LCOV - code coverage report
Current view: top level - membranefusion - FusionPoreNucleationP.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 184 208 88.5 %
Date: 2025-04-08 21:11:17 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             : Copyright (c) 2022.
       3             : 
       4             : CVs originally developed by the Jochen Hub group from the University of Saarland (Germany)
       5             : and adapted and implemented in PLUMED by Ary Lautaro Di Bartolo and Diego Masone from the
       6             : National University of Cuyo (Argentina).
       7             : 
       8             : The membranefusion module is free software: you can redistribute it and/or modify
       9             : it under the terms of the GNU Lesser General Public License as published by
      10             : the Free Software Foundation, either version 3 of the License, or
      11             : (at your option) any later version.
      12             : 
      13             : The membranefusion module is distributed in the hope that it will be useful,
      14             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      16             : GNU Lesser General Public License for more details.
      17             : 
      18             : You should have received a copy of the GNU Lesser General Public License
      19             : along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      20             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      21             : #include "colvar/Colvar.h"
      22             : #include "core/ActionRegister.h"
      23             : #include <cmath>
      24             : #ifdef _OPENMP
      25             : #if _OPENMP >= 201307
      26             : #include <omp.h>
      27             : #endif
      28             : #endif
      29             : 
      30             : namespace PLMD {
      31             : namespace membranefusion {
      32             : //+PLUMEDOC MEMBRANEFUSIONMOD_COLVAR FUSIONPORENUCLEATIONP
      33             : /*
      34             : A CV for inducing the nucleation of the fusion pore from a hemifusion stalk.
      35             : 
      36             : Calculate the collective variable designed by Hub and collaborators \cite Hub2017 and
      37             : implemented into PLUMED by Masone and collaborators.
      38             : This CV is capable of inducing the nucleation of the fusion pore from a hemifusion stalk.
      39             : 
      40             : \f[
      41             : \xi_n = \frac{1}{N_{sn}} \sum_{s=0}^{N_{sn}-1} \delta_{sn} (N_{sn}^{(p)})
      42             : \f]
      43             : 
      44             : Where \f$\xi_n\f$ is the CV, \f$N_{sn}\f$ is the number of slices of the cylinder that make up the CV,
      45             : \f$\delta_{sn}\f$ is a continuos function in the interval [0 1] (\f$\delta_{sf} = 0\f$ for no beads in the slice s, and
      46             : \f$\delta_{sf} = 1\f$ for 1 or more beads in the slice s) and \f$N_{sf}^{(p)}\f$ accounts for the number of water and
      47             : phosphateoxygens beads within the slice s.
      48             : 
      49             : \par Examples
      50             : 
      51             : This example induces the nucleation of the fusion pore (\f$\xi_n = 1.0\f$) from a hemifusion stalk (\f$\xi_n = 0.2\f$).
      52             : 
      53             : \plumedfile
      54             : 
      55             : lMem: GROUP ATOMS=1-10752,21505-22728,23953-24420 #All the lower membrane beads.
      56             : uMem: GROUP ATOMS=10753-21504,22729-23952,24421-24888 #All the upper membrane beads.
      57             : tails: GROUP ATOMS=8-23948:12,12-23952:12,23966-24884:18,23970-24888:18 #All the lipid tails beads (from the lower and upper membrane).
      58             : waters: GROUP ATOMS=24889-56490 #All the water beads.
      59             : po4: GROUP ATOMS=2-23942:12,23957-24875:18 #All the lipid phosphateoxygens beads.
      60             : 
      61             : fusionPoreNucleation: FUSIONPORENUCLEATIONP UMEMBRANE=uMem LMEMBRANE=lMem TAILS=tails WATERS=waters PHOSPHATEOXYGENS=po4 NSMEM=85 NS=45
      62             : 
      63             : MOVINGRESTRAINT ...
      64             :     ARG=fusionPoreNucleation
      65             :     STEP0=0 AT0=0.2 KAPPA0=10000.0
      66             :     STEP1=500000 AT1=1.0 KAPPA1=10000.0
      67             : ...
      68             : 
      69             : PRINT ARG=fusionPoreNucleation FILE=COLVAR STRIDE=1
      70             : 
      71             : \endplumedfile
      72             : 
      73             : */
      74             : //+ENDPLUMEDOC
      75             : class fusionPoreNucleationP : public Colvar {
      76             :   std::vector<AtomNumber> UMEM, LMEM, TAILS, WATERS, POXYGENS;
      77             :   std::vector<double> NSMEM, DSMEM, HMEM, NS, DS, HCH, RCYL, ZETA, ONEOVERS2C2CUTOFF, XCYL, YCYL;
      78             : 
      79             : public:
      80             :   explicit fusionPoreNucleationP(const ActionOptions &);
      81             :   void calculate() override;
      82             :   static void registerKeywords(Keywords &keys);
      83             : };
      84             : 
      85             : PLUMED_REGISTER_ACTION(fusionPoreNucleationP, "FUSIONPORENUCLEATIONP")
      86             : 
      87           3 : void fusionPoreNucleationP::registerKeywords(Keywords &keys) {
      88           3 :   Colvar::registerKeywords(keys);
      89           3 :   keys.add("atoms", "UMEMBRANE", "all the beads of the upper membrane.");
      90           3 :   keys.add("atoms", "LMEMBRANE", "all the beads of the lower membrane.");
      91           3 :   keys.add("atoms", "TAILS", "all the tail beads of the system.");
      92           3 :   keys.add("atoms", "WATERS", "all the water beads of the system.");
      93           3 :   keys.add("atoms", "PHOSPHATEOXYGENS", "all the lipid phosphateoxygens beads of the system.");
      94           3 :   keys.add("compulsory", "NSMEM", "the number of slices of the membrane fusion cylinder.");
      95           3 :   keys.add("optional", "DSMEM", "( default=0.1 ) thickness of the slices of the membrane fusion cylinder.");
      96           3 :   keys.add("optional", "HMEM", "( default=0.25 ) parameter of the step function θ(x,h) for the membrane fusion.");
      97           3 :   keys.add("compulsory", "NS", "the number of slices of the membrane-spanning cylinder in such a way that when the bilayers are flat and parallel the CV is equal to 0.2.");
      98           3 :   keys.add("optional", "DS", "( default=0.25 ) thickness of the slices of the membrane-spanning cylinder.");
      99           3 :   keys.add("optional", "HCH", "( default=0.25 ) parameter of the step function θ(x,h) for the CV.");
     100           3 :   keys.add("optional", "RCYL", "( default=0.8 ) the radius of the membrane-spanning cylinder.");
     101           3 :   keys.add("optional", "ZETA", "( default=0.75 ) parameter of the switch function ψ(x,ζ).");
     102           3 :   keys.add("optional", "ONEOVERS2C2CUTOFF", "( default=500 ) cut off large values for the derivative of the atan2 function to avoid violate energy.");
     103           3 :   keys.add("optional", "XCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     104           3 :   keys.add("optional", "YCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     105           6 :   keys.setValueDescription("scalar","the value of the CV");
     106           3 : }
     107             : 
     108           1 : fusionPoreNucleationP::fusionPoreNucleationP(const ActionOptions &ao) : PLUMED_COLVAR_INIT(ao) {
     109           2 :   parseAtomList("UMEMBRANE", UMEM);
     110           1 :   if (UMEM.size() == 0) {
     111           0 :     error("UMEMBRANE has not any atom specified.");
     112             :   }
     113             : 
     114           2 :   parseAtomList("LMEMBRANE", LMEM);
     115           1 :   if (LMEM.size() == 0) {
     116           0 :     error("LMEMBRANE has not any atom specified.");
     117             :   }
     118             : 
     119           2 :   parseAtomList("TAILS", TAILS);
     120           1 :   if (TAILS.size() == 0) {
     121           0 :     error("TAILS has not any atom specified.");
     122             :   }
     123             : 
     124           2 :   parseAtomList("WATERS", WATERS);
     125           1 :   if (WATERS.size() == 0) {
     126           0 :     error("WATERS has not any atom specified.");
     127             :   }
     128             : 
     129           2 :   parseAtomList("PHOSPHATEOXYGENS", POXYGENS);
     130           1 :   if (POXYGENS.size() == 0) {
     131           0 :     error("PHOSPHATEOXYGENS has not any atom specified.");
     132             :   }
     133             : 
     134           2 :   parseVector("NSMEM", NSMEM);
     135           1 :   if (NSMEM.size() > 1) {
     136           0 :     error("NSMEM cannot take more than one value.");
     137             :   }
     138             : 
     139           2 :   parseVector("DSMEM", DSMEM);
     140           1 :   if (DSMEM.size() > 1) {
     141           0 :     error("DSMEM cannot take more than one value.");
     142             :   }
     143           1 :   if (DSMEM.size() == 0) {
     144           0 :     DSMEM.push_back(0.1);
     145             :   }
     146             : 
     147           2 :   parseVector("HMEM", HMEM);
     148           1 :   if (HMEM.size() > 1) {
     149           0 :     error("HMEM cannot take more than one value.");
     150             :   }
     151           1 :   if (HMEM.size() == 0) {
     152           0 :     HMEM.push_back(0.25);
     153             :   }
     154             : 
     155           2 :   parseVector("NS", NS);
     156           1 :   if (NS.size() > 1) {
     157           0 :     error("NS cannot take more than one value.");
     158             :   }
     159             : 
     160           2 :   parseVector("DS", DS);
     161           1 :   if (DS.size() > 1) {
     162           0 :     error("DS cannot take more than one value.");
     163             :   }
     164           1 :   if (DS.size() == 0) {
     165           0 :     DS.push_back(0.25);
     166             :   }
     167             : 
     168           2 :   parseVector("HCH", HCH);
     169           1 :   if (HCH.size() > 1) {
     170           0 :     error("H cannot take more than one value.");
     171             :   }
     172           1 :   if (HCH.size() == 0) {
     173           0 :     HCH.push_back(0.25);
     174             :   }
     175             : 
     176           2 :   parseVector("RCYL", RCYL);
     177           1 :   if (RCYL.size() > 1) {
     178           0 :     error("RCYL cannot take more than one value.");
     179             :   }
     180           1 :   if (RCYL.size() == 0) {
     181           0 :     RCYL.push_back(0.8);
     182             :   }
     183             : 
     184           2 :   parseVector("ZETA", ZETA);
     185           1 :   if (ZETA.size() > 1) {
     186           0 :     error("ZETA cannot take more than one value.");
     187             :   }
     188           1 :   if (ZETA.size() == 0) {
     189           0 :     ZETA.push_back(0.75);
     190             :   }
     191             : 
     192           2 :   parseVector("ONEOVERS2C2CUTOFF", ONEOVERS2C2CUTOFF);
     193           1 :   if (ONEOVERS2C2CUTOFF.size() > 1) {
     194           0 :     error("ONEOVERS2C2CUTOFF cannot take more than one value.");
     195             :   }
     196           1 :   if (ONEOVERS2C2CUTOFF.size() == 0) {
     197           1 :     ONEOVERS2C2CUTOFF.push_back(500);
     198             :   }
     199             : 
     200           2 :   parseVector("XCYL", XCYL);
     201           1 :   if (XCYL.size() > 1) {
     202           0 :     error("XCYL cannot take more than one value.");
     203             :   }
     204           1 :   if (XCYL.size() == 0) {
     205           1 :     XCYL.push_back(-1.0);
     206             :   }
     207             : 
     208           2 :   parseVector("YCYL", YCYL);
     209           1 :   if (YCYL.size() > 1) {
     210           0 :     error("YCYL cannot take more than one value.");
     211             :   }
     212           1 :   if (YCYL.size() == 0) {
     213           1 :     YCYL.push_back(-1.0);
     214             :   }
     215             : 
     216           1 :   checkRead();
     217             : 
     218             :   std::vector<AtomNumber> atoms;
     219       12445 :   for (unsigned i = 0; i < UMEM.size(); i++) {
     220       12444 :     atoms.push_back(UMEM[i]);
     221             :   }
     222       12445 :   for (unsigned i = 0; i < LMEM.size(); i++) {
     223       12444 :     atoms.push_back(LMEM[i]);
     224             :   }
     225        4097 :   for (unsigned i = 0; i < TAILS.size(); i++) {
     226        4096 :     atoms.push_back(TAILS[i]);
     227             :   }
     228       31603 :   for (unsigned i = 0; i < WATERS.size(); i++) {
     229       31602 :     atoms.push_back(WATERS[i]);
     230             :   }
     231        2049 :   for (unsigned i = 0; i < POXYGENS.size(); i++) {
     232        2048 :     atoms.push_back(POXYGENS[i]);
     233             :   }
     234             : 
     235           1 :   addValueWithDerivatives();
     236           1 :   setNotPeriodic();
     237           1 :   requestAtoms(atoms);
     238           1 : }
     239             : 
     240           4 : void fusionPoreNucleationP::calculate() {
     241             :   /*************************
     242             :   *                        *
     243             :   *         System         *
     244             :   *                        *
     245             :   **************************/
     246             : 
     247             :   // Box dimensions.
     248           4 :   double Lx = getBox()[0][0], Ly = getBox()[1][1], Lz = getBox()[2][2];
     249             : 
     250             :   // Z center of the upper membrane (uMem) and lower membrane (lMem) for systems with PBC: https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions .
     251             :   double ZuMem, ZuMemcos = 0.0, ZuMemsin = 0.0, uMemAngle, ZlMem, ZlMemcos = 0.0, ZlMemsin = 0.0, lMemAngle;
     252             : 
     253             : #ifdef _OPENMP
     254             : #if _OPENMP >= 201307
     255           4 :   #pragma omp parallel for private(uMemAngle, lMemAngle) reduction(+:ZuMemcos, ZuMemsin, ZlMemcos, ZlMemsin)
     256             : #endif
     257             : #endif
     258             :   for (unsigned i = 0; i < UMEM.size(); i++) {
     259             :     uMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i)))[2];
     260             :     lMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + UMEM.size())))[2];
     261             :     ZuMemcos += cos(uMemAngle);
     262             :     ZuMemsin += sin(uMemAngle);
     263             :     ZlMemcos += cos(lMemAngle);
     264             :     ZlMemsin += sin(lMemAngle);
     265             :   }
     266           4 :   ZuMemcos = ZuMemcos / UMEM.size();
     267           4 :   ZuMemsin = ZuMemsin / UMEM.size();
     268           4 :   ZuMem = Lz * (atan2(-ZuMemsin, -ZuMemcos) + M_PI) / (2.0 * M_PI);
     269           4 :   ZlMemcos = ZlMemcos / UMEM.size();
     270           4 :   ZlMemsin = ZlMemsin / UMEM.size();
     271           4 :   ZlMem = Lz * (atan2(-ZlMemsin, -ZlMemcos) + M_PI) / (2.0 * M_PI);
     272             : 
     273             :   // Z center of the boths membranes (upper and lower).
     274           4 :   double ZMems = (ZuMem + ZlMem) / 2.0;
     275             : 
     276             :   /**************************
     277             :   *                         *
     278             :   *   Xcyl_Mem & Ycyl_Mem   *
     279             :   *                         *
     280             :   ***************************/
     281             : 
     282             :   // Quantity of beads of the membranes.
     283           4 :   unsigned membraneBeads = UMEM.size() + LMEM.size();
     284             : 
     285             :   // Z distance from the lipid tail to the geometric center of both membranes.
     286             :   double ZTailDistance;
     287             : 
     288             :   // Z position of the first slice.
     289           4 :   double firstSliceZ_Mem = ZMems + (0.0 + 0.5 - NSMEM[0] / 2.0) * DSMEM[0];
     290             : 
     291             :   // Z distance between the first slice and the Z center of the membrane.
     292           8 :   double firstSliceZDist_Mem = pbcDistance(Vector(0.0, 0.0, firstSliceZ_Mem), Vector(0.0, 0.0, ZMems))[2];
     293             : 
     294             :   // Position in the cylinder.
     295             :   double PositionS_Mem;
     296             : 
     297             :   // Slices to analyze per particle.
     298             :   unsigned s1_Mem, s2_Mem;
     299             : 
     300             :   // Eq. 7 Hub & Awasthi JCTC 2017.
     301           4 :   std::vector<double> faxial_Mem(TAILS.size() * NSMEM[0]);
     302             : 
     303             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     304           4 :   std::vector<double> Fs_Mem(NSMEM[0]);
     305             : 
     306             :   // Eq. 11 Hub & Awasthi JCTC 2017.
     307           4 :   std::vector<double> ws_Mem(NSMEM[0]);
     308             : 
     309             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     310             :   double W_Mem = 0.0;
     311             : 
     312             :   // Eq. 21 and 22 Hub & Awasthi JCTC 2017.
     313           4 :   std::vector<double> sx_Mem(NSMEM[0]), sy_Mem(NSMEM[0]), cx_Mem(NSMEM[0]), cy_Mem(NSMEM[0]);
     314             : 
     315             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     316             :   double Xsc_Mem = 0.0, Xcc_Mem = 0.0, Ysc_Mem = 0.0, Ycc_Mem = 0.0;
     317             : 
     318             :   // Aux.
     319             :   double x, aux;
     320             : 
     321             :   // Scaled position of the lipid tail respect the origin of coordinates.
     322           4 :   Vector TailPosition;
     323             : 
     324             : #ifdef _OPENMP
     325             : #if _OPENMP >= 201307
     326             :   #pragma omp declare reduction(vec_double_plus : std::vector<double> : \
     327             :   std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \
     328             :   initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
     329             : #endif
     330             : #endif
     331             : 
     332             : #ifdef _OPENMP
     333             : #if _OPENMP >= 201307
     334           4 :   #pragma omp parallel for private(ZTailDistance, PositionS_Mem, s1_Mem, s2_Mem, TailPosition, x, aux) reduction(vec_double_plus:Fs_Mem, sx_Mem, sy_Mem, cx_Mem, cy_Mem)
     335             : #endif
     336             : #endif
     337             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     338             :     ZTailDistance = pbcDistance(Vector(0.0, 0.0, ZMems), getPosition(i + membraneBeads))[2];
     339             :     PositionS_Mem = (ZTailDistance + firstSliceZDist_Mem) / DSMEM[0];
     340             :     // If the following condition is met the particle is in the Z space of the cylinder.
     341             :     if ((PositionS_Mem >= (-0.5 - HMEM[0])) && (PositionS_Mem <= (NSMEM[0] + 0.5 - 1.0 + HMEM[0]))) {
     342             :       //Defining the slices to analyze each particle.
     343             :       if (PositionS_Mem < 1) {
     344             :         s1_Mem = 0;
     345             :         s2_Mem = 2;
     346             :       } else if (PositionS_Mem <= (NSMEM[0] - 2.0)) {
     347             :         s1_Mem = floor(PositionS_Mem) - 1;
     348             :         s2_Mem = floor(PositionS_Mem) + 1;
     349             :       } else {
     350             :         s1_Mem = NSMEM[0] - 3;
     351             :         s2_Mem = NSMEM[0] - 1;
     352             :       }
     353             : 
     354             :       TailPosition = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     355             : 
     356             :       for (unsigned s = s1_Mem; s <= s2_Mem; s++) {
     357             :         x = (ZTailDistance - (s + 0.5 - NSMEM[0] / 2.0) * DSMEM[0]) * 2.0 / DSMEM[0];
     358             :         if (!((x <= -1.0 - HMEM[0]) || (x >= 1.0 + HMEM[0]))) {
     359             :           if (((-1.0 + HMEM[0]) <= x) && (x <= (1.0 - HMEM[0]))) {
     360             :             faxial_Mem[i + TAILS.size() * s] = 1.0;
     361             :             Fs_Mem[s] += 1.0;
     362             :             sx_Mem[s] += sin(2.0 * M_PI * TailPosition[0]);
     363             :             sy_Mem[s] += sin(2.0 * M_PI * TailPosition[1]);
     364             :             cx_Mem[s] += cos(2.0 * M_PI * TailPosition[0]);
     365             :             cy_Mem[s] += cos(2.0 * M_PI * TailPosition[1]);
     366             :           } else if (((1.0 - HMEM[0]) < x) && (x < (1.0 + HMEM[0]))) {
     367             :             aux = 0.5 - ((3.0 * x - 3.0) / (4.0 * HMEM[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     368             :             faxial_Mem[i + TAILS.size() * s] = aux;
     369             :             Fs_Mem[s] += aux;
     370             :             sx_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[0]);
     371             :             sy_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[1]);
     372             :             cx_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[0]);
     373             :             cy_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[1]);
     374             :           } else if (((-1.0 - HMEM[0]) < x) && (x < (-1.0 + HMEM[0]))) {
     375             :             aux = 0.5 + ((3.0 * x + 3.0) / (4.0 * HMEM[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     376             :             faxial_Mem[i + TAILS.size() * s] = aux;
     377             :             Fs_Mem[s] += aux;
     378             :             sx_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[0]));
     379             :             sy_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[1]));
     380             :             cx_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[0]));
     381             :             cy_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[1]));
     382             :           }
     383             :         }
     384             :       }
     385             :     }
     386             :   }
     387             : 
     388         344 :   for (unsigned s = 0; s < NSMEM[0]; s++) {
     389         340 :     if (Fs_Mem[s] != 0.0) {
     390         339 :       ws_Mem[s] = tanh(Fs_Mem[s]);
     391         339 :       W_Mem += ws_Mem[s];
     392         339 :       sx_Mem[s] = sx_Mem[s] / Fs_Mem[s];
     393         339 :       sy_Mem[s] = sy_Mem[s] / Fs_Mem[s];
     394         339 :       cx_Mem[s] = cx_Mem[s] / Fs_Mem[s];
     395         339 :       cy_Mem[s] = cy_Mem[s] / Fs_Mem[s];
     396         339 :       Xsc_Mem += sx_Mem[s] * ws_Mem[s];
     397         339 :       Ysc_Mem += sy_Mem[s] * ws_Mem[s];
     398         339 :       Xcc_Mem += cx_Mem[s] * ws_Mem[s];
     399         339 :       Ycc_Mem += cy_Mem[s] * ws_Mem[s];
     400             :     }
     401             :   }
     402             : 
     403           4 :   Xsc_Mem = Xsc_Mem / W_Mem;
     404           4 :   Ysc_Mem = Ysc_Mem / W_Mem;
     405           4 :   Xcc_Mem = Xcc_Mem / W_Mem;
     406           4 :   Ycc_Mem = Ycc_Mem / W_Mem;
     407             : 
     408             :   // Eq. 12 Hub & Awasthi JCTC 2017.
     409             :   double Xcyl_Mem, Ycyl_Mem;
     410             : 
     411           4 :   if ((XCYL[0] > 0.0) && (YCYL[0] > 0.0)) {
     412             :     Xcyl_Mem = XCYL[0];
     413             :     Ycyl_Mem = YCYL[0];
     414             :   } else {
     415           4 :     Xcyl_Mem = (atan2(-Xsc_Mem, -Xcc_Mem) + M_PI) * Lx / (2 * M_PI);
     416           4 :     Ycyl_Mem = (atan2(-Ysc_Mem, -Ycc_Mem) + M_PI) * Ly / (2 * M_PI);
     417             :   }
     418             : 
     419             :   /*************************
     420             :   *                        *
     421             :   *        Xi_n            *
     422             :   *                        *
     423             :   **************************/
     424             : 
     425             :   // Eq. 1 Hub & Awasthi JCTC 2017. This is the CV that describes de Pore Nucleation.
     426           4 :   double Xi_n = 0.0;
     427             : 
     428             :   // Quantity of beads that could participate in the calculation of the Xi_Chain
     429           4 :   unsigned chainBeads = WATERS.size() + POXYGENS.size();
     430             : 
     431             :   // Quantity of beads that don't participate in the calculation of the Xi_Chain
     432           4 :   unsigned noChainBeads = (UMEM.size() * 2) + TAILS.size();
     433             : 
     434             :   // Z Distances from the oxygens to the geometric center of the membranes.
     435             :   double ZMemDistance;
     436             : 
     437             :   // Scaled positions of the oxygens to respect of the origin of coordinates.
     438           4 :   Vector Position;
     439             : 
     440             :   // Distance from the water/phosphate group to the defect cylinder.
     441           4 :   Vector distCylinder;
     442             : 
     443             :   // Center of the cylinder. XY components are calculated (or defined), Z is the Z geometric center of the membranes of the system.
     444           8 :   Vector xyzCyl_Mem = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl_Mem, Ycyl_Mem, ZMems));
     445             : 
     446             :   // Average of the radius of the water and lipid cylinder.
     447           4 :   double RCYLAVERAGE = RCYL[0] * (1 + HCH[0]);
     448             : 
     449             :   // Conditions.
     450             :   bool condition1, condition2, condition3;
     451             : 
     452             :   // Z position of the first slice.
     453           4 :   double firstSliceZ = ZMems + (0.0 + 0.5 - NS[0] / 2.0) * DS[0];
     454             : 
     455             :   // Z distance between the first slice and the Z center of the membrane.
     456           4 :   double firstSliceZDist = pbcDistance(Vector(0.0, 0.0, firstSliceZ), Vector(0.0, 0.0, ZMems))[2];
     457             : 
     458             :   // Position in the cylinder.
     459             :   double PositionS;
     460             : 
     461             :   // Mark the particles to analyze.
     462           4 :   std::vector<double> analyzeThisParticle(chainBeads);
     463             : 
     464             :   // Slices to analyze per particle.
     465           4 :   std::vector<unsigned> s1(chainBeads), s2(chainBeads);
     466             : 
     467             :   // Eq. 7 Hub & Awasthi JCTC 2017.
     468           4 :   std::vector<double> faxial(chainBeads * NS[0]);
     469             : 
     470             :   // Eq. 16 Hub & Awasthi JCTC 2017.
     471           4 :   std::vector<double> d_faxial_dz(chainBeads * NS[0]);
     472             : 
     473             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     474           4 :   std::vector<double> Fs(NS[0]);
     475             : 
     476             :   // Eq. 11 Hub & Awasthi JCTC 2017.
     477           4 :   std::vector<double> ws(NS[0]);
     478             : 
     479             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     480             :   double W = 0.0;
     481             : 
     482             :   // Eq. 21 and 22 Hub & Awasthi JCTC 2017.
     483           4 :   std::vector<double> sx(NS[0]), sy(NS[0]), cx(NS[0]), cy(NS[0]);
     484             : 
     485             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     486             :   double Xsc = 0.0, Xcc = 0.0, Ysc = 0.0, Ycc = 0.0;
     487             : 
     488             : #ifdef _OPENMP
     489             : #if _OPENMP >= 201307
     490           4 :   #pragma omp parallel for private(distCylinder, aux, condition1, condition2, condition3, ZMemDistance, PositionS, Position, x) reduction(vec_double_plus:Fs, sx, sy, cx, cy)
     491             : #endif
     492             : #endif
     493             :   for (unsigned i = 0; i < chainBeads; i++) {
     494             :   distCylinder = pbcDistance(xyzCyl_Mem, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     495             :     aux = sqrt(pow(distCylinder[0], 2) + pow(distCylinder[1], 2));
     496             :     condition1 = ((aux / RCYLAVERAGE) < 1.0);
     497             :     condition2 = ((pbcDistance(Vector(0.0, 0.0, ZuMem), getPosition(i + noChainBeads))[2] > 0) && (aux / RCYLAVERAGE) < 2.0);
     498             :     condition3 = ((pbcDistance(getPosition(i + noChainBeads), Vector(0.0, 0.0, ZlMem))[2] > 0) && (aux / RCYLAVERAGE) < 2.0);
     499             :     if (condition1 || condition2 || condition3) {
     500             :       ZMemDistance = pbcDistance(Vector(0.0, 0.0, ZMems), getPosition(i + noChainBeads))[2];
     501             :       PositionS = (ZMemDistance + firstSliceZDist) / DS[0];
     502             :       // If the following condition is met the particle is in the Z space of the cylinder.
     503             :       if ((PositionS >= (-0.5 - HCH[0])) && (PositionS <= (NS[0] + 0.5 - 1.0 + HCH[0]))) {
     504             :         analyzeThisParticle[i] = 1.0;
     505             : 
     506             :         //Defining the slices to analyze each particle.
     507             :         if (PositionS < 1) {
     508             :           s1[i] = 0;
     509             :           s2[i] = 2;
     510             :         } else if (PositionS <= (NS[0] - 2.0)) {
     511             :           s1[i] = floor(PositionS) - 1;
     512             :           s2[i] = floor(PositionS) + 1;
     513             :         } else {
     514             :           s1[i] = NS[0] - 3;
     515             :           s2[i] = NS[0] - 1;
     516             :         }
     517             : 
     518             :         Position = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     519             : 
     520             :         for (unsigned s = s1[i]; s <= s2[i]; s++) {
     521             :           x = (ZMemDistance - (s + 0.5 - NS[0] / 2.0) * DS[0]) * 2.0 / DS[0];
     522             :           if (!((x <= -1.0 - HCH[0]) || (x >= 1.0 + HCH[0]))) {
     523             :             if (((-1.0 + HCH[0]) <= x) && (x <= (1.0 - HCH[0]))) {
     524             :               faxial[i + chainBeads * s] = 1.0;
     525             :               Fs[s] += 1.0;
     526             :               sx[s] += sin(2.0 * M_PI * Position[0]);
     527             :               sy[s] += sin(2.0 * M_PI * Position[1]);
     528             :               cx[s] += cos(2.0 * M_PI * Position[0]);
     529             :               cy[s] += cos(2.0 * M_PI * Position[1]);
     530             :             } else if (((1.0 - HCH[0]) < x) && (x < (1.0 + HCH[0]))) {
     531             :               aux = 0.5 - ((3.0 * x - 3.0) / (4.0 * HCH[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     532             :               faxial[i + chainBeads * s] = aux;
     533             :               d_faxial_dz[i + chainBeads * s] = ((-3.0 / (4.0 * HCH[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HCH[0], 3)))) * 2.0 / DS[0];
     534             :               Fs[s] += aux;
     535             :               sx[s] += aux * sin(2.0 * M_PI * Position[0]);
     536             :               sy[s] += aux * sin(2.0 * M_PI * Position[1]);
     537             :               cx[s] += aux * cos(2.0 * M_PI * Position[0]);
     538             :               cy[s] += aux * cos(2.0 * M_PI * Position[1]);
     539             :             } else if (((-1.0 - HCH[0]) < x) && (x < (-1.0 + HCH[0]))) {
     540             :               aux = 0.5 + ((3.0 * x + 3.0) / (4.0 * HCH[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     541             :               faxial[i + chainBeads * s] = aux;
     542             :               d_faxial_dz[i + chainBeads * s] = ((3.0 / (4.0 * HCH[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HCH[0], 3)))) * 2.0 / DS[0];
     543             :               Fs[s] += aux;
     544             :               sx[s] += (aux * sin(2.0 * M_PI * Position[0]));
     545             :               sy[s] += (aux * sin(2.0 * M_PI * Position[1]));
     546             :               cx[s] += (aux * cos(2.0 * M_PI * Position[0]));
     547             :               cy[s] += (aux * cos(2.0 * M_PI * Position[1]));
     548             :             }
     549             :           }
     550             :         }
     551             :       }
     552             :     }
     553             :   }
     554             : 
     555         184 :   for (unsigned s = 0; s < NS[0]; s++) {
     556         180 :     if (Fs[s] != 0.0) {
     557          49 :       ws[s] = tanh(Fs[s]);
     558          49 :       W += ws[s];
     559          49 :       sx[s] = sx[s] / Fs[s];
     560          49 :       sy[s] = sy[s] / Fs[s];
     561          49 :       cx[s] = cx[s] / Fs[s];
     562          49 :       cy[s] = cy[s] / Fs[s];
     563          49 :       Xsc += sx[s] * ws[s];
     564          49 :       Ysc += sy[s] * ws[s];
     565          49 :       Xcc += cx[s] * ws[s];
     566          49 :       Ycc += cy[s] * ws[s];
     567             :     }
     568             :   }
     569             : 
     570           4 :   Xsc = Xsc / W;
     571           4 :   Ysc = Ysc / W;
     572           4 :   Xcc = Xcc / W;
     573           4 :   Ycc = Ycc / W;
     574             : 
     575             :   // Eq. 12 Hub & Awasthi JCTC 2017.
     576             :   double Xcyl, Ycyl;
     577             : 
     578             :   Xcyl = Xcyl_Mem;
     579             :   Ycyl = Ycyl_Mem;
     580             : 
     581             :   // Eq. 25, 26 and 27 Hub & Awasthi JCTC 2017.
     582             :   double d_sx_dx, d_sx_dz, d_sy_dy, d_sy_dz, d_cx_dx, d_cx_dz, d_cy_dy, d_cy_dz;
     583             : 
     584             :   // Eq. 29 Hub & Awasthi JCTC 2017.
     585             :   double d_ws_dz;
     586             : 
     587             :   // Eq. 31, 32 and 33 Hub & Awasthi JCTC 2017
     588             :   double d_Xsc_dx, d_Xsc_dz, d_Xcc_dx, d_Xcc_dz, d_Ysc_dy, d_Ysc_dz, d_Ycc_dy, d_Ycc_dz;
     589             : 
     590             :   // Center of the cylinder. X and Y are calculated (or defined), Z is the Z component of the geometric center of the membranes.
     591           4 :   Vector xyzCyl = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl, Ycyl, ZMems));
     592             : 
     593             :   // Distances from the oxygens to center of the cylinder.
     594           4 :   std::vector<Vector> CylDistances(chainBeads);
     595             : 
     596             :   // Modulo of the XY distances from the oxygens to the center of the cylinder.
     597             :   double ri;
     598             : 
     599             :   // Eq. 8 Hub & Awasthi JCTC 2017.
     600             :   double fradial;
     601             : 
     602             :   // Eq. 15 Hub & Awasthi JCTC 2017.
     603           4 :   std::vector<double> d_fradial_dx(chainBeads), d_fradial_dy(chainBeads);
     604             : 
     605             :   // Eq. 35, 36, 37 and 38 Hub & Awasthi JCTC 2017.
     606           4 :   std::vector<double> d_Xcyl_dx(chainBeads), d_Xcyl_dz(chainBeads), d_Ycyl_dy(chainBeads), d_Ycyl_dz(chainBeads);
     607             : 
     608             :   // To avoid rare instabilities auxX and auxY are truncated at a configurable value (default 500).
     609           4 :   double auxX = (1 / (pow(Xsc, 2) + pow(Xcc, 2))), auxY = (1 / (pow(Ysc, 2) + pow(Ycc, 2)));
     610             : 
     611           4 :   if (auxX > ONEOVERS2C2CUTOFF[0]) {
     612           0 :     auxX = Lx * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     613             :   } else {
     614           4 :     auxX = Lx * auxX / (2 * M_PI);
     615             :   }
     616             : 
     617           4 :   if (auxY > ONEOVERS2C2CUTOFF[0]) {
     618           0 :     auxY = Ly * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     619             :   } else {
     620           4 :     auxY = Ly * auxY / (2 * M_PI);
     621             :   }
     622             : 
     623             :   //Number of oxygens within the slice s of the membrane-spanning cylinder.
     624           4 :   std::vector<double> Nsp(NS[0]), psi(NS[0]), d_psi(NS[0]);
     625             : 
     626             :   // Eq. 3 Hub & Awasthi JCTC 2017.
     627           4 :   double b = (ZETA[0] / (1.0 - ZETA[0])), c = ((1.0 - ZETA[0]) * exp(b));
     628             : 
     629             :   // Eq. 19 Hub & Awasthi JCTC 2017.
     630           4 :   std::vector<double> fradial_d_faxial_dz(chainBeads * NS[0]);
     631             : 
     632             :   // Eq. 20 Hub & Awasthi JCTC 2017.
     633           4 :   std::vector<double> Axs(NS[0]), Ays(NS[0]);
     634             : 
     635             : #ifdef _OPENMP
     636             : #if _OPENMP >= 201307
     637           4 :   #pragma omp parallel for private(d_Xsc_dx,d_Xcc_dx,d_Ysc_dy,d_Ycc_dy,d_Xsc_dz,d_Xcc_dz,d_Ysc_dz,d_Ycc_dz,d_sx_dx,d_sy_dy,d_cx_dx,d_cy_dy,d_sx_dz,d_sy_dz,d_cx_dz,d_cy_dz,d_ws_dz,ri,x,fradial) reduction(vec_double_plus: Nsp, Axs, Ays)
     638             : #endif
     639             : #endif
     640             :   for (unsigned i = 0; i < chainBeads; i++) {
     641             :   CylDistances[i] = pbcDistance(xyzCyl, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     642             :     if (analyzeThisParticle[i]) {
     643             :       Position = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     644             :       d_Xsc_dx = 0.0;
     645             :       d_Xcc_dx = 0.0;
     646             :       d_Ysc_dy = 0.0;
     647             :       d_Ycc_dy = 0.0;
     648             :       d_Xsc_dz = 0.0;
     649             :       d_Xcc_dz = 0.0;
     650             :       d_Ysc_dz = 0.0;
     651             :       d_Ycc_dz = 0.0;
     652             :       for (unsigned s = s1[i]; s <= s2[i]; s++) {
     653             :         if (Fs[s] != 0.0) {
     654             :           d_sx_dx = faxial[i + chainBeads * s] * 2.0 * M_PI * cos(2.0 * M_PI * Position[0]) / (Lx * Fs[s]);
     655             :           d_sy_dy = faxial[i + chainBeads * s] * 2.0 * M_PI * cos(2.0 * M_PI * Position[1]) / (Ly * Fs[s]);
     656             :           d_cx_dx = -faxial[i + chainBeads * s] * 2.0 * M_PI * sin(2.0 * M_PI * Position[0]) / (Lx * Fs[s]);
     657             :           d_cy_dy = -faxial[i + chainBeads * s] * 2.0 * M_PI * sin(2.0 * M_PI * Position[1]) / (Ly * Fs[s]);
     658             :           d_Xsc_dx += ws[s] * d_sx_dx / W;
     659             :           d_Xcc_dx += ws[s] * d_cx_dx / W;
     660             :           d_Ysc_dy += ws[s] * d_sy_dy / W;
     661             :           d_Ycc_dy += ws[s] * d_cy_dy / W;
     662             : 
     663             :           d_sx_dz = d_faxial_dz[i + chainBeads * s] * (sin(2.0 * M_PI * Position[0]) - sx[s]) / Fs[s];
     664             :           d_sy_dz = d_faxial_dz[i + chainBeads * s] * (sin(2.0 * M_PI * Position[1]) - sy[s]) / Fs[s];
     665             :           d_cx_dz = d_faxial_dz[i + chainBeads * s] * (cos(2.0 * M_PI * Position[0]) - cx[s]) / Fs[s];
     666             :           d_cy_dz = d_faxial_dz[i + chainBeads * s] * (cos(2.0 * M_PI * Position[1]) - cy[s]) / Fs[s];
     667             :           d_ws_dz = (1 - pow(ws[s], 2)) * d_faxial_dz[i + chainBeads * s];
     668             :           d_Xsc_dz += (ws[s] * d_sx_dz + d_ws_dz * (sx[s] - Xsc)) / W;
     669             :           d_Xcc_dz += (ws[s] * d_cx_dz + d_ws_dz * (cx[s] - Xcc)) / W;
     670             :           d_Ysc_dz += (ws[s] * d_sy_dz + d_ws_dz * (sy[s] - Ysc)) / W;
     671             :           d_Ycc_dz += (ws[s] * d_cy_dz + d_ws_dz * (cy[s] - Ycc)) / W;
     672             :         }
     673             :       }
     674             :       d_Xcyl_dx[i] = auxX * (-Xsc * d_Xcc_dx + Xcc * d_Xsc_dx);
     675             :       d_Xcyl_dz[i] = auxX * (-Xsc * d_Xcc_dz + Xcc * d_Xsc_dz);
     676             :       d_Ycyl_dy[i] = auxY * (-Ysc * d_Ycc_dy + Ycc * d_Ysc_dy);
     677             :       d_Ycyl_dz[i] = auxY * (-Ysc * d_Ycc_dz + Ycc * d_Ysc_dz);
     678             : 
     679             :       ri = sqrt(pow(CylDistances[i][0], 2) + pow(CylDistances[i][1], 2));
     680             :       x = ri / RCYL[0];
     681             :       if (!((x <= -1.0 - HCH[0]) || (x >= 1.0 + HCH[0]))) {
     682             :         if (((-1.0 + HCH[0]) <= x) && (x <= (1.0 - HCH[0]))) {
     683             :           fradial = 1.0;
     684             :         } else if (((1.0 - HCH[0]) < x) && (x < (1.0 + HCH[0]))) {
     685             :           fradial = 0.5 - ((3.0 * x - 3.0) / (4.0 * HCH[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     686             :           d_fradial_dx[i] = ((-3.0 / (4.0 * HCH[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][0] / (RCYL[0] * ri);
     687             :           d_fradial_dy[i] = ((-3.0 / (4.0 * HCH[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][1] / (RCYL[0] * ri);
     688             :         } else if (((-1.0 - HCH[0]) < x) && (x < (-1.0 + HCH[0]))) {
     689             :           fradial = 0.5 + ((3.0 * x + 3.0) / (4.0 * HCH[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     690             :           d_fradial_dx[i] = ((3.0 / (4.0 * HCH[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][0] / (RCYL[0] * ri);
     691             :           d_fradial_dy[i] = ((3.0 / (4.0 * HCH[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][1] / (RCYL[0] * ri);
     692             :         }
     693             : 
     694             :         for (unsigned s = s1[i]; s <= s2[i]; s++) {
     695             :           Nsp[s] += fradial * faxial[i + chainBeads * s];
     696             :           Axs[s] += faxial[i + chainBeads * s] * d_fradial_dx[i];
     697             :           Ays[s] += faxial[i + chainBeads * s] * d_fradial_dy[i];
     698             :           fradial_d_faxial_dz[i + chainBeads * s] = fradial * d_faxial_dz[i + chainBeads * s];
     699             :         }
     700             :       }
     701             :     }
     702             :   }
     703             : 
     704         184 :   for (unsigned s = 0; s < NS[0]; s++) {
     705         180 :     if (Nsp[s] <= 1.0) {
     706         149 :       psi[s] = ZETA[0] * Nsp[s];
     707         149 :       d_psi[s] = ZETA[0];
     708         149 :       Xi_n += psi[s];
     709             :     } else {
     710          31 :       psi[s] = 1.0 - c * exp(-b * Nsp[s]);
     711          31 :       d_psi[s] = b * c * exp(-b * Nsp[s]);
     712          31 :       Xi_n += psi[s];
     713             :     }
     714             :   }
     715             : 
     716           4 :   Xi_n = Xi_n / NS[0];
     717             : 
     718             :   // Eq. 18 Hub & Awasthi JCTC 2017.
     719           4 :   std::vector<double> faxial_d_fradial_dx(chainBeads * NS[0]), faxial_d_fradial_dy(chainBeads * NS[0]), faxial_d_fradial_dz(chainBeads * NS[0]);
     720             : 
     721             :   // Eq. 13 Hub & Awasthi JCTC 2017 modified to considere the Heaviside_Chain step function (this only affect during the transition).
     722           4 :   std::vector<Vector> derivatives_Chain(chainBeads);
     723             : 
     724             : #ifdef _OPENMP
     725             : #if _OPENMP >= 201307
     726           4 :   #pragma omp parallel for private(aux)
     727             : #endif
     728             : #endif
     729             :   for (unsigned i = 0; i < chainBeads; i++) {
     730             :   if (analyzeThisParticle[i]) {
     731             :       for (unsigned s = s1[i]; s <= s2[i]; s++) {
     732             :         if (faxial[i + chainBeads * s]) {
     733             :           faxial_d_fradial_dx[i + chainBeads * s] = faxial[i + chainBeads * s] * d_fradial_dx[i] - d_Xcyl_dx[i] * Axs[s];
     734             :           faxial_d_fradial_dy[i + chainBeads * s] = faxial[i + chainBeads * s] * d_fradial_dy[i] - d_Ycyl_dy[i] * Ays[s];
     735             :           faxial_d_fradial_dz[i + chainBeads * s] = -d_Xcyl_dz[i] * Axs[s] - d_Ycyl_dz[i] * Ays[s];
     736             :         }
     737             :       }
     738             : 
     739             :       for (unsigned s = s1[i]; s <= s2[i]; s++) {
     740             :         aux = d_psi[s] / NS[0];
     741             :         derivatives_Chain[i][0] += aux * faxial_d_fradial_dx[i + chainBeads * s];
     742             :         derivatives_Chain[i][1] += aux * faxial_d_fradial_dy[i + chainBeads * s];
     743             :         derivatives_Chain[i][2] += aux * (faxial_d_fradial_dz[i + chainBeads * s] + fradial_d_faxial_dz[i + chainBeads * s]);
     744             :       }
     745             :     }
     746             :   }
     747             : 
     748           4 :   Tensor virial;
     749      134604 :   for (unsigned i = 0; i < chainBeads; i++) {
     750      134600 :   setAtomsDerivatives((i + noChainBeads), derivatives_Chain[i]);
     751      134600 :     virial -= Tensor(CylDistances[i], derivatives_Chain[i]);
     752             :   }
     753             : 
     754           4 :   setValue(Xi_n);
     755           4 :   setBoxDerivatives(virial);
     756           4 : }
     757             : }
     758             : }

Generated by: LCOV version 1.16