LCOV - code coverage report
Current view: top level - isdb - Rescale.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 19 203 9.4 %
Date: 2025-03-25 09:33:27 Functions: 1 12 8.3 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2017-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : /*
      23             : 
      24             : */
      25             : #include "bias/Bias.h"
      26             : #include "core/ActionRegister.h"
      27             : #include "core/PlumedMain.h"
      28             : #include "core/Value.h"
      29             : #include "tools/File.h"
      30             : #include "tools/Random.h"
      31             : #include "tools/Communicator.h"
      32             : #include <ctime>
      33             : 
      34             : namespace PLMD {
      35             : namespace isdb {
      36             : 
      37             : //+PLUMEDOC ISDB_BIAS RESCALE
      38             : /*
      39             : Scales the value of an another action, being a Collective Variable or a Bias.
      40             : 
      41             : The rescaling factor is determined by a parameter defined on a logarithmic grid of dimension NBIN in the range
      42             : from 1 to MAX_RESCALE. The current value of the rescaling parameter is stored and shared across
      43             : other actions using a \ref SELECTOR. A Monte Carlo procedure is used to update the value
      44             : of the rescaling factor every MC_STRIDE steps of molecular dynamics. Well-tempered metadynamics, defined by the
      45             : parameters W0 and BIASFACTOR, is used to enhance the sampling in the space of the rescaling factor.
      46             : The well-tempered metadynamics bias potential is written to the file BFILE every BSTRIDE steps and read
      47             : when restarting the simulation using the directive \ref RESTART.
      48             : 
      49             : \note
      50             : Additional arguments not to be scaled, one for each bin in the rescaling parameter ladder, can be
      51             : provided at the end of the ARG list. The number of such arguments is specified by the option NOT_RESCALED.
      52             : These arguments will be not be scaled, but they will be
      53             : considered as bias potentials and used in the computation of the Metropolis
      54             : acceptance probability when proposing a move in the rescaling parameter. See example below.
      55             : 
      56             : \note
      57             : If PLUMED is running in a multiple-replica framework (for example using the -multi option in GROMACS),
      58             : the arguments will be summed across replicas, unless the NOT_SHARED option is used. Also, the value of the
      59             : \ref SELECTOR will be shared and thus will be the same in all replicas.
      60             : 
      61             : \par Examples
      62             : 
      63             : In this example we use \ref RESCALE to implement a simulated-tempering like approach.
      64             : The total potential energy of the system is scaled by a parameter defined on a logarithmic grid
      65             : of 5 bins in the range from 1 to 1.5.
      66             : A well-tempered metadynamics bias potential is used to ensure diffusion in the space of the rescaling
      67             : parameter.
      68             : 
      69             : \plumedfile
      70             : ene: ENERGY
      71             : 
      72             : SELECTOR NAME=GAMMA VALUE=0
      73             : 
      74             : RESCALE ...
      75             : LABEL=res ARG=ene TEMP=300
      76             : SELECTOR=GAMMA MAX_RESCALE=1.5 NBIN=5
      77             : W0=1000 BIASFACTOR=100.0 BSTRIDE=2000 BFILE=bias.dat
      78             : ...
      79             : 
      80             : PRINT FILE=COLVAR ARG=* STRIDE=100
      81             : \endplumedfile
      82             : 
      83             : In this second example, we add to the simulated-tempering approach introduced above
      84             : one Parallel Bias metadynamics simulation (see \ref PBMETAD) for each value of the rescaling parameter.
      85             : At each moment of the simulation, only one of the \ref PBMETAD
      86             : actions is activated, based on the current value of the associated \ref SELECTOR.
      87             : The \ref PBMETAD bias potentials are not scaled, but just used in the calculation of
      88             : the Metropolis acceptance probability when proposing a move in the rescaling parameter.
      89             : 
      90             : \plumedfile
      91             : ene: ENERGY
      92             : d: DISTANCE ATOMS=1,2
      93             : 
      94             : SELECTOR NAME=GAMMA VALUE=0
      95             : 
      96             : pbmetad0: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=0 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.0
      97             : pbmetad1: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=1 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.1
      98             : pbmetad2: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=2 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.2
      99             : pbmetad3: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=3 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.3
     100             : pbmetad4: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=4 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.4
     101             : 
     102             : RESCALE ...
     103             : LABEL=res TEMP=300
     104             : ARG=ene,pbmetad0.bias,pbmetad1.bias,pbmetad2.bias,pbmetad3.bias,pbmetad4.bias
     105             : SELECTOR=GAMMA MAX_RESCALE=1.5 NOT_RESCALED=5 NBIN=5
     106             : W0=1000 BIASFACTOR=100.0 BSTRIDE=2000 BFILE=bias.dat
     107             : ...
     108             : 
     109             : PRINT FILE=COLVAR ARG=* STRIDE=100
     110             : \endplumedfile
     111             : 
     112             : 
     113             : 
     114             : */
     115             : //+ENDPLUMEDOC
     116             : 
     117             : class Rescale : public bias::Bias {
     118             :   // gamma parameter
     119             :   std::vector<double> gamma_;
     120             :   double         w0_;
     121             :   double         biasf_;
     122             :   std::vector<double> bias_;
     123             :   std::vector<double> expo_;
     124             :   std::vector<unsigned> shared_;
     125             :   unsigned nores_;
     126             :   // bias
     127             :   unsigned int   Biasstride_;
     128             :   unsigned int   Biaspace_;
     129             :   std::string         Biasfilename_;
     130             :   bool           first_bias_;
     131             :   OFile          Biasfile_;
     132             :   // temperature in kbt
     133             :   double kbt_;
     134             :   // Monte Carlo stuff
     135             :   unsigned MCsteps_;
     136             :   unsigned MCstride_;
     137             :   long long int MCfirst_;
     138             :   long long unsigned MCaccgamma_;
     139             :   // replica stuff
     140             :   unsigned nrep_;
     141             :   unsigned replica_;
     142             :   // selector
     143             :   std::string selector_;
     144             : 
     145             :   // Monte Carlo
     146             :   void doMonteCarlo(unsigned igamma, double oldE, const std::vector<double> & args, const std::vector<double> & bargs);
     147             :   unsigned proposeMove(unsigned x, unsigned xmin, unsigned xmax);
     148             :   bool doAccept(double oldE, double newE);
     149             :   // read and print bias
     150             :   void read_bias();
     151             :   void print_bias(long long int step);
     152             : 
     153             : public:
     154             :   explicit Rescale(const ActionOptions&);
     155             :   ~Rescale();
     156             :   void calculate();
     157             :   static void registerKeywords(Keywords& keys);
     158             : };
     159             : 
     160             : 
     161             : PLUMED_REGISTER_ACTION(Rescale,"RESCALE")
     162             : 
     163           2 : void Rescale::registerKeywords(Keywords& keys) {
     164           2 :   Bias::registerKeywords(keys);
     165           2 :   keys.add("compulsory","TEMP","temperature");
     166           2 :   keys.add("compulsory","SELECTOR", "name of the SELECTOR used for rescaling");
     167           2 :   keys.add("compulsory","MAX_RESCALE","maximum values for rescaling");
     168           2 :   keys.add("compulsory","NBIN","number of bins for gamma grid");
     169           2 :   keys.add("compulsory","W0", "initial bias height");
     170           2 :   keys.add("compulsory","BIASFACTOR", "bias factor");
     171           2 :   keys.add("compulsory","BSTRIDE", "stride for writing bias");
     172           2 :   keys.add("compulsory","BFILE", "file name for bias");
     173           2 :   keys.add("optional","NOT_SHARED",   "list of arguments (from 1 to N) not summed across replicas");
     174           2 :   keys.add("optional","NOT_RESCALED", "these last N arguments will not be scaled");
     175           2 :   keys.add("optional","MC_STEPS","number of MC steps");
     176           2 :   keys.add("optional","MC_STRIDE","MC stride");
     177           2 :   keys.add("optional","PACE", "Pace for adding bias, in MC stride unit");
     178           4 :   keys.addOutputComponent("igamma",  "default","scalar","gamma parameter");
     179           4 :   keys.addOutputComponent("accgamma","default","scalar","MC acceptance for gamma");
     180           4 :   keys.addOutputComponent("wtbias",  "default","scalar","well-tempered bias");
     181           2 : }
     182             : 
     183           0 : Rescale::Rescale(const ActionOptions&ao):
     184             :   PLUMED_BIAS_INIT(ao),
     185           0 :   nores_(0), Biaspace_(1), first_bias_(true),
     186           0 :   MCsteps_(1), MCstride_(1), MCfirst_(-1), MCaccgamma_(0) {
     187             :   // set up replica stuff
     188           0 :   if(comm.Get_rank()==0) {
     189           0 :     nrep_    = multi_sim_comm.Get_size();
     190           0 :     replica_ = multi_sim_comm.Get_rank();
     191             :   } else {
     192           0 :     nrep_    = 0;
     193           0 :     replica_ = 0;
     194             :   }
     195           0 :   comm.Sum(&nrep_,1);
     196           0 :   comm.Sum(&replica_,1);
     197             : 
     198             :   // wt-parameters
     199           0 :   parse("W0", w0_);
     200           0 :   parse("BIASFACTOR", biasf_);
     201             : 
     202             :   // selector name
     203           0 :   parse("SELECTOR", selector_);
     204             : 
     205             :   // number of bins for gamma ladder
     206             :   unsigned nbin;
     207           0 :   parse("NBIN", nbin);
     208             : 
     209             :   // number of bias
     210           0 :   parse("NOT_RESCALED", nores_);
     211           0 :   if(nores_>0 && nores_!=nbin) {
     212           0 :     error("The number of non scaled arguments must be equal to either 0 or the number of bins");
     213             :   }
     214             : 
     215             :   // maximum value of rescale
     216             :   std::vector<double> max_rescale;
     217           0 :   parseVector("MAX_RESCALE", max_rescale);
     218             :   // check dimension of max_rescale
     219           0 :   if(max_rescale.size()!=(getNumberOfArguments()-nores_)) {
     220           0 :     error("Size of MAX_RESCALE array must be equal to the number of arguments that will to be scaled");
     221             :   }
     222             : 
     223             :   // calculate exponents
     224           0 :   double igamma_max = static_cast<double>(nbin);
     225           0 :   for(unsigned i=0; i<max_rescale.size(); ++i) {
     226           0 :     expo_.push_back(std::log(max_rescale[i])/std::log(igamma_max));
     227             :   }
     228             : 
     229             :   // allocate gamma grid and set bias to zero
     230           0 :   for(unsigned i=0; i<nbin; ++i) {
     231             :     // bias grid
     232           0 :     bias_.push_back(0.0);
     233             :     // gamma ladder
     234           0 :     double gamma = std::exp( static_cast<double>(i) / static_cast<double>(nbin-1) * std::log(igamma_max) );
     235           0 :     gamma_.push_back(gamma);
     236             :   }
     237             :   // print bias to file
     238           0 :   parse("BSTRIDE", Biasstride_);
     239           0 :   parse("BFILE",   Biasfilename_);
     240             : 
     241             :   // create vectors of shared arguments
     242             :   // by default they are all shared
     243           0 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) {
     244           0 :     shared_.push_back(1);
     245             :   }
     246             :   // share across replicas or not
     247             :   std::vector<unsigned> not_shared;
     248           0 :   parseVector("NOT_SHARED", not_shared);
     249             :   // and change the non-shared
     250           0 :   for(unsigned i=0; i<not_shared.size(); ++i) {
     251           0 :     if((not_shared[i]-1)>=(getNumberOfArguments()-nores_) && nrep_>1) {
     252           0 :       error("NOT_RESCALED args must always be shared when using multiple replicas");
     253             :     }
     254           0 :     if((not_shared[i]-1)>=getNumberOfArguments()) {
     255           0 :       error("NOT_SHARED args should be lower than total number of arguments");
     256             :     }
     257           0 :     shared_[not_shared[i]-1] = 0;
     258             :   }
     259             : 
     260             :   // monte carlo stuff
     261           0 :   parse("MC_STEPS",MCsteps_);
     262           0 :   parse("MC_STRIDE",MCstride_);
     263             :   // adjust for multiple-time steps
     264           0 :   MCstride_ *= getStride();
     265             :   // read bias deposition pace
     266           0 :   parse("PACE", Biaspace_);
     267             :   // multiply by MCstride
     268           0 :   Biaspace_ *= MCstride_;
     269             : 
     270             :   // get temperature
     271           0 :   kbt_=getkBT();
     272             : 
     273           0 :   checkRead();
     274             : 
     275           0 :   log.printf("  temperature of the system in energy unit %f\n",kbt_);
     276           0 :   log.printf("  name of the SELECTOR use for this action %s\n",selector_.c_str());
     277           0 :   log.printf("  number of bins in grid %u\n",nbin);
     278           0 :   log.printf("  number of arguments that will not be scaled %u\n",nores_);
     279           0 :   if(nrep_>1) {
     280           0 :     log<<"  number of arguments that will not be summed across replicas "<<not_shared.size()<<"\n";
     281             :   }
     282           0 :   log.printf("  biasfactor %f\n",biasf_);
     283           0 :   log.printf("  initial hills height %f\n",w0_);
     284           0 :   log.printf("  stride to write bias to file %u\n",Biasstride_);
     285           0 :   log.printf("  write bias to file : %s\n",Biasfilename_.c_str());
     286           0 :   log.printf("  number of replicas %u\n",nrep_);
     287           0 :   log.printf("  number of MC steps %d\n",MCsteps_);
     288           0 :   log.printf("  do MC every %d steps\n", MCstride_);
     289           0 :   log.printf("\n");
     290             : 
     291           0 :   log << " Bibliography" << plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)") << "\n";
     292             : 
     293             : 
     294             :   // add components
     295           0 :   addComponent("igamma");
     296           0 :   componentIsNotPeriodic("igamma");
     297           0 :   addComponent("accgamma");
     298           0 :   componentIsNotPeriodic("accgamma");
     299           0 :   addComponent("wtbias");
     300           0 :   componentIsNotPeriodic("wtbias");
     301             : 
     302             :   // initialize random seed
     303           0 :   srand (time(NULL));
     304             : 
     305             :   // read bias if restarting
     306           0 :   if(getRestart()) {
     307           0 :     read_bias();
     308             :   }
     309           0 : }
     310             : 
     311           0 : Rescale::~Rescale() {
     312           0 :   Biasfile_.close();
     313           0 : }
     314             : 
     315           0 : void Rescale::read_bias() {
     316             : // open file
     317             :   auto ifile=Tools::make_unique<IFile>();
     318           0 :   ifile->link(*this);
     319           0 :   if(ifile->FileExist(Biasfilename_)) {
     320           0 :     ifile->open(Biasfilename_);
     321             :     // read all the lines, store last value of bias
     322             :     double MDtime;
     323           0 :     while(ifile->scanField("MD_time",MDtime)) {
     324           0 :       for(unsigned i=0; i<bias_.size(); ++i) {
     325             :         // convert i to string
     326           0 :         std::stringstream ss;
     327             :         ss << i;
     328             :         // label
     329           0 :         std::string label = "b" + ss.str();
     330             :         // read entry
     331           0 :         ifile->scanField(label, bias_[i]);
     332           0 :       }
     333             :       // new line
     334           0 :       ifile->scanField();
     335             :     }
     336           0 :     ifile->close();
     337             :   } else {
     338           0 :     error("Cannot find bias file "+Biasfilename_+"\n");
     339             :   }
     340           0 : }
     341             : 
     342           0 : unsigned Rescale::proposeMove(unsigned x, unsigned xmin, unsigned xmax) {
     343           0 :   int xmin_i = static_cast<int>(xmin);
     344           0 :   int xmax_i = static_cast<int>(xmax);
     345             :   int dx;
     346           0 :   int r = rand() % 2;
     347           0 :   if( r % 2 == 0 ) {
     348             :     dx = +1;
     349             :   } else {
     350             :     dx = -1;
     351             :   }
     352             : // new index, integer
     353           0 :   int x_new = static_cast<int>(x) + dx;
     354             : // check boundaries
     355           0 :   if(x_new >= xmax_i) {
     356           0 :     x_new = xmax_i-1;
     357             :   }
     358             :   if(x_new <  xmin_i) {
     359             :     x_new = xmin_i;
     360             :   }
     361           0 :   return static_cast<unsigned>(x_new);
     362             : }
     363             : 
     364           0 : bool Rescale::doAccept(double oldE, double newE) {
     365             :   bool accept = false;
     366             :   // calculate delta energy
     367           0 :   double delta = ( newE - oldE ) / kbt_;
     368             :   // if delta is negative always accept move
     369           0 :   if( delta < 0.0 ) {
     370             :     accept = true;
     371             :   } else {
     372             :     // otherwise extract random number
     373           0 :     double s = static_cast<double>(rand()) / RAND_MAX;
     374           0 :     if( s < std::exp(-delta) ) {
     375             :       accept = true;
     376             :     }
     377             :   }
     378           0 :   return accept;
     379             : }
     380             : 
     381           0 : void Rescale::doMonteCarlo(unsigned igamma, double oldE,
     382             :                            const std::vector<double> & args, const std::vector<double> & bargs) {
     383             :   double oldB, newB;
     384             : 
     385             : // cycle on MC steps
     386           0 :   for(unsigned i=0; i<MCsteps_; ++i) {
     387             :     // propose move in igamma
     388           0 :     unsigned new_igamma = proposeMove(igamma, 0, gamma_.size());
     389             :     // calculate new energy
     390             :     double newE = 0.0;
     391           0 :     for(unsigned j=0; j<args.size(); ++j) {
     392             :       // calculate energy term
     393           0 :       double fact = 1.0/pow(gamma_[new_igamma], expo_[j]) - 1.0;
     394           0 :       newE += args[j] * fact;
     395             :     }
     396             :     // calculate contributions from non-rescaled terms
     397           0 :     if(bargs.size()>0) {
     398           0 :       oldB = bias_[igamma]+bargs[igamma];
     399           0 :       newB = bias_[new_igamma]+bargs[new_igamma];
     400             :     } else {
     401           0 :       oldB = bias_[igamma];
     402           0 :       newB = bias_[new_igamma];
     403             :     }
     404             :     // accept or reject
     405           0 :     bool accept = doAccept(oldE+oldB, newE+newB);
     406           0 :     if(accept) {
     407           0 :       igamma = new_igamma;
     408             :       oldE = newE;
     409           0 :       MCaccgamma_++;
     410             :     }
     411             :   }
     412             : // send values of gamma to all replicas
     413           0 :   if(comm.Get_rank()==0) {
     414           0 :     if(multi_sim_comm.Get_rank()!=0) {
     415           0 :       igamma = 0;
     416             :     }
     417           0 :     multi_sim_comm.Sum(&igamma, 1);
     418             :   } else {
     419           0 :     igamma = 0;
     420             :   }
     421             : // local communication
     422           0 :   comm.Sum(&igamma, 1);
     423             : 
     424             : // set the value of gamma into passMap
     425           0 :   plumed.passMap[selector_]=static_cast<double>(igamma);
     426           0 : }
     427             : 
     428           0 : void Rescale::print_bias(long long int step) {
     429             : // if first time open the file
     430           0 :   if(first_bias_) {
     431           0 :     first_bias_ = false;
     432           0 :     Biasfile_.link(*this);
     433           0 :     Biasfile_.open(Biasfilename_);
     434             :     Biasfile_.setHeavyFlush();
     435           0 :     Biasfile_.fmtField("%30.5f");
     436             :   }
     437             : 
     438             : // write fields
     439           0 :   double MDtime = static_cast<double>(step)*getTimeStep();
     440           0 :   Biasfile_.printField("MD_time", MDtime);
     441           0 :   for(unsigned i=0; i<bias_.size(); ++i) {
     442             :     // convert i to string
     443           0 :     std::stringstream ss;
     444             :     ss << i;
     445             :     // label
     446           0 :     std::string label = "b" + ss.str();
     447             :     // print entry
     448           0 :     Biasfile_.printField(label, bias_[i]);
     449           0 :   }
     450           0 :   Biasfile_.printField();
     451           0 : }
     452             : 
     453           0 : void Rescale::calculate() {
     454             :   // get the current value of the selector
     455           0 :   unsigned igamma = static_cast<unsigned>(plumed.passMap[selector_]);
     456             : 
     457             :   // collect data from other replicas
     458           0 :   std::vector<double> all_args(getNumberOfArguments(), 0.0);
     459             :   // first calculate arguments
     460           0 :   for(unsigned i=0; i<all_args.size(); ++i) {
     461           0 :     double arg = getArgument(i);
     462             :     // sum shared arguments across replicas
     463           0 :     if(shared_[i]==1) {
     464           0 :       if(comm.Get_rank()==0) {
     465           0 :         multi_sim_comm.Sum(arg);
     466             :       } else {
     467           0 :         arg = 0.0;
     468             :       }
     469           0 :       if(comm.Get_size()>1) {
     470           0 :         comm.Sum(arg);
     471             :       }
     472             :     }
     473             :     // put into all_args
     474           0 :     all_args[i] = arg;
     475             :   }
     476             : 
     477             :   // now separate terms that should be rescaled
     478             :   std::vector<double> args;
     479           0 :   if(getNumberOfArguments()-nores_>0) {
     480           0 :     args.resize(getNumberOfArguments()-nores_);
     481             :   }
     482           0 :   for(unsigned i=0; i<args.size(); ++i) {
     483           0 :     args[i]  = all_args[i];
     484             :   }
     485             :   // and terms that should not
     486             :   std::vector<double> bargs;
     487           0 :   if(nores_>0) {
     488           0 :     bargs.resize(nores_);
     489             :   }
     490           0 :   for(unsigned i=0; i<bargs.size(); ++i) {
     491           0 :     bargs[i] = all_args[i+args.size()];
     492             :   }
     493             : 
     494             :   // calculate energy and forces, only on rescaled terms
     495             :   double ene = 0.0;
     496           0 :   for(unsigned i=0; i<args.size(); ++i) {
     497             :     // calculate energy term
     498           0 :     double fact = 1.0/pow(gamma_[igamma], expo_[i]) - 1.0;
     499           0 :     ene += args[i] * fact;
     500             :     // add force
     501           0 :     setOutputForce(i, -fact);
     502             :   }
     503             : 
     504             :   // set to zero on the others
     505           0 :   for(unsigned i=0; i<bargs.size(); ++i) {
     506           0 :     setOutputForce(i+args.size(), 0.0);
     507             :   }
     508             : 
     509             :   // set value of the bias
     510           0 :   setBias(ene);
     511             :   // set value of the wt-bias
     512           0 :   getPntrToComponent("wtbias")->set(bias_[igamma]);
     513             :   // set values of gamma
     514           0 :   getPntrToComponent("igamma")->set(igamma);
     515             :   // get time step
     516           0 :   long long int step = getStep();
     517           0 :   if(MCfirst_==-1) {
     518           0 :     MCfirst_=step;
     519             :   }
     520             :   // calculate gamma acceptance
     521           0 :   double MCtrials = std::floor(static_cast<double>(step-MCfirst_) / static_cast<double>(MCstride_))+1.0;
     522           0 :   double accgamma = static_cast<double>(MCaccgamma_) / static_cast<double>(MCsteps_) / MCtrials;
     523           0 :   getPntrToComponent("accgamma")->set(accgamma);
     524             : 
     525             :   // do MC at the right time step
     526           0 :   if(step%MCstride_==0&&!getExchangeStep()) {
     527           0 :     doMonteCarlo(igamma, ene, args, bargs);
     528             :   }
     529             : 
     530             :   // add well-tempered like bias
     531           0 :   if(step%Biaspace_==0) {
     532             :     // get updated igamma
     533           0 :     unsigned igamma = static_cast<unsigned>(plumed.passMap[selector_]);
     534             :     // add "Gaussian"
     535           0 :     double kbDT = kbt_ * ( biasf_ - 1.0 );
     536           0 :     bias_[igamma] += w0_ * std::exp(-bias_[igamma] / kbDT);
     537             :   }
     538             : 
     539             :   // print bias
     540           0 :   if(step%Biasstride_==0) {
     541           0 :     print_bias(step);
     542             :   }
     543             : 
     544           0 : }
     545             : 
     546             : 
     547             : }
     548             : }
     549             : 

Generated by: LCOV version 1.16