LCOV - code coverage report
Current view: top level - isdb - MetainferenceBase.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 838 997 84.1 %
Date: 2025-03-25 09:33:27 Functions: 24 28 85.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2017-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "MetainferenceBase.h"
      23             : #include "tools/File.h"
      24             : #include <chrono>
      25             : #include <numeric>
      26             : 
      27             : #ifndef M_PI
      28             : #define M_PI           3.14159265358979323846
      29             : #endif
      30             : 
      31             : namespace PLMD {
      32             : namespace isdb {
      33             : 
      34         152 : void MetainferenceBase::registerKeywords( Keywords& keys ) {
      35         152 :   Action::registerKeywords(keys);
      36         152 :   ActionAtomistic::registerKeywords(keys);
      37         152 :   ActionWithValue::registerKeywords(keys);
      38         152 :   ActionWithArguments::registerKeywords(keys);
      39         304 :   keys.addInputKeyword("optional","ARG","scalar","the labels of the values from which the function is calculated");
      40         152 :   keys.addFlag("DOSCORE",false,"activate metainference");
      41         152 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
      42         152 :   keys.addFlag("REWEIGHT",false,"simple REWEIGHT using the ARG as energy");
      43         152 :   keys.add("optional","AVERAGING", "Stride for calculation of averaged weights and sigma_mean");
      44         152 :   keys.add("compulsory","NOISETYPE","MGAUSS","functional form of the noise (GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC)");
      45         152 :   keys.add("compulsory","LIKELIHOOD","GAUSS","the likelihood for the GENERIC metainference model, GAUSS or LOGN");
      46         152 :   keys.add("compulsory","DFTILDE","0.1","fraction of sigma_mean used to evolve ftilde");
      47         152 :   keys.addFlag("SCALEDATA",false,"Set to TRUE if you want to sample a scaling factor common to all values and replicas");
      48         152 :   keys.add("compulsory","SCALE0","1.0","initial value of the scaling factor");
      49         152 :   keys.add("compulsory","SCALE_PRIOR","FLAT","either FLAT or GAUSSIAN");
      50         152 :   keys.add("optional","SCALE_MIN","minimum value of the scaling factor");
      51         152 :   keys.add("optional","SCALE_MAX","maximum value of the scaling factor");
      52         152 :   keys.add("optional","DSCALE","maximum MC move of the scaling factor");
      53         152 :   keys.addFlag("ADDOFFSET",false,"Set to TRUE if you want to sample an offset common to all values and replicas");
      54         152 :   keys.add("compulsory","OFFSET0","0.0","initial value of the offset");
      55         152 :   keys.add("compulsory","OFFSET_PRIOR","FLAT","either FLAT or GAUSSIAN");
      56         152 :   keys.add("optional","OFFSET_MIN","minimum value of the offset");
      57         152 :   keys.add("optional","OFFSET_MAX","maximum value of the offset");
      58         152 :   keys.add("optional","DOFFSET","maximum MC move of the offset");
      59         152 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
      60         152 :   keys.add("compulsory","SIGMA0","1.0","initial value of the uncertainty parameter");
      61         152 :   keys.add("compulsory","SIGMA_MIN","0.0","minimum value of the uncertainty parameter");
      62         152 :   keys.add("compulsory","SIGMA_MAX","10.","maximum value of the uncertainty parameter");
      63         152 :   keys.add("optional","DSIGMA","maximum MC move of the uncertainty parameter");
      64         152 :   keys.add("compulsory","OPTSIGMAMEAN","NONE","Set to NONE/SEM to manually set sigma mean, or to estimate it on the fly");
      65         152 :   keys.add("optional","SIGMA_MEAN0","starting value for the uncertainty in the mean estimate");
      66         152 :   keys.add("optional","SIGMA_MAX_STEPS", "Number of steps used to optimise SIGMA_MAX, before that the SIGMA_MAX value is used");
      67         152 :   keys.add("optional","TEMP","the system temperature - this is only needed if code doesn't pass the temperature to plumed");
      68         152 :   keys.add("optional","MC_STEPS","number of MC steps");
      69         152 :   keys.add("optional","MC_CHUNKSIZE","MC chunksize");
      70         152 :   keys.add("optional","STATUS_FILE","write a file with all the data useful for restart/continuation of Metainference");
      71         152 :   keys.add("optional","FMT","specify format for HILLS files (useful for decrease the number of digits in regtests)");
      72         152 :   keys.add("compulsory","WRITE_STRIDE","10000","write the status to a file every N steps, this can be used for restart/continuation");
      73         152 :   keys.add("optional","SELECTOR","name of selector");
      74         152 :   keys.add("optional","NSELECT","range of values for selector [0, N-1]");
      75         152 :   keys.use("RESTART");
      76         304 :   keys.addOutputComponent("score",        "default",      "scalar","the Metainference score");
      77         304 :   keys.addOutputComponent("sigma",        "default",      "scalar","uncertainty parameter");
      78         304 :   keys.addOutputComponent("sigmaMean",    "default",      "scalar","uncertainty in the mean estimate");
      79         304 :   keys.addOutputComponent("neff",         "default",      "scalar","effective number of replicas");
      80         304 :   keys.addOutputComponent("acceptSigma",  "default",      "scalar","MC acceptance for sigma values");
      81         304 :   keys.addOutputComponent("acceptScale",  "SCALEDATA",    "scalar","MC acceptance for scale value");
      82         304 :   keys.addOutputComponent("acceptFT",     "GENERIC",      "scalar","MC acceptance for general metainference f tilde value");
      83         304 :   keys.addOutputComponent("weight",       "REWEIGHT",     "scalar","weights of the weighted average");
      84         304 :   keys.addOutputComponent("biasDer",      "REWEIGHT",     "scalar","derivatives with respect to the bias");
      85         304 :   keys.addOutputComponent("scale",        "SCALEDATA",    "scalar","scale parameter");
      86         304 :   keys.addOutputComponent("offset",       "ADDOFFSET",    "scalar","offset parameter");
      87         304 :   keys.addOutputComponent("ftilde",       "GENERIC",      "scalar","ensemble average estimator");
      88         152 : }
      89             : 
      90         136 : MetainferenceBase::MetainferenceBase(const ActionOptions&ao):
      91             :   Action(ao),
      92             :   ActionAtomistic(ao),
      93             :   ActionWithArguments(ao),
      94             :   ActionWithValue(ao),
      95         136 :   doscore_(false),
      96         136 :   write_stride_(0),
      97         136 :   narg(0),
      98         136 :   doscale_(false),
      99         136 :   scale_(1.),
     100         136 :   scale_mu_(0),
     101         136 :   scale_min_(1),
     102         136 :   scale_max_(-1),
     103         136 :   Dscale_(-1),
     104         136 :   dooffset_(false),
     105         136 :   offset_(0.),
     106         136 :   offset_mu_(0),
     107         136 :   offset_min_(1),
     108         136 :   offset_max_(-1),
     109         136 :   Doffset_(-1),
     110         136 :   doregres_zero_(false),
     111         136 :   nregres_zero_(0),
     112         136 :   Dftilde_(0.1),
     113         136 :   random(3),
     114         136 :   MCsteps_(1),
     115         136 :   MCaccept_(0),
     116         136 :   MCacceptScale_(0),
     117         136 :   MCacceptFT_(0),
     118         136 :   MCtrial_(0),
     119         136 :   MCchunksize_(0),
     120         136 :   firstTime(true),
     121         136 :   do_reweight_(false),
     122         136 :   do_optsigmamean_(0),
     123         136 :   nsel_(1),
     124         136 :   iselect(0),
     125         136 :   optsigmamean_stride_(0),
     126         136 :   N_optimized_step_(0),
     127         136 :   optimized_step_(0),
     128         136 :   sigmamax_opt_done_(false),
     129         136 :   decay_w_(1.) {
     130         136 :   parseFlag("DOSCORE", doscore_);
     131             : 
     132         136 :   bool noensemble = false;
     133         136 :   parseFlag("NOENSEMBLE", noensemble);
     134             : 
     135             :   // set up replica stuff
     136         136 :   master = (comm.Get_rank()==0);
     137         136 :   if(master) {
     138          92 :     nrep_    = multi_sim_comm.Get_size();
     139          92 :     replica_ = multi_sim_comm.Get_rank();
     140          92 :     if(noensemble) {
     141           0 :       nrep_ = 1;
     142             :     }
     143             :   } else {
     144          44 :     nrep_    = 0;
     145          44 :     replica_ = 0;
     146             :   }
     147         136 :   comm.Sum(&nrep_,1);
     148         136 :   comm.Sum(&replica_,1);
     149             : 
     150         136 :   parse("SELECTOR", selector_);
     151         272 :   parse("NSELECT", nsel_);
     152             :   // do checks
     153         136 :   if(selector_.length()>0 && nsel_<=1) {
     154           0 :     error("With SELECTOR active, NSELECT must be greater than 1");
     155             :   }
     156         136 :   if(selector_.length()==0 && nsel_>1) {
     157           0 :     error("With NSELECT greater than 1, you must specify SELECTOR");
     158             :   }
     159             : 
     160             :   // initialise firstTimeW
     161         136 :   firstTimeW.resize(nsel_, true);
     162             : 
     163             :   // reweight implies a different number of arguments (the latest one must always be the bias)
     164         136 :   parseFlag("REWEIGHT", do_reweight_);
     165         136 :   if(do_reweight_&&getNumberOfArguments()!=1) {
     166           0 :     error("To REWEIGHT one must provide one single bias as an argument");
     167             :   }
     168         136 :   if(do_reweight_&&nrep_<2) {
     169           0 :     error("REWEIGHT can only be used in parallel with 2 or more replicas");
     170             :   }
     171         136 :   if(!getRestart()) {
     172         252 :     average_weights_.resize(nsel_, std::vector<double> (nrep_, 1./static_cast<double>(nrep_)));
     173             :   } else {
     174          20 :     average_weights_.resize(nsel_, std::vector<double> (nrep_, 0.));
     175             :   }
     176             : 
     177         136 :   unsigned averaging=0;
     178         136 :   parse("AVERAGING", averaging);
     179         136 :   if(averaging>0) {
     180           1 :     decay_w_ = 1./static_cast<double> (averaging);
     181           1 :     optsigmamean_stride_ = averaging;
     182             :   }
     183             : 
     184             :   std::string stringa_noise;
     185         272 :   parse("NOISETYPE",stringa_noise);
     186         136 :   if(stringa_noise=="GAUSS") {
     187           9 :     noise_type_ = GAUSS;
     188         127 :   } else if(stringa_noise=="MGAUSS") {
     189         106 :     noise_type_ = MGAUSS;
     190          21 :   } else if(stringa_noise=="OUTLIERS") {
     191          10 :     noise_type_ = OUTLIERS;
     192          11 :   } else if(stringa_noise=="MOUTLIERS") {
     193           8 :     noise_type_ = MOUTLIERS;
     194           3 :   } else if(stringa_noise=="GENERIC") {
     195           3 :     noise_type_ = GENERIC;
     196             :   } else {
     197           0 :     error("Unknown noise type!");
     198             :   }
     199             : 
     200         136 :   if(noise_type_== GENERIC) {
     201             :     std::string stringa_like;
     202           6 :     parse("LIKELIHOOD",stringa_like);
     203           3 :     if(stringa_like=="GAUSS") {
     204           2 :       gen_likelihood_ = LIKE_GAUSS;
     205           1 :     } else if(stringa_like=="LOGN") {
     206           1 :       gen_likelihood_ = LIKE_LOGN;
     207             :     } else {
     208           0 :       error("Unknown likelihood type!");
     209             :     }
     210             : 
     211           6 :     parse("DFTILDE",Dftilde_);
     212             :   }
     213             : 
     214         136 :   parse("WRITE_STRIDE",write_stride_);
     215         272 :   parse("STATUS_FILE",status_file_name_);
     216         136 :   if(status_file_name_=="") {
     217         272 :     status_file_name_ = "MISTATUS"+getLabel();
     218             :   } else {
     219           0 :     status_file_name_ = status_file_name_+getLabel();
     220             :   }
     221             : 
     222             :   std::string stringa_optsigma;
     223         272 :   parse("OPTSIGMAMEAN", stringa_optsigma);
     224         136 :   if(stringa_optsigma=="NONE") {
     225         131 :     do_optsigmamean_=0;
     226           5 :   } else if(stringa_optsigma=="SEM") {
     227           4 :     do_optsigmamean_=1;
     228           1 :   } else if(stringa_optsigma=="SEM_MAX") {
     229           0 :     do_optsigmamean_=2;
     230             :   }
     231             : 
     232         136 :   unsigned aver_max_steps=0;
     233         136 :   parse("SIGMA_MAX_STEPS", aver_max_steps);
     234         136 :   if(aver_max_steps==0&&do_optsigmamean_==2) {
     235           0 :     aver_max_steps=averaging*2000;
     236             :   }
     237         136 :   if(aver_max_steps>0&&do_optsigmamean_<2) {
     238           0 :     error("SIGMA_MAX_STEPS can only be used together with OPTSIGMAMEAN=SEM_MAX");
     239             :   }
     240         136 :   if(aver_max_steps>0&&do_optsigmamean_==2) {
     241           0 :     N_optimized_step_=aver_max_steps;
     242             :   }
     243         136 :   if(aver_max_steps>0&&aver_max_steps<averaging) {
     244           0 :     error("SIGMA_MAX_STEPS must be greater than AVERAGING");
     245             :   }
     246             : 
     247             :   std::vector<double> read_sigma_mean_;
     248         136 :   parseVector("SIGMA_MEAN0",read_sigma_mean_);
     249         136 :   if(do_optsigmamean_==0 && read_sigma_mean_.size()==0 && !getRestart() && doscore_) {
     250           0 :     error("If you don't use OPTSIGMAMEAN and you are not RESTARTING then you MUST SET SIGMA_MEAN0");
     251             :   }
     252             : 
     253         136 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     254         117 :     if(read_sigma_mean_.size()>0) {
     255          25 :       sigma_mean2_.resize(read_sigma_mean_.size());
     256          50 :       for(unsigned i=0; i<read_sigma_mean_.size(); i++) {
     257          25 :         sigma_mean2_[i]=read_sigma_mean_[i]*read_sigma_mean_[i];
     258             :       }
     259             :     } else {
     260          92 :       sigma_mean2_.resize(1,0.000001);
     261             :     }
     262             :   } else {
     263          19 :     if(read_sigma_mean_.size()==1) {
     264          19 :       sigma_mean2_.resize(1, read_sigma_mean_[0]*read_sigma_mean_[0]);
     265           0 :     } else if(read_sigma_mean_.size()==0) {
     266           0 :       sigma_mean2_.resize(1, 0.000001);
     267             :     } else {
     268           0 :       error("If you want to use more than one SIGMA_MEAN0 you should use NOISETYPE=MGAUSS|MOUTLIERS");
     269             :     }
     270             :   }
     271             : 
     272         136 :   parseFlag("SCALEDATA", doscale_);
     273         136 :   if(doscale_) {
     274             :     std::string stringa_noise;
     275          24 :     parse("SCALE_PRIOR",stringa_noise);
     276          12 :     if(stringa_noise=="GAUSSIAN") {
     277           0 :       scale_prior_ = SC_GAUSS;
     278          12 :     } else if(stringa_noise=="FLAT") {
     279          12 :       scale_prior_ = SC_FLAT;
     280             :     } else {
     281           0 :       error("Unknown SCALE_PRIOR type!");
     282             :     }
     283          12 :     parse("SCALE0",scale_);
     284          12 :     parse("DSCALE",Dscale_);
     285          12 :     if(Dscale_<0.) {
     286           0 :       error("DSCALE must be set when using SCALEDATA");
     287             :     }
     288          12 :     if(scale_prior_==SC_GAUSS) {
     289           0 :       scale_mu_=scale_;
     290             :     } else {
     291          12 :       parse("SCALE_MIN",scale_min_);
     292          12 :       parse("SCALE_MAX",scale_max_);
     293          12 :       if(scale_max_<scale_min_) {
     294           0 :         error("SCALE_MAX and SCALE_MIN must be set when using SCALE_PRIOR=FLAT");
     295             :       }
     296             :     }
     297             :   }
     298             : 
     299         136 :   parseFlag("ADDOFFSET", dooffset_);
     300         136 :   if(dooffset_) {
     301             :     std::string stringa_noise;
     302          12 :     parse("OFFSET_PRIOR",stringa_noise);
     303           6 :     if(stringa_noise=="GAUSSIAN") {
     304           0 :       offset_prior_ = SC_GAUSS;
     305           6 :     } else if(stringa_noise=="FLAT") {
     306           6 :       offset_prior_ = SC_FLAT;
     307             :     } else {
     308           0 :       error("Unknown OFFSET_PRIOR type!");
     309             :     }
     310           6 :     parse("OFFSET0",offset_);
     311           6 :     parse("DOFFSET",Doffset_);
     312           6 :     if(offset_prior_==SC_GAUSS) {
     313           0 :       offset_mu_=offset_;
     314           0 :       if(Doffset_<0.) {
     315           0 :         error("DOFFSET must be set when using OFFSET_PRIOR=GAUSS");
     316             :       }
     317             :     } else {
     318           6 :       parse("OFFSET_MIN",offset_min_);
     319           6 :       parse("OFFSET_MAX",offset_max_);
     320           6 :       if(Doffset_<0) {
     321           0 :         Doffset_ = 0.05*(offset_max_ - offset_min_);
     322             :       }
     323           6 :       if(offset_max_<offset_min_) {
     324           0 :         error("OFFSET_MAX and OFFSET_MIN must be set when using OFFSET_PRIOR=FLAT");
     325             :       }
     326             :     }
     327             :   }
     328             : 
     329             :   // regression with zero intercept
     330         136 :   parse("REGRES_ZERO", nregres_zero_);
     331         136 :   if(nregres_zero_>0) {
     332             :     // set flag
     333           1 :     doregres_zero_=true;
     334             :     // check if already sampling scale and offset
     335           1 :     if(doscale_) {
     336           0 :       error("REGRES_ZERO and SCALEDATA are mutually exclusive");
     337             :     }
     338           1 :     if(dooffset_) {
     339           0 :       error("REGRES_ZERO and ADDOFFSET are mutually exclusive");
     340             :     }
     341             :   }
     342             : 
     343             :   std::vector<double> readsigma;
     344         136 :   parseVector("SIGMA0",readsigma);
     345         136 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma.size()>1) {
     346           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     347             :   }
     348         136 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     349         117 :     sigma_.resize(readsigma.size());
     350         117 :     sigma_=readsigma;
     351             :   } else {
     352          19 :     sigma_.resize(1, readsigma[0]);
     353             :   }
     354             : 
     355             :   std::vector<double> readsigma_min;
     356         136 :   parseVector("SIGMA_MIN",readsigma_min);
     357         136 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_min.size()>1) {
     358           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     359             :   }
     360         136 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     361         117 :     sigma_min_.resize(readsigma_min.size());
     362         117 :     sigma_min_=readsigma_min;
     363             :   } else {
     364          19 :     sigma_min_.resize(1, readsigma_min[0]);
     365             :   }
     366             : 
     367             :   std::vector<double> readsigma_max;
     368         136 :   parseVector("SIGMA_MAX",readsigma_max);
     369         136 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1) {
     370           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     371             :   }
     372         136 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     373         117 :     sigma_max_.resize(readsigma_max.size());
     374         117 :     sigma_max_=readsigma_max;
     375             :   } else {
     376          19 :     sigma_max_.resize(1, readsigma_max[0]);
     377             :   }
     378             : 
     379         136 :   if(sigma_max_.size()!=sigma_min_.size()) {
     380           0 :     error("The number of values for SIGMA_MIN and SIGMA_MAX must be the same");
     381             :   }
     382             : 
     383             :   std::vector<double> read_dsigma;
     384         136 :   parseVector("DSIGMA",read_dsigma);
     385         136 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1) {
     386           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     387             :   }
     388         136 :   if(read_dsigma.size()>0) {
     389          44 :     Dsigma_.resize(read_dsigma.size());
     390          44 :     Dsigma_=read_dsigma;
     391             :   } else {
     392          92 :     Dsigma_.resize(sigma_max_.size(), -1.);
     393             :     /* in this case Dsigma is initialised after reading the restart file if present */
     394             :   }
     395             : 
     396         136 :   parse("FMT",fmt_);
     397             : 
     398             :   // monte carlo stuff
     399         136 :   parse("MC_STEPS",MCsteps_);
     400         136 :   parse("MC_CHUNKSIZE", MCchunksize_);
     401             :   // get temperature
     402         136 :   kbt_=getkBT();
     403         136 :   if(kbt_==0.0&&doscore_) {
     404           0 :     error("Unless the MD engine passes the temperature to plumed, you must specify it using TEMP");
     405             :   }
     406             : 
     407             :   // initialize random seed
     408             :   unsigned iseed;
     409         136 :   if(master) {
     410          92 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     411          92 :     iseed = static_cast<unsigned>(ts)+replica_;
     412             :   } else {
     413          44 :     iseed = 0;
     414             :   }
     415         136 :   comm.Sum(&iseed, 1);
     416             :   // this is used for ftilde and sigma both the move and the acceptance
     417             :   // this is different for each replica
     418         136 :   random[0].setSeed(-iseed);
     419         136 :   if(doscale_||dooffset_) {
     420             :     // in this case we want the same seed everywhere
     421          18 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     422          18 :     iseed = static_cast<unsigned>(ts);
     423          18 :     if(master&&nrep_>1) {
     424           6 :       multi_sim_comm.Bcast(iseed,0);
     425             :     }
     426          18 :     comm.Bcast(iseed,0);
     427             :     // this is used for scale and offset sampling and acceptance
     428          18 :     random[1].setSeed(-iseed);
     429             :   }
     430             :   // this is used for random chunk of sigmas, and it is different for each replica
     431         136 :   if(master) {
     432          92 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     433          92 :     iseed = static_cast<unsigned>(ts)+replica_;
     434             :   } else {
     435          44 :     iseed = 0;
     436             :   }
     437         136 :   comm.Sum(&iseed, 1);
     438         136 :   random[2].setSeed(-iseed);
     439             : 
     440             :   // outfile stuff
     441         136 :   if(write_stride_>0&&doscore_) {
     442          44 :     sfile_.link(*this);
     443          44 :     sfile_.open(status_file_name_);
     444          44 :     if(fmt_.length()>0) {
     445           1 :       sfile_.fmtField(fmt_);
     446             :     }
     447             :   }
     448             : 
     449         136 : }
     450             : 
     451         136 : MetainferenceBase::~MetainferenceBase() {
     452         136 :   if(sfile_.isOpen()) {
     453          44 :     sfile_.close();
     454             :   }
     455         680 : }
     456             : 
     457          44 : void MetainferenceBase::Initialise(const unsigned input) {
     458             :   setNarg(input);
     459          44 :   if(narg!=parameters.size()) {
     460             :     std::string num1;
     461           0 :     Tools::convert(parameters.size(),num1);
     462             :     std::string num2;
     463           0 :     Tools::convert(narg,num2);
     464           0 :     std::string msg = "The number of experimental values " + num1 +" must be the same of the calculated values " + num2;
     465           0 :     error(msg);
     466             :   }
     467             : 
     468             :   // resize std::vector for sigma_mean history
     469          44 :   sigma_mean2_last_.resize(nsel_);
     470          88 :   for(unsigned i=0; i<nsel_; i++) {
     471          44 :     sigma_mean2_last_[i].resize(narg);
     472             :   }
     473          44 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     474          25 :     if(sigma_mean2_.size()==1) {
     475          25 :       double tmp = sigma_mean2_[0];
     476          25 :       sigma_mean2_.resize(narg, tmp);
     477           0 :     } else if(sigma_mean2_.size()>1&&sigma_mean2_.size()!=narg) {
     478           0 :       error("SIGMA_MEAN0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     479             :     }
     480             :     // set the initial value for the history
     481          50 :     for(unsigned i=0; i<nsel_; i++)
     482        2499 :       for(unsigned j=0; j<narg; j++) {
     483        2474 :         sigma_mean2_last_[i][j].push_back(sigma_mean2_[j]);
     484             :       }
     485             :   } else {
     486             :     // set the initial value for the history
     487          38 :     for(unsigned i=0; i<nsel_; i++)
     488         113 :       for(unsigned j=0; j<narg; j++) {
     489          94 :         sigma_mean2_last_[i][j].push_back(sigma_mean2_[0]);
     490             :       }
     491             :   }
     492             : 
     493             :   // set sigma_bias
     494          44 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     495          25 :     if(sigma_.size()==1) {
     496          25 :       double tmp = sigma_[0];
     497          25 :       sigma_.resize(narg, tmp);
     498           0 :     } else if(sigma_.size()>1&&sigma_.size()!=narg) {
     499           0 :       error("SIGMA0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     500             :     }
     501          25 :     if(sigma_min_.size()==1) {
     502          25 :       double tmp = sigma_min_[0];
     503          25 :       sigma_min_.resize(narg, tmp);
     504           0 :     } else if(sigma_min_.size()>1&&sigma_min_.size()!=narg) {
     505           0 :       error("SIGMA_MIN can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     506             :     }
     507          25 :     if(sigma_max_.size()==1) {
     508          25 :       double tmp = sigma_max_[0];
     509          25 :       sigma_max_.resize(narg, tmp);
     510           0 :     } else if(sigma_max_.size()>1&&sigma_max_.size()!=narg) {
     511           0 :       error("SIGMA_MAX can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     512             :     }
     513          25 :     if(Dsigma_.size()==1) {
     514          25 :       double tmp = Dsigma_[0];
     515          25 :       Dsigma_.resize(narg, tmp);
     516           0 :     } else if(Dsigma_.size()>1&&Dsigma_.size()!=narg) {
     517           0 :       error("DSIGMA can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     518             :     }
     519             :   }
     520             : 
     521          44 :   sigma_max_est_.resize(sigma_max_.size(), 0.);
     522             : 
     523          44 :   IFile restart_sfile;
     524          44 :   restart_sfile.link(*this);
     525          44 :   if(getRestart()&&restart_sfile.FileExist(status_file_name_)) {
     526          10 :     firstTime = false;
     527          20 :     for(unsigned i=0; i<nsel_; i++) {
     528             :       firstTimeW[i] = false;
     529             :     }
     530          10 :     restart_sfile.open(status_file_name_);
     531          10 :     log.printf("  Restarting from %s\n", status_file_name_.c_str());
     532             :     double dummy;
     533          20 :     if(restart_sfile.scanField("time",dummy)) {
     534             :       // check for syncronisation
     535          10 :       std::vector<double> dummy_time(nrep_,0);
     536          10 :       if(master&&nrep_>1) {
     537           0 :         dummy_time[replica_] = dummy;
     538           0 :         multi_sim_comm.Sum(dummy_time);
     539             :       }
     540          10 :       comm.Sum(dummy_time);
     541          10 :       for(unsigned i=1; i<nrep_; i++) {
     542           0 :         std::string msg = "METAINFERENCE restart files " + status_file_name_ + "  are not in sync";
     543           0 :         if(dummy_time[i]!=dummy_time[0]) {
     544           0 :           plumed_merror(msg);
     545             :         }
     546             :       }
     547             :       // nsel
     548          20 :       for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
     549             :         std::string msg_i;
     550          10 :         Tools::convert(i,msg_i);
     551             :         // narg
     552          10 :         if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     553           0 :           for(unsigned j=0; j<narg; ++j) {
     554             :             std::string msg_j;
     555           0 :             Tools::convert(j,msg_j);
     556           0 :             std::string msg = msg_i+"_"+msg_j;
     557             :             double read_sm;
     558           0 :             restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     559           0 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     560             :           }
     561             :         }
     562          10 :         if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
     563             :           double read_sm;
     564             :           std::string msg_j;
     565          10 :           Tools::convert(0,msg_j);
     566          10 :           std::string msg = msg_i+"_"+msg_j;
     567          10 :           restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     568          80 :           for(unsigned j=0; j<narg; j++) {
     569          70 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     570             :           }
     571             :         }
     572             :       }
     573             : 
     574          20 :       for(unsigned i=0; i<sigma_.size(); ++i) {
     575             :         std::string msg;
     576          10 :         Tools::convert(i,msg);
     577          20 :         restart_sfile.scanField("sigma_"+msg,sigma_[i]);
     578             :       }
     579          20 :       for(unsigned i=0; i<sigma_max_.size(); ++i) {
     580             :         std::string msg;
     581          10 :         Tools::convert(i,msg);
     582          10 :         restart_sfile.scanField("sigma_max_"+msg,sigma_max_[i]);
     583          10 :         sigmamax_opt_done_=true;
     584             :       }
     585          10 :       if(noise_type_==GENERIC) {
     586           0 :         for(unsigned i=0; i<ftilde_.size(); ++i) {
     587             :           std::string msg;
     588           0 :           Tools::convert(i,msg);
     589           0 :           restart_sfile.scanField("ftilde_"+msg,ftilde_[i]);
     590             :         }
     591             :       }
     592          10 :       restart_sfile.scanField("scale0_",scale_);
     593          10 :       restart_sfile.scanField("offset0_",offset_);
     594             : 
     595          20 :       for(unsigned i=0; i<nsel_; i++) {
     596             :         std::string msg;
     597          10 :         Tools::convert(i,msg);
     598             :         double tmp_w;
     599          10 :         restart_sfile.scanField("weight_"+msg,tmp_w);
     600          10 :         if(master) {
     601          10 :           average_weights_[i][replica_] = tmp_w;
     602          10 :           if(nrep_>1) {
     603           0 :             multi_sim_comm.Sum(&average_weights_[i][0], nrep_);
     604             :           }
     605             :         }
     606          10 :         comm.Sum(&average_weights_[i][0], nrep_);
     607             :       }
     608             : 
     609             :     }
     610          10 :     restart_sfile.scanField();
     611          10 :     restart_sfile.close();
     612             :   }
     613             : 
     614             :   /* If DSIGMA is not yet initialised do it now */
     615        2537 :   for(unsigned i=0; i<sigma_max_.size(); i++)
     616        2493 :     if(Dsigma_[i]==-1) {
     617           0 :       Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
     618             :     }
     619             : 
     620          88 :   addComponentWithDerivatives("score");
     621          44 :   componentIsNotPeriodic("score");
     622          44 :   valueScore=getPntrToComponent("score");
     623             : 
     624          44 :   if(do_reweight_) {
     625          44 :     addComponent("biasDer");
     626          44 :     componentIsNotPeriodic("biasDer");
     627          44 :     addComponent("weight");
     628          44 :     componentIsNotPeriodic("weight");
     629             :   }
     630             : 
     631          88 :   addComponent("neff");
     632          44 :   componentIsNotPeriodic("neff");
     633             : 
     634          44 :   if(doscale_ || doregres_zero_) {
     635          26 :     addComponent("scale");
     636          13 :     componentIsNotPeriodic("scale");
     637          13 :     valueScale=getPntrToComponent("scale");
     638             :   }
     639             : 
     640          44 :   if(dooffset_) {
     641          12 :     addComponent("offset");
     642           6 :     componentIsNotPeriodic("offset");
     643           6 :     valueOffset=getPntrToComponent("offset");
     644             :   }
     645             : 
     646          44 :   if(dooffset_||doscale_) {
     647          36 :     addComponent("acceptScale");
     648          18 :     componentIsNotPeriodic("acceptScale");
     649          18 :     valueAcceptScale=getPntrToComponent("acceptScale");
     650             :   }
     651             : 
     652          44 :   if(noise_type_==GENERIC) {
     653           6 :     addComponent("acceptFT");
     654           3 :     componentIsNotPeriodic("acceptFT");
     655           3 :     valueAcceptFT=getPntrToComponent("acceptFT");
     656             :   }
     657             : 
     658          88 :   addComponent("acceptSigma");
     659          44 :   componentIsNotPeriodic("acceptSigma");
     660          44 :   valueAccept=getPntrToComponent("acceptSigma");
     661             : 
     662          44 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     663        2499 :     for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     664             :       std::string num;
     665        2474 :       Tools::convert(i,num);
     666        4948 :       addComponent("sigmaMean-"+num);
     667        2474 :       componentIsNotPeriodic("sigmaMean-"+num);
     668        2474 :       valueSigmaMean.push_back(getPntrToComponent("sigmaMean-"+num));
     669        4948 :       getPntrToComponent("sigmaMean-"+num)->set(std::sqrt(sigma_mean2_[i]));
     670        4948 :       addComponent("sigma-"+num);
     671        2474 :       componentIsNotPeriodic("sigma-"+num);
     672        2474 :       valueSigma.push_back(getPntrToComponent("sigma-"+num));
     673        2474 :       getPntrToComponent("sigma-"+num)->set(sigma_[i]);
     674        2474 :       if(noise_type_==GENERIC) {
     675          12 :         addComponent("ftilde-"+num);
     676           6 :         componentIsNotPeriodic("ftilde-"+num);
     677           6 :         valueFtilde.push_back(getPntrToComponent("ftilde-"+num));
     678             :       }
     679             :     }
     680          25 :   } else {
     681          38 :     addComponent("sigmaMean");
     682          19 :     componentIsNotPeriodic("sigmaMean");
     683          19 :     valueSigmaMean.push_back(getPntrToComponent("sigmaMean"));
     684          38 :     getPntrToComponent("sigmaMean")->set(std::sqrt(sigma_mean2_[0]));
     685          38 :     addComponent("sigma");
     686          19 :     componentIsNotPeriodic("sigma");
     687          19 :     valueSigma.push_back(getPntrToComponent("sigma"));
     688          38 :     getPntrToComponent("sigma")->set(sigma_[0]);
     689             :   }
     690             : 
     691          44 :   switch(noise_type_) {
     692           3 :   case GENERIC:
     693           3 :     log.printf("  with general metainference ");
     694           3 :     if(gen_likelihood_==LIKE_GAUSS) {
     695           2 :       log.printf(" and a gaussian likelihood\n");
     696           1 :     } else if(gen_likelihood_==LIKE_LOGN) {
     697           1 :       log.printf(" and a log-normal likelihood\n");
     698             :     }
     699           3 :     log.printf("  ensemble average parameter sampled with a step %lf of sigma_mean\n", Dftilde_);
     700             :     break;
     701           9 :   case GAUSS:
     702           9 :     log.printf("  with gaussian noise and a single noise parameter for all the data\n");
     703             :     break;
     704          14 :   case MGAUSS:
     705          14 :     log.printf("  with gaussian noise and a noise parameter for each data point\n");
     706             :     break;
     707          10 :   case OUTLIERS:
     708          10 :     log.printf("  with long tailed gaussian noise and a single noise parameter for all the data\n");
     709             :     break;
     710           8 :   case MOUTLIERS:
     711           8 :     log.printf("  with long tailed gaussian noise and a noise parameter for each data point\n");
     712             :     break;
     713             :   }
     714             : 
     715          44 :   if(doscale_) {
     716             :     // check that the scale value is the same for all replicas
     717          12 :     std::vector<double> dummy_scale(nrep_,0);
     718          12 :     if(master&&nrep_>1) {
     719           6 :       dummy_scale[replica_] = scale_;
     720           6 :       multi_sim_comm.Sum(dummy_scale);
     721             :     }
     722          12 :     comm.Sum(dummy_scale);
     723          24 :     for(unsigned i=1; i<nrep_; i++) {
     724          12 :       std::string msg = "The SCALE value must be the same for all replicas: check your input or restart file";
     725          12 :       if(dummy_scale[i]!=dummy_scale[0]) {
     726           0 :         plumed_merror(msg);
     727             :       }
     728             :     }
     729          12 :     log.printf("  sampling a common scaling factor with:\n");
     730          12 :     log.printf("    initial scale parameter %f\n",scale_);
     731          12 :     if(scale_prior_==SC_GAUSS) {
     732           0 :       log.printf("    gaussian prior with mean %f and width %f\n",scale_mu_,Dscale_);
     733             :     }
     734          12 :     if(scale_prior_==SC_FLAT) {
     735          12 :       log.printf("    flat prior between %f - %f\n",scale_min_,scale_max_);
     736          12 :       log.printf("    maximum MC move of scale parameter %f\n",Dscale_);
     737             :     }
     738             :   }
     739             : 
     740          44 :   if(dooffset_) {
     741             :     // check that the offset value is the same for all replicas
     742           6 :     std::vector<double> dummy_offset(nrep_,0);
     743           6 :     if(master&&nrep_>1) {
     744           0 :       dummy_offset[replica_] = offset_;
     745           0 :       multi_sim_comm.Sum(dummy_offset);
     746             :     }
     747           6 :     comm.Sum(dummy_offset);
     748           6 :     for(unsigned i=1; i<nrep_; i++) {
     749           0 :       std::string msg = "The OFFSET value must be the same for all replicas: check your input or restart file";
     750           0 :       if(dummy_offset[i]!=dummy_offset[0]) {
     751           0 :         plumed_merror(msg);
     752             :       }
     753             :     }
     754           6 :     log.printf("  sampling a common offset with:\n");
     755           6 :     log.printf("    initial offset parameter %f\n",offset_);
     756           6 :     if(offset_prior_==SC_GAUSS) {
     757           0 :       log.printf("    gaussian prior with mean %f and width %f\n",offset_mu_,Doffset_);
     758             :     }
     759           6 :     if(offset_prior_==SC_FLAT) {
     760           6 :       log.printf("    flat prior between %f - %f\n",offset_min_,offset_max_);
     761           6 :       log.printf("    maximum MC move of offset parameter %f\n",Doffset_);
     762             :     }
     763             :   }
     764             : 
     765          44 :   if(doregres_zero_) {
     766           1 :     log.printf("  doing regression with zero intercept with stride: %d\n", nregres_zero_);
     767             :   }
     768             : 
     769          44 :   log.printf("  number of experimental data points %u\n",narg);
     770          44 :   log.printf("  number of replicas %u\n",nrep_);
     771          44 :   log.printf("  initial data uncertainties");
     772        2537 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     773        2493 :     log.printf(" %f", sigma_[i]);
     774             :   }
     775          44 :   log.printf("\n");
     776          44 :   log.printf("  minimum data uncertainties");
     777        2537 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     778        2493 :     log.printf(" %f",sigma_min_[i]);
     779             :   }
     780          44 :   log.printf("\n");
     781          44 :   log.printf("  maximum data uncertainties");
     782        2537 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     783        2493 :     log.printf(" %f",sigma_max_[i]);
     784             :   }
     785          44 :   log.printf("\n");
     786          44 :   log.printf("  maximum MC move of data uncertainties");
     787        2537 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     788        2493 :     log.printf(" %f",Dsigma_[i]);
     789             :   }
     790          44 :   log.printf("\n");
     791          44 :   log.printf("  temperature of the system %f\n",kbt_);
     792          44 :   log.printf("  MC steps %u\n",MCsteps_);
     793          44 :   log.printf("  initial standard errors of the mean");
     794        2537 :   for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     795        2493 :     log.printf(" %f", std::sqrt(sigma_mean2_[i]));
     796             :   }
     797          44 :   log.printf("\n");
     798             : 
     799             :   //resize the number of metainference derivatives and the number of back-calculated data
     800          44 :   metader_.resize(narg, 0.);
     801          44 :   calc_data_.resize(narg, 0.);
     802             : 
     803          88 :   log<<"  Bibliography "<<plumed.cite("Bonomi, Camilloni, Cavalli, Vendruscolo, Sci. Adv. 2, e150117 (2016)");
     804          44 :   if(do_reweight_) {
     805          44 :     log<<plumed.cite("Bonomi, Camilloni, Vendruscolo, Sci. Rep. 6, 31232 (2016)");
     806             :   }
     807          44 :   if(do_optsigmamean_>0) {
     808           8 :     log<<plumed.cite("Loehr, Jussupow, Camilloni, J. Chem. Phys. 146, 165102 (2017)");
     809             :   }
     810          88 :   log<<plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)");
     811          44 :   log<<"\n";
     812          44 : }
     813             : 
     814           0 : void MetainferenceBase::Selector() {
     815           0 :   iselect = 0;
     816             :   // set the value of selector for  REM-like stuff
     817           0 :   if(selector_.length()>0) {
     818           0 :     iselect = static_cast<unsigned>(plumed.passMap[selector_]);
     819             :   }
     820           0 : }
     821             : 
     822         120 : double MetainferenceBase::getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
     823             :                                       const double scale, const double offset) {
     824         120 :   const double scale2 = scale*scale;
     825         120 :   const double sm2    = sigma_mean2_[0];
     826         120 :   const double ss2    = sigma[0]*sigma[0] + scale2*sm2;
     827         120 :   const double sss    = sigma[0]*sigma[0] + sm2;
     828             : 
     829             :   double ene = 0.0;
     830         120 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     831             :   {
     832             :     #pragma omp for reduction( + : ene)
     833             :     for(unsigned i=0; i<narg; ++i) {
     834             :       const double dev = scale*mean[i]-parameters[i]+offset;
     835             :       const double a2 = 0.5*dev*dev + ss2;
     836             :       if(sm2 > 0.0) {
     837             :         ene += std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
     838             :       } else {
     839             :         ene += std::log(2.0*a2);
     840             :       }
     841             :     }
     842             :   }
     843             :   // add one single Jeffrey's prior and one normalisation per data point
     844         120 :   ene += 0.5*std::log(sss) + static_cast<double>(narg)*0.5*std::log(0.5*M_PI*M_PI/ss2);
     845         120 :   if(doscale_ || doregres_zero_) {
     846          12 :     ene += 0.5*std::log(sss);
     847             :   }
     848         120 :   if(dooffset_) {
     849           0 :     ene += 0.5*std::log(sss);
     850             :   }
     851         120 :   return kbt_ * ene;
     852             : }
     853             : 
     854        5328 : double MetainferenceBase::getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
     855             :                                        const double scale, const double offset) {
     856        5328 :   const double scale2 = scale*scale;
     857             :   double ene = 0.0;
     858        5328 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     859             :   {
     860             :     #pragma omp for reduction( + : ene)
     861             :     for(unsigned i=0; i<narg; ++i) {
     862             :       const double sm2 = sigma_mean2_[i];
     863             :       const double ss2 = sigma[i]*sigma[i] + scale2*sm2;
     864             :       const double sss = sigma[i]*sigma[i] + sm2;
     865             :       const double dev = scale*mean[i]-parameters[i]+offset;
     866             :       const double a2  = 0.5*dev*dev + ss2;
     867             :       if(sm2 > 0.0) {
     868             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
     869             :       } else {
     870             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2);
     871             :       }
     872             :       if(doscale_ || doregres_zero_) {
     873             :         ene += 0.5*std::log(sss);
     874             :       }
     875             :       if(dooffset_) {
     876             :         ene += 0.5*std::log(sss);
     877             :       }
     878             :     }
     879             :   }
     880        5328 :   return kbt_ * ene;
     881             : }
     882             : 
     883         144 : double MetainferenceBase::getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
     884             :     const double scale, const double offset) {
     885             :   double ene = 0.0;
     886         144 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     887             :   {
     888             :     #pragma omp for reduction( + : ene)
     889             :     for(unsigned i=0; i<narg; ++i) {
     890             :       const double inv_sb2  = 1./(sigma[i]*sigma[i]);
     891             :       const double inv_sm2  = 1./sigma_mean2_[i];
     892             :       double devb = 0;
     893             :       if(gen_likelihood_==LIKE_GAUSS) {
     894             :         devb = scale*ftilde[i]-parameters[i]+offset;
     895             :       } else if(gen_likelihood_==LIKE_LOGN) {
     896             :         devb = std::log(scale*ftilde[i]/parameters[i]);
     897             :       }
     898             :       double devm = mean[i] - ftilde[i];
     899             :       // deviation + normalisation + jeffrey
     900             :       double normb = 0.;
     901             :       if(gen_likelihood_==LIKE_GAUSS) {
     902             :         normb = -0.5*std::log(0.5/M_PI*inv_sb2);
     903             :       } else if(gen_likelihood_==LIKE_LOGN) {
     904             :         normb = -0.5*std::log(0.5/M_PI*inv_sb2/(parameters[i]*parameters[i]));
     905             :       }
     906             :       const double normm         = -0.5*std::log(0.5/M_PI*inv_sm2);
     907             :       const double jeffreys      = -0.5*std::log(2.*inv_sb2);
     908             :       ene += 0.5*devb*devb*inv_sb2 + 0.5*devm*devm*inv_sm2 + normb + normm + jeffreys;
     909             :       if(doscale_ || doregres_zero_) {
     910             :         ene += jeffreys;
     911             :       }
     912             :       if(dooffset_) {
     913             :         ene += jeffreys;
     914             :       }
     915             :     }
     916             :   }
     917         144 :   return kbt_ * ene;
     918             : }
     919             : 
     920         626 : double MetainferenceBase::getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
     921             :                                       const double scale, const double offset) {
     922         626 :   const double scale2  = scale*scale;
     923         626 :   const double inv_s2  = 1./(sigma[0]*sigma[0] + scale2*sigma_mean2_[0]);
     924         626 :   const double inv_sss = 1./(sigma[0]*sigma[0] + sigma_mean2_[0]);
     925             : 
     926             :   double ene = 0.0;
     927         626 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     928             :   {
     929             :     #pragma omp for reduction( + : ene)
     930             :     for(unsigned i=0; i<narg; ++i) {
     931             :       double dev = scale*mean[i]-parameters[i]+offset;
     932             :       ene += 0.5*dev*dev*inv_s2;
     933             :     }
     934             :   }
     935         626 :   const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
     936         626 :   const double jeffreys = -0.5*std::log(2.*inv_sss);
     937             :   // add Jeffrey's prior in case one sigma for all data points + one normalisation per datapoint
     938         626 :   ene += jeffreys + static_cast<double>(narg)*normalisation;
     939         626 :   if(doscale_ || doregres_zero_) {
     940           0 :     ene += jeffreys;
     941             :   }
     942         626 :   if(dooffset_) {
     943         108 :     ene += jeffreys;
     944             :   }
     945             : 
     946         626 :   return kbt_ * ene;
     947             : }
     948             : 
     949         368 : double MetainferenceBase::getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
     950             :                                        const double scale, const double offset) {
     951         368 :   const double scale2 = scale*scale;
     952             : 
     953             :   double ene = 0.0;
     954         368 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     955             :   {
     956             :     #pragma omp for reduction( + : ene)
     957             :     for(unsigned i=0; i<narg; ++i) {
     958             :       const double inv_s2  = 1./(sigma[i]*sigma[i] + scale2*sigma_mean2_[i]);
     959             :       const double inv_sss = 1./(sigma[i]*sigma[i] + sigma_mean2_[i]);
     960             :       double dev = scale*mean[i]-parameters[i]+offset;
     961             :       // deviation + normalisation + jeffrey
     962             :       const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
     963             :       const double jeffreys      = -0.5*std::log(2.*inv_sss);
     964             :       ene += 0.5*dev*dev*inv_s2 + normalisation + jeffreys;
     965             :       if(doscale_ || doregres_zero_) {
     966             :         ene += jeffreys;
     967             :       }
     968             :       if(dooffset_) {
     969             :         ene += jeffreys;
     970             :       }
     971             :     }
     972             :   }
     973         368 :   return kbt_ * ene;
     974             : }
     975             : 
     976          36 : void MetainferenceBase::moveTilde(const std::vector<double> &mean_, double &old_energy) {
     977          36 :   std::vector<double> new_ftilde(sigma_.size());
     978          36 :   new_ftilde = ftilde_;
     979             : 
     980             :   // change all tildes
     981         108 :   for(unsigned j=0; j<sigma_.size(); j++) {
     982          72 :     const double r3 = random[0].Gaussian();
     983          72 :     const double ds3 = Dftilde_*std::sqrt(sigma_mean2_[j])*r3;
     984          72 :     new_ftilde[j] = ftilde_[j] + ds3;
     985             :   }
     986             :   // calculate new energy
     987          36 :   double new_energy = getEnergyMIGEN(mean_,new_ftilde,sigma_,scale_,offset_);
     988             : 
     989             :   // accept or reject
     990          36 :   const double delta = ( new_energy - old_energy ) / kbt_;
     991             :   // if delta is negative always accept move
     992          36 :   if( delta <= 0.0 ) {
     993          36 :     old_energy = new_energy;
     994          36 :     ftilde_ = new_ftilde;
     995          36 :     MCacceptFT_++;
     996             :     // otherwise extract random number
     997             :   } else {
     998           0 :     const double s = random[0].RandU01();
     999           0 :     if( s < std::exp(-delta) ) {
    1000           0 :       old_energy = new_energy;
    1001           0 :       ftilde_ = new_ftilde;
    1002           0 :       MCacceptFT_++;
    1003             :     }
    1004             :   }
    1005          36 : }
    1006             : 
    1007        1896 : void MetainferenceBase::moveScaleOffset(const std::vector<double> &mean_, double &old_energy) {
    1008        1896 :   double new_scale = scale_;
    1009             : 
    1010        1896 :   if(doscale_) {
    1011        1824 :     if(scale_prior_==SC_FLAT) {
    1012        1824 :       const double r1 = random[1].Gaussian();
    1013        1824 :       const double ds1 = Dscale_*r1;
    1014        1824 :       new_scale += ds1;
    1015             :       // check boundaries
    1016        1824 :       if(new_scale > scale_max_) {
    1017           0 :         new_scale = 2.0 * scale_max_ - new_scale;
    1018             :       }
    1019        1824 :       if(new_scale < scale_min_) {
    1020           0 :         new_scale = 2.0 * scale_min_ - new_scale;
    1021             :       }
    1022             :     } else {
    1023           0 :       const double r1 = random[1].Gaussian();
    1024           0 :       const double ds1 = 0.5*(scale_mu_-new_scale)+Dscale_*std::exp(1)/M_PI*r1;
    1025           0 :       new_scale += ds1;
    1026             :     }
    1027             :   }
    1028             : 
    1029        1896 :   double new_offset = offset_;
    1030             : 
    1031        1896 :   if(dooffset_) {
    1032          72 :     if(offset_prior_==SC_FLAT) {
    1033          72 :       const double r1 = random[1].Gaussian();
    1034          72 :       const double ds1 = Doffset_*r1;
    1035          72 :       new_offset += ds1;
    1036             :       // check boundaries
    1037          72 :       if(new_offset > offset_max_) {
    1038           0 :         new_offset = 2.0 * offset_max_ - new_offset;
    1039             :       }
    1040          72 :       if(new_offset < offset_min_) {
    1041           0 :         new_offset = 2.0 * offset_min_ - new_offset;
    1042             :       }
    1043             :     } else {
    1044           0 :       const double r1 = random[1].Gaussian();
    1045           0 :       const double ds1 = 0.5*(offset_mu_-new_offset)+Doffset_*std::exp(1)/M_PI*r1;
    1046           0 :       new_offset += ds1;
    1047             :     }
    1048             :   }
    1049             : 
    1050             :   // calculate new energy
    1051             :   double new_energy = 0.;
    1052             : 
    1053        1896 :   switch(noise_type_) {
    1054          36 :   case GAUSS:
    1055          36 :     new_energy = getEnergyGJ(mean_,sigma_,new_scale,new_offset);
    1056             :     break;
    1057          48 :   case MGAUSS:
    1058          48 :     new_energy = getEnergyGJE(mean_,sigma_,new_scale,new_offset);
    1059             :     break;
    1060           0 :   case OUTLIERS:
    1061           0 :     new_energy = getEnergySP(mean_,sigma_,new_scale,new_offset);
    1062             :     break;
    1063        1776 :   case MOUTLIERS:
    1064        1776 :     new_energy = getEnergySPE(mean_,sigma_,new_scale,new_offset);
    1065             :     break;
    1066          36 :   case GENERIC:
    1067          36 :     new_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,new_scale,new_offset);
    1068             :     break;
    1069             :   }
    1070             : 
    1071             :   // for the scale/offset we need to consider the total energy
    1072        1896 :   std::vector<double> totenergies(2);
    1073        1896 :   if(master) {
    1074         984 :     totenergies[0] = old_energy;
    1075         984 :     totenergies[1] = new_energy;
    1076         984 :     if(nrep_>1) {
    1077         912 :       multi_sim_comm.Sum(totenergies);
    1078             :     }
    1079             :   } else {
    1080         912 :     totenergies[0] = 0;
    1081         912 :     totenergies[1] = 0;
    1082             :   }
    1083        1896 :   comm.Sum(totenergies);
    1084             : 
    1085             :   // accept or reject
    1086        1896 :   const double delta = ( totenergies[1] - totenergies[0] ) / kbt_;
    1087             :   // if delta is negative always accept move
    1088        1896 :   if( delta <= 0.0 ) {
    1089        1896 :     old_energy = new_energy;
    1090        1896 :     scale_ = new_scale;
    1091        1896 :     offset_ = new_offset;
    1092        1896 :     MCacceptScale_++;
    1093             :     // otherwise extract random number
    1094             :   } else {
    1095           0 :     double s = random[1].RandU01();
    1096           0 :     if( s < std::exp(-delta) ) {
    1097           0 :       old_energy = new_energy;
    1098           0 :       scale_ = new_scale;
    1099           0 :       offset_ = new_offset;
    1100           0 :       MCacceptScale_++;
    1101             :     }
    1102             :   }
    1103        1896 : }
    1104             : 
    1105        2327 : void MetainferenceBase::moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow) {
    1106        2327 :   std::vector<double> new_sigma(sigma_.size());
    1107        2327 :   new_sigma = sigma_;
    1108             : 
    1109             :   // change MCchunksize_ sigmas
    1110        2327 :   if (MCchunksize_ > 0) {
    1111           0 :     if ((MCchunksize_ * i) >= sigma_.size()) {
    1112             :       // This means we are not moving any sigma, so we should break immediately
    1113           0 :       breaknow = true;
    1114             :     }
    1115             : 
    1116             :     // change random sigmas
    1117           0 :     for(unsigned j=0; j<MCchunksize_; j++) {
    1118           0 :       const unsigned shuffle_index = j + MCchunksize_ * i;
    1119           0 :       if (shuffle_index >= sigma_.size()) {
    1120             :         // Going any further will segfault but we should still evaluate the sigmas we changed
    1121             :         break;
    1122             :       }
    1123           0 :       const unsigned index = indices[shuffle_index];
    1124           0 :       const double r2 = random[0].Gaussian();
    1125           0 :       const double ds2 = Dsigma_[index]*r2;
    1126           0 :       new_sigma[index] = sigma_[index] + ds2;
    1127             :       // check boundaries
    1128           0 :       if(new_sigma[index] > sigma_max_[index]) {
    1129           0 :         new_sigma[index] = 2.0 * sigma_max_[index] - new_sigma[index];
    1130             :       }
    1131           0 :       if(new_sigma[index] < sigma_min_[index]) {
    1132           0 :         new_sigma[index] = 2.0 * sigma_min_[index] - new_sigma[index];
    1133             :       }
    1134             :     }
    1135             :   } else {
    1136             :     // change all sigmas
    1137       13714 :     for(unsigned j=0; j<sigma_.size(); j++) {
    1138       11387 :       const double r2 = random[0].Gaussian();
    1139       11387 :       const double ds2 = Dsigma_[j]*r2;
    1140       11387 :       new_sigma[j] = sigma_[j] + ds2;
    1141             :       // check boundaries
    1142       11387 :       if(new_sigma[j] > sigma_max_[j]) {
    1143           0 :         new_sigma[j] = 2.0 * sigma_max_[j] - new_sigma[j];
    1144             :       }
    1145       11387 :       if(new_sigma[j] < sigma_min_[j]) {
    1146           0 :         new_sigma[j] = 2.0 * sigma_min_[j] - new_sigma[j];
    1147             :       }
    1148             :     }
    1149             :   }
    1150             : 
    1151        2327 :   if (breaknow) {
    1152             :     // We didnt move any sigmas, so no sense in evaluating anything
    1153             :     return;
    1154             :   }
    1155             : 
    1156             :   // calculate new energy
    1157             :   double new_energy = 0.;
    1158        2327 :   switch(noise_type_) {
    1159         295 :   case GAUSS:
    1160         295 :     new_energy = getEnergyGJ(mean_,new_sigma,scale_,offset_);
    1161             :     break;
    1162         160 :   case MGAUSS:
    1163         160 :     new_energy = getEnergyGJE(mean_,new_sigma,scale_,offset_);
    1164             :     break;
    1165          60 :   case OUTLIERS:
    1166          60 :     new_energy = getEnergySP(mean_,new_sigma,scale_,offset_);
    1167             :     break;
    1168        1776 :   case MOUTLIERS:
    1169        1776 :     new_energy = getEnergySPE(mean_,new_sigma,scale_,offset_);
    1170             :     break;
    1171          36 :   case GENERIC:
    1172          36 :     new_energy = getEnergyMIGEN(mean_,ftilde_,new_sigma,scale_,offset_);
    1173             :     break;
    1174             :   }
    1175             : 
    1176             :   // accept or reject
    1177        2327 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1178             :   // if delta is negative always accept move
    1179        2327 :   if( delta <= 0.0 ) {
    1180        2327 :     old_energy = new_energy;
    1181        2327 :     sigma_ = new_sigma;
    1182        2327 :     MCaccept_++;
    1183             :     // otherwise extract random number
    1184             :   } else {
    1185           0 :     const double s = random[0].RandU01();
    1186           0 :     if( s < std::exp(-delta) ) {
    1187           0 :       old_energy = new_energy;
    1188           0 :       sigma_ = new_sigma;
    1189           0 :       MCaccept_++;
    1190             :     }
    1191             :   }
    1192             : }
    1193             : 
    1194        2327 : double MetainferenceBase::doMonteCarlo(const std::vector<double> &mean_) {
    1195             :   // calculate old energy with the updated coordinates
    1196        2327 :   double old_energy=0.;
    1197             : 
    1198        2327 :   switch(noise_type_) {
    1199         295 :   case GAUSS:
    1200         295 :     old_energy = getEnergyGJ(mean_,sigma_,scale_,offset_);
    1201         295 :     break;
    1202         160 :   case MGAUSS:
    1203         160 :     old_energy = getEnergyGJE(mean_,sigma_,scale_,offset_);
    1204         160 :     break;
    1205          60 :   case OUTLIERS:
    1206          60 :     old_energy = getEnergySP(mean_,sigma_,scale_,offset_);
    1207          60 :     break;
    1208        1776 :   case MOUTLIERS:
    1209        1776 :     old_energy = getEnergySPE(mean_,sigma_,scale_,offset_);
    1210        1776 :     break;
    1211          36 :   case GENERIC:
    1212          36 :     old_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,scale_,offset_);
    1213          36 :     break;
    1214             :   }
    1215             : 
    1216             :   // do not run MC if this is a replica-exchange trial
    1217        2327 :   if(!getExchangeStep()) {
    1218             : 
    1219             :     // Create std::vector of random sigma indices
    1220             :     std::vector<unsigned> indices;
    1221        2327 :     if (MCchunksize_ > 0) {
    1222           0 :       for (unsigned j=0; j<sigma_.size(); j++) {
    1223           0 :         indices.push_back(j);
    1224             :       }
    1225           0 :       random[2].Shuffle(indices);
    1226             :     }
    1227        2327 :     bool breaknow = false;
    1228             : 
    1229             :     // cycle on MC steps
    1230        4654 :     for(unsigned i=0; i<MCsteps_; ++i) {
    1231        2327 :       MCtrial_++;
    1232             :       // propose move for ftilde
    1233        2327 :       if(noise_type_==GENERIC) {
    1234          36 :         moveTilde(mean_, old_energy);
    1235             :       }
    1236             :       // propose move for scale and/or offset
    1237        2327 :       if(doscale_||dooffset_) {
    1238        1896 :         moveScaleOffset(mean_, old_energy);
    1239             :       }
    1240             :       // propose move for sigma
    1241        2327 :       moveSigmas(mean_, old_energy, i, indices, breaknow);
    1242             :       // exit from the loop if this is the case
    1243        2327 :       if(breaknow) {
    1244             :         break;
    1245             :       }
    1246             :     }
    1247             : 
    1248             :     /* save the result of the sampling */
    1249             :     /* ftilde */
    1250        2327 :     if(noise_type_==GENERIC) {
    1251          36 :       double accept = static_cast<double>(MCacceptFT_) / static_cast<double>(MCtrial_);
    1252          36 :       valueAcceptFT->set(accept);
    1253         108 :       for(unsigned i=0; i<sigma_.size(); i++) {
    1254          72 :         valueFtilde[i]->set(ftilde_[i]);
    1255             :       }
    1256             :     }
    1257             :     /* scale and offset */
    1258        2327 :     if(doscale_ || doregres_zero_) {
    1259        1830 :       valueScale->set(scale_);
    1260             :     }
    1261        2327 :     if(dooffset_) {
    1262          72 :       valueOffset->set(offset_);
    1263             :     }
    1264        2327 :     if(doscale_||dooffset_) {
    1265        1896 :       double accept = static_cast<double>(MCacceptScale_) / static_cast<double>(MCtrial_);
    1266        1896 :       valueAcceptScale->set(accept);
    1267             :     }
    1268             :     /* sigmas */
    1269       13714 :     for(unsigned i=0; i<sigma_.size(); i++) {
    1270       11387 :       valueSigma[i]->set(sigma_[i]);
    1271             :     }
    1272        2327 :     double accept = static_cast<double>(MCaccept_) / static_cast<double>(MCtrial_);
    1273        2327 :     valueAccept->set(accept);
    1274             :   }
    1275             : 
    1276             :   // here we sum the score over the replicas to get the full metainference score that we save as a bias
    1277        2327 :   if(master) {
    1278        1329 :     if(nrep_>1) {
    1279        1022 :       multi_sim_comm.Sum(old_energy);
    1280             :     }
    1281             :   } else {
    1282         998 :     old_energy=0;
    1283             :   }
    1284        2327 :   comm.Sum(old_energy);
    1285             : 
    1286             :   // this is the energy with current coordinates and parameters
    1287        2327 :   return old_energy;
    1288             : }
    1289             : 
    1290             : /*
    1291             :    In the following energy-force functions we don't add the normalisation and the jeffreys priors
    1292             :    because they are not needed for the forces, the correct MetaInference energy is the one calculated
    1293             :    in the Monte-Carlo
    1294             : */
    1295             : 
    1296          60 : void MetainferenceBase::getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1297             :     const std::vector<double> &dmean_b) {
    1298          60 :   const double scale2 = scale_*scale_;
    1299          60 :   const double sm2    = sigma_mean2_[0];
    1300          60 :   const double ss2    = sigma_[0]*sigma_[0] + scale2*sm2;
    1301          60 :   std::vector<double> f(narg,0);
    1302             : 
    1303          60 :   if(master) {
    1304          60 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1305             :     {
    1306             :       #pragma omp for
    1307             :       for(unsigned i=0; i<narg; ++i) {
    1308             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1309             :         const double a2 = 0.5*dev*dev + ss2;
    1310             :         if(sm2 > 0.0) {
    1311             :           const double t = std::exp(-a2/sm2);
    1312             :           const double dt = 1./t;
    1313             :           const double dit = 1./(1.-dt);
    1314             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1315             :         } else {
    1316             :           f[i] = -scale_*dev*(1./a2);
    1317             :         }
    1318             :       }
    1319             :     }
    1320             :     // collect contribution to forces and energy from other replicas
    1321          60 :     if(nrep_>1) {
    1322           0 :       multi_sim_comm.Sum(&f[0],narg);
    1323             :     }
    1324             :   }
    1325             :   // intra-replica summation
    1326          60 :   comm.Sum(&f[0],narg);
    1327             : 
    1328             :   double w_tmp = 0.;
    1329         480 :   for(unsigned i=0; i<narg; ++i) {
    1330         420 :     setMetaDer(i, -kbt_*f[i]*dmean_x[i]);
    1331         420 :     w_tmp += kbt_*f[i]*dmean_b[i];
    1332             :   }
    1333             : 
    1334          60 :   if(do_reweight_) {
    1335           0 :     setArgDerivatives(valueScore, -w_tmp);
    1336           0 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1337             :   }
    1338          60 : }
    1339             : 
    1340        1776 : void MetainferenceBase::getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1341             :     const std::vector<double> &dmean_b) {
    1342        1776 :   const double scale2 = scale_*scale_;
    1343        1776 :   std::vector<double> f(narg,0);
    1344             : 
    1345        1776 :   if(master) {
    1346         888 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1347             :     {
    1348             :       #pragma omp for
    1349             :       for(unsigned i=0; i<narg; ++i) {
    1350             :         const double sm2 = sigma_mean2_[i];
    1351             :         const double ss2 = sigma_[i]*sigma_[i] + scale2*sm2;
    1352             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1353             :         const double a2  = 0.5*dev*dev + ss2;
    1354             :         if(sm2 > 0.0) {
    1355             :           const double t   = std::exp(-a2/sm2);
    1356             :           const double dt  = 1./t;
    1357             :           const double dit = 1./(1.-dt);
    1358             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1359             :         } else {
    1360             :           f[i] = -scale_*dev*(1./a2);
    1361             :         }
    1362             :       }
    1363             :     }
    1364             :     // collect contribution to forces and energy from other replicas
    1365         888 :     if(nrep_>1) {
    1366         888 :       multi_sim_comm.Sum(&f[0],narg);
    1367             :     }
    1368             :   }
    1369        1776 :   comm.Sum(&f[0],narg);
    1370             : 
    1371             :   double w_tmp = 0.;
    1372        8880 :   for(unsigned i=0; i<narg; ++i) {
    1373        7104 :     setMetaDer(i, -kbt_ * dmean_x[i] * f[i]);
    1374        7104 :     w_tmp += kbt_ * dmean_b[i] *f[i];
    1375             :   }
    1376             : 
    1377        1776 :   if(do_reweight_) {
    1378        1776 :     setArgDerivatives(valueScore, -w_tmp);
    1379        3552 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1380             :   }
    1381        1776 : }
    1382             : 
    1383         295 : void MetainferenceBase::getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1384             :     const std::vector<double> &dmean_b) {
    1385         295 :   const double scale2 = scale_*scale_;
    1386         295 :   double inv_s2=0.;
    1387             : 
    1388         295 :   if(master) {
    1389         253 :     inv_s2 = 1./(sigma_[0]*sigma_[0] + scale2*sigma_mean2_[0]);
    1390         253 :     if(nrep_>1) {
    1391          42 :       multi_sim_comm.Sum(inv_s2);
    1392             :     }
    1393             :   }
    1394         295 :   comm.Sum(inv_s2);
    1395             : 
    1396         295 :   double w_tmp = 0.;
    1397         295 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1398             :   {
    1399             :     #pragma omp for reduction( + : w_tmp)
    1400             :     for(unsigned i=0; i<narg; ++i) {
    1401             :       const double dev = scale_*mean[i]-parameters[i]+offset_;
    1402             :       const double mult = dev*scale_*inv_s2;
    1403             :       setMetaDer(i, kbt_*dmean_x[i]*mult);
    1404             :       w_tmp += kbt_*dmean_b[i]*mult;
    1405             :     }
    1406             :   }
    1407             : 
    1408         295 :   if(do_reweight_) {
    1409          84 :     setArgDerivatives(valueScore, w_tmp);
    1410         168 :     getPntrToComponent("biasDer")->set(w_tmp);
    1411             :   }
    1412         295 : }
    1413             : 
    1414         160 : void MetainferenceBase::getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1415             :     const std::vector<double> &dmean_b) {
    1416         160 :   const double scale2 = scale_*scale_;
    1417         160 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1418             : 
    1419         160 :   if(master) {
    1420        2044 :     for(unsigned i=0; i<sigma_.size(); ++i) {
    1421        1952 :       inv_s2[i] = 1./(sigma_[i]*sigma_[i] + scale2*sigma_mean2_[i]);
    1422             :     }
    1423          92 :     if(nrep_>1) {
    1424          92 :       multi_sim_comm.Sum(&inv_s2[0],sigma_.size());
    1425             :     }
    1426             :   }
    1427         160 :   comm.Sum(&inv_s2[0],sigma_.size());
    1428             : 
    1429         160 :   double w_tmp = 0.;
    1430         160 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1431             :   {
    1432             :     #pragma omp for reduction( + : w_tmp)
    1433             :     for(unsigned i=0; i<narg; ++i) {
    1434             :       const double dev  = scale_*mean[i]-parameters[i]+offset_;
    1435             :       const double mult = dev*scale_*inv_s2[i];
    1436             :       setMetaDer(i, kbt_*dmean_x[i]*mult);
    1437             :       w_tmp += kbt_*dmean_b[i]*mult;
    1438             :     }
    1439             :   }
    1440             : 
    1441         160 :   if(do_reweight_) {
    1442          76 :     setArgDerivatives(valueScore, w_tmp);
    1443         152 :     getPntrToComponent("biasDer")->set(w_tmp);
    1444             :   }
    1445         160 : }
    1446             : 
    1447          36 : void MetainferenceBase::getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b) {
    1448          36 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1449          36 :   std::vector<double> dev(sigma_.size(),0.);
    1450          36 :   std::vector<double> dev2(sigma_.size(),0.);
    1451             : 
    1452         108 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1453          72 :     inv_s2[i]   = 1./sigma_mean2_[i];
    1454          72 :     if(master) {
    1455          72 :       dev[i]  = (mean[i]-ftilde_[i]);
    1456          72 :       dev2[i] = dev[i]*dev[i];
    1457             :     }
    1458             :   }
    1459          36 :   if(master&&nrep_>1) {
    1460           0 :     multi_sim_comm.Sum(&dev[0],dev.size());
    1461           0 :     multi_sim_comm.Sum(&dev2[0],dev2.size());
    1462             :   }
    1463          36 :   comm.Sum(&dev[0],dev.size());
    1464          36 :   comm.Sum(&dev2[0],dev2.size());
    1465             : 
    1466          36 :   double dene_b = 0.;
    1467          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(dene_b)
    1468             :   {
    1469             :     #pragma omp for reduction( + : dene_b)
    1470             :     for(unsigned i=0; i<narg; ++i) {
    1471             :       const double dene_x  = kbt_*inv_s2[i]*dmean_x[i]*dev[i];
    1472             :       dene_b += kbt_*inv_s2[i]*dmean_b[i]*dev[i];
    1473             :       setMetaDer(i, dene_x);
    1474             :     }
    1475             :   }
    1476             : 
    1477          36 :   if(do_reweight_) {
    1478           0 :     setArgDerivatives(valueScore, dene_b);
    1479           0 :     getPntrToComponent("biasDer")->set(dene_b);
    1480             :   }
    1481          36 : }
    1482             : 
    1483        2327 : void MetainferenceBase::get_weights(double &weight, double &norm, double &neff) {
    1484        2327 :   const double dnrep = static_cast<double>(nrep_);
    1485             :   // calculate the weights either from BIAS
    1486        2327 :   if(do_reweight_) {
    1487        1936 :     std::vector<double> bias(nrep_,0);
    1488        1936 :     if(master) {
    1489         980 :       bias[replica_] = getArgument(0);
    1490         980 :       if(nrep_>1) {
    1491         980 :         multi_sim_comm.Sum(&bias[0], nrep_);
    1492             :       }
    1493             :     }
    1494        1936 :     comm.Sum(&bias[0], nrep_);
    1495             : 
    1496             :     // accumulate weights
    1497        1936 :     if(!firstTimeW[iselect]) {
    1498        5742 :       for(unsigned i=0; i<nrep_; ++i) {
    1499        3828 :         const double delta=bias[i]-average_weights_[iselect][i];
    1500        3828 :         average_weights_[iselect][i]+=decay_w_*delta;
    1501             :       }
    1502             :     } else {
    1503             :       firstTimeW[iselect] = false;
    1504          66 :       for(unsigned i=0; i<nrep_; ++i) {
    1505          44 :         average_weights_[iselect][i] = bias[i];
    1506             :       }
    1507             :     }
    1508             : 
    1509             :     // set average back into bias and set norm to one
    1510        1936 :     const double maxbias = *(std::max_element(average_weights_[iselect].begin(), average_weights_[iselect].end()));
    1511        5808 :     for(unsigned i=0; i<nrep_; ++i) {
    1512        3872 :       bias[i] = std::exp((average_weights_[iselect][i]-maxbias)/kbt_);
    1513             :     }
    1514             :     // set local weight, norm and weight variance
    1515        1936 :     weight = bias[replica_];
    1516             :     double w2=0.;
    1517        5808 :     for(unsigned i=0; i<nrep_; ++i) {
    1518        3872 :       w2 += bias[i]*bias[i];
    1519        3872 :       norm += bias[i];
    1520             :     }
    1521        1936 :     neff = norm*norm/w2;
    1522        3872 :     getPntrToComponent("weight")->set(weight/norm);
    1523             :   } else {
    1524             :     // or arithmetic ones
    1525         391 :     neff = dnrep;
    1526         391 :     weight = 1.0;
    1527         391 :     norm = dnrep;
    1528             :   }
    1529        2327 :   getPntrToComponent("neff")->set(neff);
    1530        2327 : }
    1531             : 
    1532        2327 : void MetainferenceBase::get_sigma_mean(const double weight, const double norm, const double neff, const std::vector<double> &mean) {
    1533        2327 :   const double dnrep    = static_cast<double>(nrep_);
    1534        2327 :   std::vector<double> sigma_mean2_tmp(sigma_mean2_.size());
    1535             : 
    1536        2327 :   if(do_optsigmamean_>0) {
    1537             :     // remove first entry of the history std::vector
    1538          84 :     if(sigma_mean2_last_[iselect][0].size()==optsigmamean_stride_&&optsigmamean_stride_>0)
    1539           0 :       for(unsigned i=0; i<narg; ++i) {
    1540           0 :         sigma_mean2_last_[iselect][i].erase(sigma_mean2_last_[iselect][i].begin());
    1541             :       }
    1542             :     /* this is the current estimate of sigma mean for each argument
    1543             :        there is one of this per argument in any case  because it is
    1544             :        the maximum among these to be used in case of GAUSS/OUTLIER */
    1545          84 :     std::vector<double> sigma_mean2_now(narg,0);
    1546          84 :     if(master) {
    1547         672 :       for(unsigned i=0; i<narg; ++i) {
    1548         630 :         sigma_mean2_now[i] = weight*(calc_data_[i]-mean[i])*(calc_data_[i]-mean[i]);
    1549             :       }
    1550          42 :       if(nrep_>1) {
    1551          42 :         multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
    1552             :       }
    1553             :     }
    1554          84 :     comm.Sum(&sigma_mean2_now[0], narg);
    1555        1344 :     for(unsigned i=0; i<narg; ++i) {
    1556        1260 :       sigma_mean2_now[i] *= 1.0/(neff-1.)/norm;
    1557             :     }
    1558             : 
    1559             :     // add sigma_mean2 to history
    1560          84 :     if(optsigmamean_stride_>0) {
    1561           0 :       for(unsigned i=0; i<narg; ++i) {
    1562           0 :         sigma_mean2_last_[iselect][i].push_back(sigma_mean2_now[i]);
    1563             :       }
    1564             :     } else {
    1565        1344 :       for(unsigned i=0; i<narg; ++i)
    1566        1260 :         if(sigma_mean2_now[i] > sigma_mean2_last_[iselect][i][0]) {
    1567         288 :           sigma_mean2_last_[iselect][i][0] = sigma_mean2_now[i];
    1568             :         }
    1569             :     }
    1570             : 
    1571          84 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1572        1344 :       for(unsigned i=0; i<narg; ++i) {
    1573             :         /* set to the maximum in history std::vector */
    1574        2520 :         sigma_mean2_tmp[i] = *max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end());
    1575             :         /* the standard error of the mean */
    1576        1260 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1577        1260 :         if(noise_type_==GENERIC) {
    1578           0 :           sigma_min_[i] = std::sqrt(sigma_mean2_tmp[i]);
    1579           0 :           if(sigma_[i] < sigma_min_[i]) {
    1580           0 :             sigma_[i] = sigma_min_[i];
    1581             :           }
    1582             :         }
    1583             :       }
    1584           0 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1585             :       // find maximum for each data point
    1586             :       std::vector <double> max_values;
    1587           0 :       for(unsigned i=0; i<narg; ++i) {
    1588           0 :         max_values.push_back(*max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end()));
    1589             :       }
    1590             :       // find maximum across data points
    1591           0 :       const double max_now = *max_element(max_values.begin(), max_values.end());
    1592             :       // set new value
    1593           0 :       sigma_mean2_tmp[0] = max_now;
    1594           0 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1595             :     }
    1596             :     // endif sigma mean optimization
    1597             :     // start sigma max optimization
    1598          84 :     if(do_optsigmamean_>1&&!sigmamax_opt_done_) {
    1599           0 :       for(unsigned i=0; i<sigma_max_.size(); i++) {
    1600           0 :         if(sigma_max_est_[i]<sigma_mean2_tmp[i]&&optimized_step_>optsigmamean_stride_) {
    1601           0 :           sigma_max_est_[i]=sigma_mean2_tmp[i];
    1602             :         }
    1603             :         // ready to set once and for all the value of sigma_max
    1604           0 :         if(optimized_step_==N_optimized_step_) {
    1605           0 :           sigmamax_opt_done_=true;
    1606           0 :           for(unsigned i=0; i<sigma_max_.size(); i++) {
    1607           0 :             sigma_max_[i]=std::sqrt(sigma_max_est_[i]*dnrep);
    1608           0 :             Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
    1609           0 :             if(sigma_[i]>sigma_max_[i]) {
    1610           0 :               sigma_[i]=sigma_max_[i];
    1611             :             }
    1612             :           }
    1613             :         }
    1614             :       }
    1615           0 :       optimized_step_++;
    1616             :     }
    1617             :     // end sigma max optimization
    1618             :   } else {
    1619        2243 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1620       11660 :       for(unsigned i=0; i<narg; ++i) {
    1621        9772 :         sigma_mean2_tmp[i] = sigma_mean2_last_[iselect][i][0];
    1622        9772 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1623             :       }
    1624         355 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1625         355 :       sigma_mean2_tmp[0] = sigma_mean2_last_[iselect][0][0];
    1626         355 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1627             :     }
    1628             :   }
    1629             : 
    1630        2327 :   sigma_mean2_ = sigma_mean2_tmp;
    1631        2327 : }
    1632             : 
    1633        2327 : void MetainferenceBase::replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b) {
    1634        2327 :   if(master) {
    1635        8048 :     for(unsigned i=0; i<narg; ++i) {
    1636        6719 :       mean[i] = weight/norm*calc_data_[i];
    1637             :     }
    1638        1329 :     if(nrep_>1) {
    1639        1022 :       multi_sim_comm.Sum(&mean[0], narg);
    1640             :     }
    1641             :   }
    1642        2327 :   comm.Sum(&mean[0], narg);
    1643             :   // set the derivative of the mean with respect to the bias
    1644       14628 :   for(unsigned i=0; i<narg; ++i) {
    1645       12301 :     dmean_b[i] = weight/norm/kbt_*(calc_data_[i]-mean[i])*decay_w_;
    1646             :   }
    1647             : 
    1648             :   // this is only for generic metainference
    1649        2327 :   if(firstTime) {
    1650          34 :     ftilde_ = mean;
    1651          34 :     firstTime = false;
    1652             :   }
    1653        2327 : }
    1654             : 
    1655           6 : void MetainferenceBase::do_regression_zero(const std::vector<double> &mean) {
    1656             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
    1657             :   double num = 0.0;
    1658             :   double den = 0.0;
    1659          48 :   for(unsigned i=0; i<parameters.size(); ++i) {
    1660          42 :     num += mean[i] * parameters[i];
    1661          42 :     den += mean[i] * mean[i];
    1662             :   }
    1663           6 :   if(den>0) {
    1664           6 :     scale_ = num / den;
    1665             :   } else {
    1666           0 :     scale_ = 1.0;
    1667             :   }
    1668           6 : }
    1669             : 
    1670        2327 : double MetainferenceBase::getScore() {
    1671             :   /* Metainference */
    1672             :   /* 1) collect weights */
    1673        2327 :   double weight = 0.;
    1674        2327 :   double neff = 0.;
    1675        2327 :   double norm = 0.;
    1676        2327 :   get_weights(weight, norm, neff);
    1677             : 
    1678             :   /* 2) calculate average */
    1679        2327 :   std::vector<double> mean(getNarg(),0);
    1680             :   // this is the derivative of the mean with respect to the argument
    1681        2327 :   std::vector<double> dmean_x(getNarg(),weight/norm);
    1682             :   // this is the derivative of the mean with respect to the bias
    1683        2327 :   std::vector<double> dmean_b(getNarg(),0);
    1684             :   // calculate it
    1685        2327 :   replica_averaging(weight, norm, mean, dmean_b);
    1686             : 
    1687             :   /* 3) calculates parameters */
    1688        2327 :   get_sigma_mean(weight, norm, neff, mean);
    1689             : 
    1690             :   // in case of regression with zero intercept, calculate scale
    1691        2327 :   if(doregres_zero_ && getStep()%nregres_zero_==0) {
    1692           6 :     do_regression_zero(mean);
    1693             :   }
    1694             : 
    1695             :   /* 4) run monte carlo */
    1696        2327 :   double ene = doMonteCarlo(mean);
    1697             : 
    1698             :   // calculate bias and forces
    1699        2327 :   switch(noise_type_) {
    1700         295 :   case GAUSS:
    1701         295 :     getEnergyForceGJ(mean, dmean_x, dmean_b);
    1702             :     break;
    1703         160 :   case MGAUSS:
    1704         160 :     getEnergyForceGJE(mean, dmean_x, dmean_b);
    1705             :     break;
    1706          60 :   case OUTLIERS:
    1707          60 :     getEnergyForceSP(mean, dmean_x, dmean_b);
    1708             :     break;
    1709        1776 :   case MOUTLIERS:
    1710        1776 :     getEnergyForceSPE(mean, dmean_x, dmean_b);
    1711             :     break;
    1712          36 :   case GENERIC:
    1713          36 :     getEnergyForceMIGEN(mean, dmean_x, dmean_b);
    1714             :     break;
    1715             :   }
    1716             : 
    1717        2327 :   return ene;
    1718             : }
    1719             : 
    1720         136 : void MetainferenceBase::writeStatus() {
    1721         136 :   if(!doscore_) {
    1722             :     return;
    1723             :   }
    1724          44 :   sfile_.rewind();
    1725          44 :   sfile_.printField("time",getTimeStep()*getStep());
    1726             :   //nsel
    1727          88 :   for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
    1728             :     std::string msg_i,msg_j;
    1729          44 :     Tools::convert(i,msg_i);
    1730             :     std::vector <double> max_values;
    1731             :     //narg
    1732        2612 :     for(unsigned j=0; j<narg; ++j) {
    1733        2568 :       Tools::convert(j,msg_j);
    1734        2568 :       std::string msg = msg_i+"_"+msg_j;
    1735        2568 :       if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1736        7422 :         sfile_.printField("sigmaMean_"+msg,std::sqrt(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end())));
    1737             :       } else {
    1738             :         // find maximum for each data point
    1739         188 :         max_values.push_back(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end()));
    1740             :       }
    1741             :     }
    1742          44 :     if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1743             :       // find maximum across data points
    1744          19 :       const double max_now = std::sqrt(*max_element(max_values.begin(), max_values.end()));
    1745          19 :       Tools::convert(0,msg_j);
    1746          19 :       std::string msg = msg_i+"_"+msg_j;
    1747          38 :       sfile_.printField("sigmaMean_"+msg, max_now);
    1748             :     }
    1749             :   }
    1750        2537 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1751             :     std::string msg;
    1752        2493 :     Tools::convert(i,msg);
    1753        4986 :     sfile_.printField("sigma_"+msg,sigma_[i]);
    1754             :   }
    1755        2537 :   for(unsigned i=0; i<sigma_max_.size(); ++i) {
    1756             :     std::string msg;
    1757        2493 :     Tools::convert(i,msg);
    1758        4986 :     sfile_.printField("sigma_max_"+msg,sigma_max_[i]);
    1759             :   }
    1760          44 :   if(noise_type_==GENERIC) {
    1761           9 :     for(unsigned i=0; i<ftilde_.size(); ++i) {
    1762             :       std::string msg;
    1763           6 :       Tools::convert(i,msg);
    1764          12 :       sfile_.printField("ftilde_"+msg,ftilde_[i]);
    1765             :     }
    1766             :   }
    1767          44 :   sfile_.printField("scale0_",scale_);
    1768          44 :   sfile_.printField("offset0_",offset_);
    1769          88 :   for(unsigned i=0; i<average_weights_.size(); i++) {
    1770             :     std::string msg_i;
    1771          44 :     Tools::convert(i,msg_i);
    1772          88 :     sfile_.printField("weight_"+msg_i,average_weights_[i][replica_]);
    1773             :   }
    1774          44 :   sfile_.printField();
    1775          44 :   sfile_.flush();
    1776             : }
    1777             : 
    1778             : }
    1779             : }
    1780             : 

Generated by: LCOV version 1.16