & Awasthi JCTC 2017.
     274           3 :   std::vector<double> ws_Mem(NSMEM[0]);
     275             : 
     276             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     277             :   double W_Mem = 0.0;
     278             : 
     279             :   // Eq. 21 and 22 Hub & Awasthi JCTC 2017.
     280           3 :   std::vector<double> sx_Mem(NSMEM[0]), sy_Mem(NSMEM[0]), cx_Mem(NSMEM[0]), cy_Mem(NSMEM[0]);
     281             : 
     282             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     283             :   double Xsc_Mem = 0.0, Xcc_Mem = 0.0, Ysc_Mem = 0.0, Ycc_Mem = 0.0;
     284             : 
     285             :   // Aux.
     286             :   double x, aux;
     287             : 
     288             :   // Scaled position of the lipid tail respect the origin of coordinates.
     289           3 :   Vector TailPosition;
     290             : 
     291             :   // Thanks stack overflow.
     292             : #ifdef _OPENMP
     293             : #if _OPENMP >= 201307
     294             :   #pragma omp declare reduction(vec_double_plus : std::vector<double> : \
     295             :   std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \
     296             :   initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
     297             : #endif
     298             : #endif
     299             : 
     300             : #ifdef _OPENMP
     301             : #if _OPENMP >= 201307
     302           3 :   #pragma omp parallel for private(ZTailDistance, PositionS_Mem, TailPosition, x, aux) reduction(vec_double_plus:Fs_Mem, sx_Mem, sy_Mem, cx_Mem, cy_Mem)
     303             : #endif
     304             : #endif
     305             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     306             :     ZTailDistance = pbcDistance(Vector(0.0, 0.0, ZMems), getPosition(i + membraneBeads))[2];
     307             :     PositionS_Mem = (ZTailDistance + firstSliceZDist_Mem) / DSMEM[0];
     308             :     // If the following condition is met the particle is in the Z space of the cylinder.
     309             :     if ((PositionS_Mem >= (-0.5 - HMEM[0])) && (PositionS_Mem <= (NSMEM[0] + 0.5 - 1.0 + HMEM[0]))) {
     310             :       analyzeThisParticle_Mem[i] = 1.0;
     311             :       // Defining the slices to analyze each particle.
     312             :       if (PositionS_Mem < 1) {
     313             :         s1_Mem[i] = 0;
     314             :         s2_Mem[i] = 2;
     315             :       } else if (PositionS_Mem <= (NSMEM[0] - 2.0)) {
     316             :         s1_Mem[i] = floor(PositionS_Mem) - 1;
     317             :         s2_Mem[i] = floor(PositionS_Mem) + 1;
     318             :       } else {
     319             :         s1_Mem[i] = NSMEM[0] - 3;
     320             :         s2_Mem[i] = NSMEM[0] - 1;
     321             :       }
     322             : 
     323             :       TailPosition = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     324             : 
     325             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     326             :         x = (ZTailDistance - (s + 0.5 - NSMEM[0] / 2.0) * DSMEM[0]) * 2.0 / DSMEM[0];
     327             :         if (!((x <= -1.0 - HMEM[0]) || (x >= 1.0 + HMEM[0]))) {
     328             :           if (((-1.0 + HMEM[0]) <= x) && (x <= (1.0 - HMEM[0]))) {
     329             :             faxial_Mem[i + TAILS.size() * s] = 1.0;
     330             :             Fs_Mem[s] += 1.0;
     331             :             sx_Mem[s] += sin(2.0 * M_PI * TailPosition[0]);
     332             :             sy_Mem[s] += sin(2.0 * M_PI * TailPosition[1]);
     333             :             cx_Mem[s] += cos(2.0 * M_PI * TailPosition[0]);
     334             :             cy_Mem[s] += cos(2.0 * M_PI * TailPosition[1]);
     335             :           } else if (((1.0 - HMEM[0]) < x) && (x < (1.0 + HMEM[0]))) {
     336             :             aux = 0.5 - ((3.0 * x - 3.0) / (4.0 * HMEM[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     337             :             faxial_Mem[i + TAILS.size() * s] = aux;
     338             :             d_faxial_Mem_dz[i + TAILS.size() * s] = ((-3.0 / (4.0 * HMEM[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * 2.0 / DSMEM[0];
     339             :             Fs_Mem[s] += aux;
     340             :             sx_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[0]);
     341             :             sy_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[1]);
     342             :             cx_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[0]);
     343             :             cy_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[1]);
     344             :           } else if (((-1.0 - HMEM[0]) < x) && (x < (-1.0 + HMEM[0]))) {
     345             :             aux = 0.5 + ((3.0 * x + 3.0) / (4.0 * HMEM[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     346             :             faxial_Mem[i + TAILS.size() * s] = aux;
     347             :             d_faxial_Mem_dz[i + TAILS.size() * s] = ((3.0 / (4.0 * HMEM[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * 2.0 / DSMEM[0];
     348             :             Fs_Mem[s] += aux;
     349             :             sx_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[0]));
     350             :             sy_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[1]));
     351             :             cx_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[0]));
     352             :             cy_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[1]));
     353             :           }
     354             :         }
     355             :       }
     356             :     }
     357             :   }
     358             : 
     359         213 :   for (unsigned s = 0; s < NSMEM[0]; s++) {
     360         210 :     if (Fs_Mem[s] != 0.0) {
     361         106 :       ws_Mem[s] = tanh(Fs_Mem[s]);
     362         106 :       W_Mem += ws_Mem[s];
     363         106 :       sx_Mem[s] = sx_Mem[s] / Fs_Mem[s];
     364         106 :       sy_Mem[s] = sy_Mem[s] / Fs_Mem[s];
     365         106 :       cx_Mem[s] = cx_Mem[s] / Fs_Mem[s];
     366         106 :       cy_Mem[s] = cy_Mem[s] / Fs_Mem[s];
     367         106 :       Xsc_Mem += sx_Mem[s] * ws_Mem[s];
     368         106 :       Ysc_Mem += sy_Mem[s] * ws_Mem[s];
     369         106 :       Xcc_Mem += cx_Mem[s] * ws_Mem[s];
     370         106 :       Ycc_Mem += cy_Mem[s] * ws_Mem[s];
     371             :     }
     372             :   }
     373             : 
     374           3 :   Xsc_Mem = Xsc_Mem / W_Mem;
     375           3 :   Ysc_Mem = Ysc_Mem / W_Mem;
     376           3 :   Xcc_Mem = Xcc_Mem / W_Mem;
     377           3 :   Ycc_Mem = Ycc_Mem / W_Mem;
     378             : 
     379             :   // Eq. 12 Hub & Awasthi JCTC 2017.
     380             :   double Xcyl_Mem, Ycyl_Mem;
     381             : 
     382           3 :   if ((XCYL[0] > 0.0) && (YCYL[0] > 0.0)) {
     383             :     Xcyl_Mem = XCYL[0];
     384             :     Ycyl_Mem = YCYL[0];
     385             :   } else {
     386           3 :     Xcyl_Mem = (atan2(-Xsc_Mem, -Xcc_Mem) + M_PI) * Lx / (2 * M_PI);
     387           3 :     Ycyl_Mem = (atan2(-Ysc_Mem, -Ycc_Mem) + M_PI) * Ly / (2 * M_PI);
     388             :   }
     389             : 
     390             :   // Eq. 25, 26 and 27 Hub & Awasthi JCTC 2017.
     391             :   double d_sx_Mem_dx, d_sx_Mem_dz, d_sy_Mem_dy, d_sy_Mem_dz, d_cx_Mem_dx, d_cx_Mem_dz, d_cy_Mem_dy, d_cy_Mem_dz;
     392             : 
     393             :   // Eq. 29 Hub & Awasthi JCTC 2017.
     394             :   double d_ws_Mem_dz;
     395             : 
     396             :   // Eq. 31, 32 and 33 Hub & Awasthi JCTC 2017
     397             :   double d_Xsc_Mem_dx, d_Xsc_Mem_dz, d_Xcc_Mem_dx, d_Xcc_Mem_dz, d_Ysc_Mem_dy, d_Ysc_Mem_dz, d_Ycc_Mem_dy, d_Ycc_Mem_dz;
     398             : 
     399             :   // Center of the cylinder. XY components are calculated (or defined), Z is the Z geometric center of the membranes of the system.
     400           6 :   Vector xyzCyl_Mem = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl_Mem, Ycyl_Mem, ZMems));
     401             : 
     402             :   // Distances from the lipid tails to center of the cylinder.
     403           3 :   std::vector<Vector> CylDistances_Mem(TAILS.size());
     404             : 
     405             :   // XY distance from the lipid tails to the center of the cylinder.
     406             :   double ri_Mem;
     407             : 
     408             :   // Eq. 8 Hub & Awasthi JCTC 2017.
     409             :   double fradial_Mem = 0;
     410             : 
     411             :   // Eq. 15 Hub & Awasthi JCTC 2017.
     412           3 :   std::vector<double> d_fradial_Mem_dx(TAILS.size()), d_fradial_Mem_dy(TAILS.size());
     413             : 
     414             :   // Eq. 35, 36, 37 and 38 Hub & Awasthi JCTC 2017.
     415           3 :   std::vector<double> d_Xcyl_Mem_dx(TAILS.size()), d_Xcyl_Mem_dz(TAILS.size()), d_Ycyl_Mem_dy(TAILS.size()), d_Ycyl_Mem_dz(TAILS.size());
     416             : 
     417             :   // To avoid rare instabilities auxX_Mem and auxY_Mem are truncated at a configurable value (default = 500).
     418           3 :   double auxX_Mem = (1 / (pow(Xsc_Mem, 2) + pow(Xcc_Mem, 2))), auxY_Mem = (1 / (pow(Ysc_Mem, 2) + pow(Ycc_Mem, 2)));
     419             : 
     420           3 :   if (auxX_Mem > ONEOVERS2C2CUTOFF[0]) {
     421           0 :     auxX_Mem = Lx * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     422             :   } else {
     423           3 :     auxX_Mem = Lx * auxX_Mem / (2 * M_PI);
     424             :   }
     425             : 
     426           3 :   if (auxY_Mem > ONEOVERS2C2CUTOFF[0]) {
     427           0 :     auxY_Mem = Ly * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     428             :   } else {
     429           3 :     auxY_Mem = Ly * auxY_Mem / (2 * M_PI);
     430             :   }
     431             : 
     432             :   // Number of lipid tails within the slice s of the membranes cylinder.
     433           3 :   std::vector<double> Nsp_Mem(NSMEM[0]), psi_Mem(NSMEM[0]), d_psi_Mem(NSMEM[0]);
     434             : 
     435             :   // Eq. 3 Hub & Awasthi JCTC 2017.
     436           3 :   double b_Mem = (ZETAMEM[0] / (1.0 - ZETAMEM[0])), c_Mem = ((1.0 - ZETAMEM[0]) * exp(b_Mem));
     437             : 
     438             :   // Eq. 19 Hub & Awasthi JCTC 2017.
     439           3 :   std::vector<double> fradial_Mem_d_faxial_Mem_dz(TAILS.size() * NSMEM[0]);
     440             : 
     441             :   // Eq. 20 Hub & Awasthi JCTC 2017.
     442           3 :   std::vector<double> Axs_Mem(NSMEM[0]), Ays_Mem(NSMEM[0]);
     443             : 
     444             :   // Eq. 1 Hub & Awasthi JCTC 2017. This is the CV that describes de Pore Nucleation.
     445           3 :   double Xi_Mem = 0.0;
     446             : 
     447             : #ifdef _OPENMP
     448             : #if _OPENMP >= 201307
     449           3 :   #pragma omp parallel for private(TailPosition,d_Xsc_Mem_dx,d_Xcc_Mem_dx,d_Ysc_Mem_dy,d_Ycc_Mem_dy,d_Xsc_Mem_dz,d_Xcc_Mem_dz,d_Ysc_Mem_dz,d_Ycc_Mem_dz,d_sx_Mem_dx,d_sy_Mem_dy,d_cx_Mem_dx,d_cy_Mem_dy,d_sx_Mem_dz,d_sy_Mem_dz,d_cx_Mem_dz,d_cy_Mem_dz,d_ws_Mem_dz,ri_Mem,x,fradial_Mem) reduction(vec_double_plus: Nsp_Mem, Axs_Mem, Ays_Mem)
     450             : #endif
     451             : #endif
     452             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     453             :     if (analyzeThisParticle_Mem[i]) {
     454             :       TailPosition = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     455             :       d_Xsc_Mem_dx = 0.0;
     456             :       d_Xcc_Mem_dx = 0.0;
     457             :       d_Ysc_Mem_dy = 0.0;
     458             :       d_Ycc_Mem_dy = 0.0;
     459             :       d_Xsc_Mem_dz = 0.0;
     460             :       d_Xcc_Mem_dz = 0.0;
     461             :       d_Ysc_Mem_dz = 0.0;
     462             :       d_Ycc_Mem_dz = 0.0;
     463             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     464             :         if (Fs_Mem[s] != 0.0) {
     465             :           d_sx_Mem_dx = faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * cos(2.0 * M_PI * TailPosition[0]) / (Lx * Fs_Mem[s]);
     466             :           d_sy_Mem_dy = faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * cos(2.0 * M_PI * TailPosition[1]) / (Ly * Fs_Mem[s]);
     467             :           d_cx_Mem_dx = -faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * sin(2.0 * M_PI * TailPosition[0]) / (Lx * Fs_Mem[s]);
     468             :           d_cy_Mem_dy = -faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * sin(2.0 * M_PI * TailPosition[1]) / (Ly * Fs_Mem[s]);
     469             :           d_Xsc_Mem_dx += ws_Mem[s] * d_sx_Mem_dx / W_Mem;
     470             :           d_Xcc_Mem_dx += ws_Mem[s] * d_cx_Mem_dx / W_Mem;
     471             :           d_Ysc_Mem_dy += ws_Mem[s] * d_sy_Mem_dy / W_Mem;
     472             :           d_Ycc_Mem_dy += ws_Mem[s] * d_cy_Mem_dy / W_Mem;
     473             : 
     474             :           d_sx_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (sin(2.0 * M_PI * TailPosition[0]) - sx_Mem[s]) / Fs_Mem[s];
     475             :           d_sy_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (sin(2.0 * M_PI * TailPosition[1]) - sy_Mem[s]) / Fs_Mem[s];
     476             :           d_cx_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (cos(2.0 * M_PI * TailPosition[0]) - cx_Mem[s]) / Fs_Mem[s];
     477             :           d_cy_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (cos(2.0 * M_PI * TailPosition[1]) - cy_Mem[s]) / Fs_Mem[s];
     478             :           d_ws_Mem_dz = (1 - pow(ws_Mem[s], 2)) * d_faxial_Mem_dz[i + TAILS.size() * s];
     479             :           d_Xsc_Mem_dz += (ws_Mem[s] * d_sx_Mem_dz + d_ws_Mem_dz * (sx_Mem[s] - Xsc_Mem)) / W_Mem;
     480             :           d_Xcc_Mem_dz += (ws_Mem[s] * d_cx_Mem_dz + d_ws_Mem_dz * (cx_Mem[s] - Xcc_Mem)) / W_Mem;
     481             :           d_Ysc_Mem_dz += (ws_Mem[s] * d_sy_Mem_dz + d_ws_Mem_dz * (sy_Mem[s] - Ysc_Mem)) / W_Mem;
     482             :           d_Ycc_Mem_dz += (ws_Mem[s] * d_cy_Mem_dz + d_ws_Mem_dz * (cy_Mem[s] - Ycc_Mem)) / W_Mem;
     483             :         }
     484             :       }
     485             :       d_Xcyl_Mem_dx[i] = auxX_Mem * (-Xsc_Mem * d_Xcc_Mem_dx + Xcc_Mem * d_Xsc_Mem_dx);
     486             :       d_Xcyl_Mem_dz[i] = auxX_Mem * (-Xsc_Mem * d_Xcc_Mem_dz + Xcc_Mem * d_Xsc_Mem_dz);
     487             :       d_Ycyl_Mem_dy[i] = auxY_Mem * (-Ysc_Mem * d_Ycc_Mem_dy + Ycc_Mem * d_Ysc_Mem_dy);
     488             :       d_Ycyl_Mem_dz[i] = auxY_Mem * (-Ysc_Mem * d_Ycc_Mem_dz + Ycc_Mem * d_Ysc_Mem_dz);
     489             : 
     490             :       CylDistances_Mem[i] = pbcDistance(xyzCyl_Mem, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     491             :       ri_Mem = sqrt(pow(CylDistances_Mem[i][0], 2) + pow(CylDistances_Mem[i][1], 2));
     492             :       x = ri_Mem / RCYLMEM[0];
     493             :       if (!((x <= -1.0 - HMEM[0]) || (x >= 1.0 + HMEM[0]))) {
     494             :         if (((-1.0 + HMEM[0]) <= x) && (x <= (1.0 - HMEM[0]))) {
     495             :           fradial_Mem = 1.0;
     496             :         } else if (((1.0 - HMEM[0]) < x) && (x < (1.0 + HMEM[0]))) {
     497             :           fradial_Mem = 0.5 - ((3.0 * x - 3.0) / (4.0 * HMEM[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     498             :           d_fradial_Mem_dx[i] = ((-3.0 / (4.0 * HMEM[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][0] / (RCYLMEM[0] * ri_Mem);
     499             :           d_fradial_Mem_dy[i] = ((-3.0 / (4.0 * HMEM[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][1] / (RCYLMEM[0] * ri_Mem);
     500             :         } else if (((-1.0 - HMEM[0]) < x) && (x < (-1.0 + HMEM[0]))) {
     501             :           fradial_Mem = 0.5 + ((3.0 * x + 3.0) / (4.0 * HMEM[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     502             :           d_fradial_Mem_dx[i] = ((3.0 / (4.0 * HMEM[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][0] / (RCYLMEM[0] * ri_Mem);
     503             :           d_fradial_Mem_dy[i] = ((3.0 / (4.0 * HMEM[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][1] / (RCYLMEM[0] * ri_Mem);
     504             :         }
     505             : 
     506             :         for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     507             :           Nsp_Mem[s] += fradial_Mem * faxial_Mem[i + TAILS.size() * s];
     508             :           Axs_Mem[s] += faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dx[i];
     509             :           Ays_Mem[s] += faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dy[i];
     510             :           fradial_Mem_d_faxial_Mem_dz[i + TAILS.size() * s] = fradial_Mem * d_faxial_Mem_dz[i + TAILS.size() * s];
     511             :         }
     512             :       }
     513             :     }
     514             :   }
     515             : 
     516         213 :   for (unsigned s = 0; s < NSMEM[0]; s++) {
     517         210 :     if (Nsp_Mem[s] <= 1.0) {
     518         166 :       psi_Mem[s] = ZETAMEM[0] * Nsp_Mem[s];
     519         166 :       d_psi_Mem[s] = ZETAMEM[0];
     520         166 :       Xi_Mem += psi_Mem[s];
     521             :     } else {
     522          44 :       psi_Mem[s] = 1.0 - c_Mem * exp(-b_Mem * Nsp_Mem[s]);
     523          44 :       d_psi_Mem[s] = b_Mem * c_Mem * exp(-b_Mem * Nsp_Mem[s]);
     524          44 :       Xi_Mem += psi_Mem[s];
     525             :     }
     526             :   }
     527             : 
     528           3 :   Xi_Mem = Xi_Mem / NSMEM[0];
     529             : 
     530             :   // Eq. 18 Hub & Awasthi JCTC 2017.
     531           3 :   std::vector<double> faxial_Mem_d_fradial_Mem_dx(TAILS.size() * NSMEM[0]), faxial_Mem_d_fradial_Mem_dy(TAILS.size() * NSMEM[0]), faxial_Mem_d_fradial_Mem_dz(TAILS.size() * NSMEM[0]);
     532             : 
     533             :   // Eq. 13 Hub & Awasthi JCTC 2017.
     534           3 :   std::vector<Vector> derivatives_Mem(TAILS.size());
     535             : 
     536             : #ifdef _OPENMP
     537             : #if _OPENMP >= 201307
     538           3 :   #pragma omp parallel for private(aux)
     539             : #endif
     540             : #endif
     541             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     542             :     if (analyzeThisParticle_Mem[i]) {
     543             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     544             :         if (faxial_Mem[i + TAILS.size() * s]) {
     545             :           faxial_Mem_d_fradial_Mem_dx[i + TAILS.size() * s] = faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dx[i] - d_Xcyl_Mem_dx[i] * Axs_Mem[s];
     546             :           faxial_Mem_d_fradial_Mem_dy[i + TAILS.size() * s] = faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dy[i] - d_Ycyl_Mem_dy[i] * Ays_Mem[s];
     547             :           faxial_Mem_d_fradial_Mem_dz[i + TAILS.size() * s] = -d_Xcyl_Mem_dz[i] * Axs_Mem[s] - d_Ycyl_Mem_dz[i] * Ays_Mem[s];
     548             :         }
     549             :       }
     550             : 
     551             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     552             :         aux = d_psi_Mem[s] / NSMEM[0];
     553             :         derivatives_Mem[i][0] += aux * faxial_Mem_d_fradial_Mem_dx[i + TAILS.size() * s];
     554             :         derivatives_Mem[i][1] += aux * faxial_Mem_d_fradial_Mem_dy[i + TAILS.size() * s];
     555             :         derivatives_Mem[i][2] += aux * (faxial_Mem_d_fradial_Mem_dz[i + TAILS.size() * s] + fradial_Mem_d_faxial_Mem_dz[i + TAILS.size() * s]);
     556             :       }
     557             :     }
     558             :   }
     559             : 
     560             :   // Derivatives and virial for the Xi_Mem.
     561           3 :   Tensor virial;
     562       12291 :   for (unsigned i = 0; i < TAILS.size(); i++) {
     563       12288 :     setAtomsDerivatives((i + membraneBeads), derivatives_Mem[i]);
     564       12288 :     virial -= Tensor(CylDistances_Mem[i], derivatives_Mem[i]);
     565             :   }
     566             : 
     567           3 :   setValue(Xi_Mem);
     568           3 :   setBoxDerivatives(virial);
     569           3 : }
     570             : }
     571             : }

Generated by: LCOV version 1.16