LCOV - code coverage report
Current view: top level - isdb - MetainferenceBase.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 753 884 85.2 %
Date: 2024-10-18 13:59:31 Functions: 23 28 82.1 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2017-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "MetainferenceBase.h"
      23             : #include "tools/File.h"
      24             : #include <chrono>
      25             : #include <numeric>
      26             : 
      27             : #ifndef M_PI
      28             : #define M_PI           3.14159265358979323846
      29             : #endif
      30             : 
      31             : namespace PLMD {
      32             : namespace isdb {
      33             : 
      34         128 : void MetainferenceBase::registerKeywords( Keywords& keys ) {
      35         128 :   Action::registerKeywords(keys);
      36         128 :   ActionAtomistic::registerKeywords(keys);
      37         128 :   ActionWithValue::registerKeywords(keys);
      38         128 :   ActionWithArguments::registerKeywords(keys);
      39         256 :   keys.addInputKeyword("optional","ARG","scalar","the labels of the values from which the function is calculated");
      40         256 :   keys.addFlag("DOSCORE",false,"activate metainference");
      41         256 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
      42         256 :   keys.addFlag("REWEIGHT",false,"simple REWEIGHT using the ARG as energy");
      43         256 :   keys.add("optional","AVERAGING", "Stride for calculation of averaged weights and sigma_mean");
      44         256 :   keys.add("compulsory","NOISETYPE","MGAUSS","functional form of the noise (GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC)");
      45         256 :   keys.add("compulsory","LIKELIHOOD","GAUSS","the likelihood for the GENERIC metainference model, GAUSS or LOGN");
      46         256 :   keys.add("compulsory","DFTILDE","0.1","fraction of sigma_mean used to evolve ftilde");
      47         256 :   keys.addFlag("SCALEDATA",false,"Set to TRUE if you want to sample a scaling factor common to all values and replicas");
      48         256 :   keys.add("compulsory","SCALE0","1.0","initial value of the scaling factor");
      49         256 :   keys.add("compulsory","SCALE_PRIOR","FLAT","either FLAT or GAUSSIAN");
      50         256 :   keys.add("optional","SCALE_MIN","minimum value of the scaling factor");
      51         256 :   keys.add("optional","SCALE_MAX","maximum value of the scaling factor");
      52         256 :   keys.add("optional","DSCALE","maximum MC move of the scaling factor");
      53         256 :   keys.addFlag("ADDOFFSET",false,"Set to TRUE if you want to sample an offset common to all values and replicas");
      54         256 :   keys.add("compulsory","OFFSET0","0.0","initial value of the offset");
      55         256 :   keys.add("compulsory","OFFSET_PRIOR","FLAT","either FLAT or GAUSSIAN");
      56         256 :   keys.add("optional","OFFSET_MIN","minimum value of the offset");
      57         256 :   keys.add("optional","OFFSET_MAX","maximum value of the offset");
      58         256 :   keys.add("optional","DOFFSET","maximum MC move of the offset");
      59         256 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
      60         256 :   keys.add("compulsory","SIGMA0","1.0","initial value of the uncertainty parameter");
      61         256 :   keys.add("compulsory","SIGMA_MIN","0.0","minimum value of the uncertainty parameter");
      62         256 :   keys.add("compulsory","SIGMA_MAX","10.","maximum value of the uncertainty parameter");
      63         256 :   keys.add("optional","DSIGMA","maximum MC move of the uncertainty parameter");
      64         256 :   keys.add("compulsory","OPTSIGMAMEAN","NONE","Set to NONE/SEM to manually set sigma mean, or to estimate it on the fly");
      65         256 :   keys.add("optional","SIGMA_MEAN0","starting value for the uncertainty in the mean estimate");
      66         256 :   keys.add("optional","SIGMA_MAX_STEPS", "Number of steps used to optimise SIGMA_MAX, before that the SIGMA_MAX value is used");
      67         256 :   keys.add("optional","TEMP","the system temperature - this is only needed if code doesn't pass the temperature to plumed");
      68         256 :   keys.add("optional","MC_STEPS","number of MC steps");
      69         256 :   keys.add("optional","MC_CHUNKSIZE","MC chunksize");
      70         256 :   keys.add("optional","STATUS_FILE","write a file with all the data useful for restart/continuation of Metainference");
      71         256 :   keys.add("compulsory","WRITE_STRIDE","10000","write the status to a file every N steps, this can be used for restart/continuation");
      72         256 :   keys.add("optional","SELECTOR","name of selector");
      73         256 :   keys.add("optional","NSELECT","range of values for selector [0, N-1]");
      74         128 :   keys.use("RESTART");
      75         256 :   keys.addOutputComponent("score",        "default",      "scalar","the Metainference score");
      76         256 :   keys.addOutputComponent("sigma",        "default",      "scalar","uncertainty parameter");
      77         256 :   keys.addOutputComponent("sigmaMean",    "default",      "scalar","uncertainty in the mean estimate");
      78         256 :   keys.addOutputComponent("neff",         "default",      "scalar","effective number of replicas");
      79         256 :   keys.addOutputComponent("acceptSigma",  "default",      "scalar","MC acceptance for sigma values");
      80         256 :   keys.addOutputComponent("acceptScale",  "SCALEDATA",    "scalar","MC acceptance for scale value");
      81         256 :   keys.addOutputComponent("acceptFT",     "GENERIC",      "scalar","MC acceptance for general metainference f tilde value");
      82         256 :   keys.addOutputComponent("weight",       "REWEIGHT",     "scalar","weights of the weighted average");
      83         256 :   keys.addOutputComponent("biasDer",      "REWEIGHT",     "scalar","derivatives with respect to the bias");
      84         256 :   keys.addOutputComponent("scale",        "SCALEDATA",    "scalar","scale parameter");
      85         256 :   keys.addOutputComponent("offset",       "ADDOFFSET",    "scalar","offset parameter");
      86         256 :   keys.addOutputComponent("ftilde",       "GENERIC",      "scalar","ensemble average estimator");
      87         128 : }
      88             : 
      89         112 : MetainferenceBase::MetainferenceBase(const ActionOptions&ao):
      90             :   Action(ao),
      91             :   ActionAtomistic(ao),
      92             :   ActionWithArguments(ao),
      93             :   ActionWithValue(ao),
      94         112 :   doscore_(false),
      95         112 :   write_stride_(0),
      96         112 :   narg(0),
      97         112 :   doscale_(false),
      98         112 :   scale_(1.),
      99         112 :   scale_mu_(0),
     100         112 :   scale_min_(1),
     101         112 :   scale_max_(-1),
     102         112 :   Dscale_(-1),
     103         112 :   dooffset_(false),
     104         112 :   offset_(0.),
     105         112 :   offset_mu_(0),
     106         112 :   offset_min_(1),
     107         112 :   offset_max_(-1),
     108         112 :   Doffset_(-1),
     109         112 :   doregres_zero_(false),
     110         112 :   nregres_zero_(0),
     111         112 :   Dftilde_(0.1),
     112         112 :   random(3),
     113         112 :   MCsteps_(1),
     114         112 :   MCaccept_(0),
     115         112 :   MCacceptScale_(0),
     116         112 :   MCacceptFT_(0),
     117         112 :   MCtrial_(0),
     118         112 :   MCchunksize_(0),
     119         112 :   firstTime(true),
     120         112 :   do_reweight_(false),
     121         112 :   do_optsigmamean_(0),
     122         112 :   nsel_(1),
     123         112 :   iselect(0),
     124         112 :   optsigmamean_stride_(0),
     125         112 :   N_optimized_step_(0),
     126         112 :   optimized_step_(0),
     127         112 :   sigmamax_opt_done_(false),
     128         112 :   decay_w_(1.)
     129             : {
     130         112 :   parseFlag("DOSCORE", doscore_);
     131             : 
     132         112 :   bool noensemble = false;
     133         112 :   parseFlag("NOENSEMBLE", noensemble);
     134             : 
     135             :   // set up replica stuff
     136         112 :   master = (comm.Get_rank()==0);
     137         112 :   if(master) {
     138          68 :     nrep_    = multi_sim_comm.Get_size();
     139          68 :     replica_ = multi_sim_comm.Get_rank();
     140          68 :     if(noensemble) nrep_ = 1;
     141             :   } else {
     142          44 :     nrep_    = 0;
     143          44 :     replica_ = 0;
     144             :   }
     145         112 :   comm.Sum(&nrep_,1);
     146         112 :   comm.Sum(&replica_,1);
     147             : 
     148         112 :   parse("SELECTOR", selector_);
     149         224 :   parse("NSELECT", nsel_);
     150             :   // do checks
     151         112 :   if(selector_.length()>0 && nsel_<=1) error("With SELECTOR active, NSELECT must be greater than 1");
     152         112 :   if(selector_.length()==0 && nsel_>1) error("With NSELECT greater than 1, you must specify SELECTOR");
     153             : 
     154             :   // initialise firstTimeW
     155         112 :   firstTimeW.resize(nsel_, true);
     156             : 
     157             :   // reweight implies a different number of arguments (the latest one must always be the bias)
     158         112 :   parseFlag("REWEIGHT", do_reweight_);
     159         112 :   if(do_reweight_&&getNumberOfArguments()!=1) error("To REWEIGHT one must provide one single bias as an argument");
     160         112 :   if(do_reweight_&&nrep_<2) error("REWEIGHT can only be used in parallel with 2 or more replicas");
     161         223 :   if(!getRestart()) average_weights_.resize(nsel_, std::vector<double> (nrep_, 1./static_cast<double>(nrep_)));
     162           2 :   else average_weights_.resize(nsel_, std::vector<double> (nrep_, 0.));
     163             : 
     164         112 :   unsigned averaging=0;
     165         112 :   parse("AVERAGING", averaging);
     166         112 :   if(averaging>0) {
     167           0 :     decay_w_ = 1./static_cast<double> (averaging);
     168           0 :     optsigmamean_stride_ = averaging;
     169             :   }
     170             : 
     171             :   std::string stringa_noise;
     172         224 :   parse("NOISETYPE",stringa_noise);
     173         112 :   if(stringa_noise=="GAUSS")           noise_type_ = GAUSS;
     174         105 :   else if(stringa_noise=="MGAUSS")     noise_type_ = MGAUSS;
     175          10 :   else if(stringa_noise=="OUTLIERS")   noise_type_ = OUTLIERS;
     176           9 :   else if(stringa_noise=="MOUTLIERS")  noise_type_ = MOUTLIERS;
     177           1 :   else if(stringa_noise=="GENERIC")    noise_type_ = GENERIC;
     178           0 :   else error("Unknown noise type!");
     179             : 
     180         112 :   if(noise_type_== GENERIC) {
     181             :     std::string stringa_like;
     182           2 :     parse("LIKELIHOOD",stringa_like);
     183           1 :     if(stringa_like=="GAUSS") gen_likelihood_ = LIKE_GAUSS;
     184           0 :     else if(stringa_like=="LOGN") gen_likelihood_ = LIKE_LOGN;
     185           0 :     else error("Unknown likelihood type!");
     186             : 
     187           2 :     parse("DFTILDE",Dftilde_);
     188             :   }
     189             : 
     190         112 :   parse("WRITE_STRIDE",write_stride_);
     191         224 :   parse("STATUS_FILE",status_file_name_);
     192         224 :   if(status_file_name_=="") status_file_name_ = "MISTATUS"+getLabel();
     193           0 :   else                      status_file_name_ = status_file_name_+getLabel();
     194             : 
     195             :   std::string stringa_optsigma;
     196         224 :   parse("OPTSIGMAMEAN", stringa_optsigma);
     197         112 :   if(stringa_optsigma=="NONE")      do_optsigmamean_=0;
     198           4 :   else if(stringa_optsigma=="SEM")  do_optsigmamean_=1;
     199           0 :   else if(stringa_optsigma=="SEM_MAX")  do_optsigmamean_=2;
     200             : 
     201         112 :   unsigned aver_max_steps=0;
     202         112 :   parse("SIGMA_MAX_STEPS", aver_max_steps);
     203         112 :   if(aver_max_steps==0&&do_optsigmamean_==2) aver_max_steps=averaging*2000;
     204         112 :   if(aver_max_steps>0&&do_optsigmamean_<2) error("SIGMA_MAX_STEPS can only be used together with OPTSIGMAMEAN=SEM_MAX");
     205         112 :   if(aver_max_steps>0&&do_optsigmamean_==2) N_optimized_step_=aver_max_steps;
     206         112 :   if(aver_max_steps>0&&aver_max_steps<averaging) error("SIGMA_MAX_STEPS must be greater than AVERAGING");
     207             : 
     208             :   std::vector<double> read_sigma_mean_;
     209         112 :   parseVector("SIGMA_MEAN0",read_sigma_mean_);
     210         112 :   if(do_optsigmamean_==0 && read_sigma_mean_.size()==0 && !getRestart() && doscore_)
     211           0 :     error("If you don't use OPTSIGMAMEAN and you are not RESTARTING then you MUST SET SIGMA_MEAN0");
     212             : 
     213         112 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     214         104 :     if(read_sigma_mean_.size()>0) {
     215          23 :       sigma_mean2_.resize(read_sigma_mean_.size());
     216          46 :       for(unsigned i=0; i<read_sigma_mean_.size(); i++) sigma_mean2_[i]=read_sigma_mean_[i]*read_sigma_mean_[i];
     217             :     } else {
     218          81 :       sigma_mean2_.resize(1,0.000001);
     219             :     }
     220             :   } else {
     221           8 :     if(read_sigma_mean_.size()==1) {
     222           8 :       sigma_mean2_.resize(1, read_sigma_mean_[0]*read_sigma_mean_[0]);
     223           0 :     } else if(read_sigma_mean_.size()==0) {
     224           0 :       sigma_mean2_.resize(1, 0.000001);
     225             :     } else {
     226           0 :       error("If you want to use more than one SIGMA_MEAN0 you should use NOISETYPE=MGAUSS|MOUTLIERS");
     227             :     }
     228             :   }
     229             : 
     230         112 :   parseFlag("SCALEDATA", doscale_);
     231         112 :   if(doscale_) {
     232             :     std::string stringa_noise;
     233          24 :     parse("SCALE_PRIOR",stringa_noise);
     234          12 :     if(stringa_noise=="GAUSSIAN")  scale_prior_ = SC_GAUSS;
     235          12 :     else if(stringa_noise=="FLAT") scale_prior_ = SC_FLAT;
     236           0 :     else error("Unknown SCALE_PRIOR type!");
     237          12 :     parse("SCALE0",scale_);
     238          12 :     parse("DSCALE",Dscale_);
     239          12 :     if(Dscale_<0.) error("DSCALE must be set when using SCALEDATA");
     240          12 :     if(scale_prior_==SC_GAUSS) {
     241           0 :       scale_mu_=scale_;
     242             :     } else {
     243          12 :       parse("SCALE_MIN",scale_min_);
     244          12 :       parse("SCALE_MAX",scale_max_);
     245          12 :       if(scale_max_<scale_min_) error("SCALE_MAX and SCALE_MIN must be set when using SCALE_PRIOR=FLAT");
     246             :     }
     247             :   }
     248             : 
     249         112 :   parseFlag("ADDOFFSET", dooffset_);
     250         112 :   if(dooffset_) {
     251             :     std::string stringa_noise;
     252           4 :     parse("OFFSET_PRIOR",stringa_noise);
     253           2 :     if(stringa_noise=="GAUSSIAN")  offset_prior_ = SC_GAUSS;
     254           2 :     else if(stringa_noise=="FLAT") offset_prior_ = SC_FLAT;
     255           0 :     else error("Unknown OFFSET_PRIOR type!");
     256           2 :     parse("OFFSET0",offset_);
     257           2 :     parse("DOFFSET",Doffset_);
     258           2 :     if(offset_prior_==SC_GAUSS) {
     259           0 :       offset_mu_=offset_;
     260           0 :       if(Doffset_<0.) error("DOFFSET must be set when using OFFSET_PRIOR=GAUSS");
     261             :     } else {
     262           2 :       parse("OFFSET_MIN",offset_min_);
     263           2 :       parse("OFFSET_MAX",offset_max_);
     264           2 :       if(Doffset_<0) Doffset_ = 0.05*(offset_max_ - offset_min_);
     265           2 :       if(offset_max_<offset_min_) error("OFFSET_MAX and OFFSET_MIN must be set when using OFFSET_PRIOR=FLAT");
     266             :     }
     267             :   }
     268             : 
     269             :   // regression with zero intercept
     270         112 :   parse("REGRES_ZERO", nregres_zero_);
     271         112 :   if(nregres_zero_>0) {
     272             :     // set flag
     273           0 :     doregres_zero_=true;
     274             :     // check if already sampling scale and offset
     275           0 :     if(doscale_)  error("REGRES_ZERO and SCALEDATA are mutually exclusive");
     276           0 :     if(dooffset_) error("REGRES_ZERO and ADDOFFSET are mutually exclusive");
     277             :   }
     278             : 
     279             :   std::vector<double> readsigma;
     280         112 :   parseVector("SIGMA0",readsigma);
     281         112 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma.size()>1)
     282           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     283         112 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     284         104 :     sigma_.resize(readsigma.size());
     285         104 :     sigma_=readsigma;
     286           8 :   } else sigma_.resize(1, readsigma[0]);
     287             : 
     288             :   std::vector<double> readsigma_min;
     289         112 :   parseVector("SIGMA_MIN",readsigma_min);
     290         112 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_min.size()>1)
     291           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     292         112 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     293         104 :     sigma_min_.resize(readsigma_min.size());
     294         104 :     sigma_min_=readsigma_min;
     295           8 :   } else sigma_min_.resize(1, readsigma_min[0]);
     296             : 
     297             :   std::vector<double> readsigma_max;
     298         112 :   parseVector("SIGMA_MAX",readsigma_max);
     299         112 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1)
     300           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     301         112 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     302         104 :     sigma_max_.resize(readsigma_max.size());
     303         104 :     sigma_max_=readsigma_max;
     304           8 :   } else sigma_max_.resize(1, readsigma_max[0]);
     305             : 
     306         112 :   if(sigma_max_.size()!=sigma_min_.size()) error("The number of values for SIGMA_MIN and SIGMA_MAX must be the same");
     307             : 
     308             :   std::vector<double> read_dsigma;
     309         112 :   parseVector("DSIGMA",read_dsigma);
     310         112 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1)
     311           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     312         112 :   if(read_dsigma.size()>0) {
     313          31 :     Dsigma_.resize(read_dsigma.size());
     314          31 :     Dsigma_=read_dsigma;
     315             :   } else {
     316          81 :     Dsigma_.resize(sigma_max_.size(), -1.);
     317             :     /* in this case Dsigma is initialised after reading the restart file if present */
     318             :   }
     319             : 
     320             :   // monte carlo stuff
     321         112 :   parse("MC_STEPS",MCsteps_);
     322         112 :   parse("MC_CHUNKSIZE", MCchunksize_);
     323             :   // get temperature
     324         112 :   kbt_=getkBT();
     325         112 :   if(kbt_==0.0&&doscore_) error("Unless the MD engine passes the temperature to plumed, you must specify it using TEMP");
     326             : 
     327             :   // initialize random seed
     328             :   unsigned iseed;
     329         112 :   if(master) {
     330          68 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     331          68 :     iseed = static_cast<unsigned>(ts)+replica_;
     332             :   } else {
     333          44 :     iseed = 0;
     334             :   }
     335         112 :   comm.Sum(&iseed, 1);
     336             :   // this is used for ftilde and sigma both the move and the acceptance
     337             :   // this is different for each replica
     338         112 :   random[0].setSeed(-iseed);
     339         112 :   if(doscale_||dooffset_) {
     340             :     // in this case we want the same seed everywhere
     341          14 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     342          14 :     iseed = static_cast<unsigned>(ts);
     343          14 :     if(master&&nrep_>1) multi_sim_comm.Bcast(iseed,0);
     344          14 :     comm.Bcast(iseed,0);
     345             :     // this is used for scale and offset sampling and acceptance
     346          14 :     random[1].setSeed(-iseed);
     347             :   }
     348             :   // this is used for random chunk of sigmas, and it is different for each replica
     349         112 :   if(master) {
     350          68 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
     351          68 :     iseed = static_cast<unsigned>(ts)+replica_;
     352             :   } else {
     353          44 :     iseed = 0;
     354             :   }
     355         112 :   comm.Sum(&iseed, 1);
     356         112 :   random[2].setSeed(-iseed);
     357             : 
     358             :   // outfile stuff
     359         112 :   if(write_stride_>0&&doscore_) {
     360          31 :     sfile_.link(*this);
     361          31 :     sfile_.open(status_file_name_);
     362             :   }
     363             : 
     364         112 : }
     365             : 
     366         112 : MetainferenceBase::~MetainferenceBase()
     367             : {
     368         112 :   if(sfile_.isOpen()) sfile_.close();
     369         560 : }
     370             : 
     371          31 : void MetainferenceBase::Initialise(const unsigned input)
     372             : {
     373             :   setNarg(input);
     374          31 :   if(narg!=parameters.size()) {
     375           0 :     std::string num1; Tools::convert(parameters.size(),num1);
     376           0 :     std::string num2; Tools::convert(narg,num2);
     377           0 :     std::string msg = "The number of experimental values " + num1 +" must be the same of the calculated values " + num2;
     378           0 :     error(msg);
     379             :   }
     380             : 
     381             :   // resize std::vector for sigma_mean history
     382          31 :   sigma_mean2_last_.resize(nsel_);
     383          62 :   for(unsigned i=0; i<nsel_; i++) sigma_mean2_last_[i].resize(narg);
     384          31 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     385          23 :     if(sigma_mean2_.size()==1) {
     386          23 :       double tmp = sigma_mean2_[0];
     387          23 :       sigma_mean2_.resize(narg, tmp);
     388           0 :     } else if(sigma_mean2_.size()>1&&sigma_mean2_.size()!=narg) {
     389           0 :       error("SIGMA_MEAN0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     390             :     }
     391             :     // set the initial value for the history
     392        2516 :     for(unsigned i=0; i<nsel_; i++) for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j].push_back(sigma_mean2_[j]);
     393             :   } else {
     394             :     // set the initial value for the history
     395          43 :     for(unsigned i=0; i<nsel_; i++) for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j].push_back(sigma_mean2_[0]);
     396             :   }
     397             : 
     398             :   // set sigma_bias
     399          31 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     400          23 :     if(sigma_.size()==1) {
     401          23 :       double tmp = sigma_[0];
     402          23 :       sigma_.resize(narg, tmp);
     403           0 :     } else if(sigma_.size()>1&&sigma_.size()!=narg) {
     404           0 :       error("SIGMA0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     405             :     }
     406          23 :     if(sigma_min_.size()==1) {
     407          23 :       double tmp = sigma_min_[0];
     408          23 :       sigma_min_.resize(narg, tmp);
     409           0 :     } else if(sigma_min_.size()>1&&sigma_min_.size()!=narg) {
     410           0 :       error("SIGMA_MIN can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     411             :     }
     412          23 :     if(sigma_max_.size()==1) {
     413          23 :       double tmp = sigma_max_[0];
     414          23 :       sigma_max_.resize(narg, tmp);
     415           0 :     } else if(sigma_max_.size()>1&&sigma_max_.size()!=narg) {
     416           0 :       error("SIGMA_MAX can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     417             :     }
     418          23 :     if(Dsigma_.size()==1) {
     419          23 :       double tmp = Dsigma_[0];
     420          23 :       Dsigma_.resize(narg, tmp);
     421           0 :     } else if(Dsigma_.size()>1&&Dsigma_.size()!=narg) {
     422           0 :       error("DSIGMA can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     423             :     }
     424             :   }
     425             : 
     426          31 :   sigma_max_est_.resize(sigma_max_.size(), 0.);
     427             : 
     428          31 :   IFile restart_sfile;
     429          31 :   restart_sfile.link(*this);
     430          31 :   if(getRestart()&&restart_sfile.FileExist(status_file_name_)) {
     431           1 :     firstTime = false;
     432           2 :     for(unsigned i=0; i<nsel_; i++) firstTimeW[i] = false;
     433           1 :     restart_sfile.open(status_file_name_);
     434           1 :     log.printf("  Restarting from %s\n", status_file_name_.c_str());
     435             :     double dummy;
     436           2 :     if(restart_sfile.scanField("time",dummy)) {
     437             :       // check for syncronisation
     438           1 :       std::vector<double> dummy_time(nrep_,0);
     439           1 :       if(master&&nrep_>1) {
     440           0 :         dummy_time[replica_] = dummy;
     441           0 :         multi_sim_comm.Sum(dummy_time);
     442             :       }
     443           1 :       comm.Sum(dummy_time);
     444           1 :       for(unsigned i=1; i<nrep_; i++) {
     445           0 :         std::string msg = "METAINFERENCE restart files " + status_file_name_ + "  are not in sync";
     446           0 :         if(dummy_time[i]!=dummy_time[0]) plumed_merror(msg);
     447             :       }
     448             :       // nsel
     449           2 :       for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
     450             :         std::string msg_i;
     451           1 :         Tools::convert(i,msg_i);
     452             :         // narg
     453           1 :         if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     454           0 :           for(unsigned j=0; j<narg; ++j) {
     455             :             std::string msg_j;
     456           0 :             Tools::convert(j,msg_j);
     457           0 :             std::string msg = msg_i+"_"+msg_j;
     458             :             double read_sm;
     459           0 :             restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     460           0 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     461             :           }
     462             :         }
     463           1 :         if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
     464             :           double read_sm;
     465             :           std::string msg_j;
     466           1 :           Tools::convert(0,msg_j);
     467           1 :           std::string msg = msg_i+"_"+msg_j;
     468           1 :           restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     469           8 :           for(unsigned j=0; j<narg; j++) sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     470             :         }
     471             :       }
     472             : 
     473           2 :       for(unsigned i=0; i<sigma_.size(); ++i) {
     474             :         std::string msg;
     475           1 :         Tools::convert(i,msg);
     476           2 :         restart_sfile.scanField("sigma_"+msg,sigma_[i]);
     477             :       }
     478           2 :       for(unsigned i=0; i<sigma_max_.size(); ++i) {
     479             :         std::string msg;
     480           1 :         Tools::convert(i,msg);
     481           1 :         restart_sfile.scanField("sigma_max_"+msg,sigma_max_[i]);
     482           1 :         sigmamax_opt_done_=true;
     483             :       }
     484           1 :       if(noise_type_==GENERIC) {
     485           0 :         for(unsigned i=0; i<ftilde_.size(); ++i) {
     486             :           std::string msg;
     487           0 :           Tools::convert(i,msg);
     488           0 :           restart_sfile.scanField("ftilde_"+msg,ftilde_[i]);
     489             :         }
     490             :       }
     491           1 :       restart_sfile.scanField("scale0_",scale_);
     492           1 :       restart_sfile.scanField("offset0_",offset_);
     493             : 
     494           2 :       for(unsigned i=0; i<nsel_; i++) {
     495             :         std::string msg;
     496           1 :         Tools::convert(i,msg);
     497             :         double tmp_w;
     498           1 :         restart_sfile.scanField("weight_"+msg,tmp_w);
     499           1 :         if(master) {
     500           1 :           average_weights_[i][replica_] = tmp_w;
     501           1 :           if(nrep_>1) multi_sim_comm.Sum(&average_weights_[i][0], nrep_);
     502             :         }
     503           1 :         comm.Sum(&average_weights_[i][0], nrep_);
     504             :       }
     505             : 
     506             :     }
     507           1 :     restart_sfile.scanField();
     508           1 :     restart_sfile.close();
     509             :   }
     510             : 
     511             :   /* If DSIGMA is not yet initialised do it now */
     512        2509 :   for(unsigned i=0; i<sigma_max_.size(); i++) if(Dsigma_[i]==-1) Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
     513             : 
     514          62 :   addComponentWithDerivatives("score");
     515          31 :   componentIsNotPeriodic("score");
     516          31 :   valueScore=getPntrToComponent("score");
     517             : 
     518          31 :   if(do_reweight_) {
     519          44 :     addComponent("biasDer");
     520          44 :     componentIsNotPeriodic("biasDer");
     521          44 :     addComponent("weight");
     522          44 :     componentIsNotPeriodic("weight");
     523             :   }
     524             : 
     525          62 :   addComponent("neff");
     526          31 :   componentIsNotPeriodic("neff");
     527             : 
     528          31 :   if(doscale_ || doregres_zero_) {
     529          24 :     addComponent("scale");
     530          12 :     componentIsNotPeriodic("scale");
     531          12 :     valueScale=getPntrToComponent("scale");
     532             :   }
     533             : 
     534          31 :   if(dooffset_) {
     535           4 :     addComponent("offset");
     536           2 :     componentIsNotPeriodic("offset");
     537           2 :     valueOffset=getPntrToComponent("offset");
     538             :   }
     539             : 
     540          31 :   if(dooffset_||doscale_) {
     541          28 :     addComponent("acceptScale");
     542          14 :     componentIsNotPeriodic("acceptScale");
     543          14 :     valueAcceptScale=getPntrToComponent("acceptScale");
     544             :   }
     545             : 
     546          31 :   if(noise_type_==GENERIC) {
     547           2 :     addComponent("acceptFT");
     548           1 :     componentIsNotPeriodic("acceptFT");
     549           1 :     valueAcceptFT=getPntrToComponent("acceptFT");
     550             :   }
     551             : 
     552          62 :   addComponent("acceptSigma");
     553          31 :   componentIsNotPeriodic("acceptSigma");
     554          31 :   valueAccept=getPntrToComponent("acceptSigma");
     555             : 
     556          31 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     557        2493 :     for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     558        2470 :       std::string num; Tools::convert(i,num);
     559        4940 :       addComponent("sigmaMean-"+num); componentIsNotPeriodic("sigmaMean-"+num);
     560        2470 :       valueSigmaMean.push_back(getPntrToComponent("sigmaMean-"+num));
     561        4940 :       getPntrToComponent("sigmaMean-"+num)->set(std::sqrt(sigma_mean2_[i]));
     562        4940 :       addComponent("sigma-"+num); componentIsNotPeriodic("sigma-"+num);
     563        2470 :       valueSigma.push_back(getPntrToComponent("sigma-"+num));
     564        2470 :       getPntrToComponent("sigma-"+num)->set(sigma_[i]);
     565        2470 :       if(noise_type_==GENERIC) {
     566           4 :         addComponent("ftilde-"+num); componentIsNotPeriodic("ftilde-"+num);
     567           2 :         valueFtilde.push_back(getPntrToComponent("ftilde-"+num));
     568             :       }
     569             :     }
     570          23 :   } else {
     571          16 :     addComponent("sigmaMean"); componentIsNotPeriodic("sigmaMean");
     572           8 :     valueSigmaMean.push_back(getPntrToComponent("sigmaMean"));
     573          16 :     getPntrToComponent("sigmaMean")->set(std::sqrt(sigma_mean2_[0]));
     574          16 :     addComponent("sigma"); componentIsNotPeriodic("sigma");
     575           8 :     valueSigma.push_back(getPntrToComponent("sigma"));
     576          16 :     getPntrToComponent("sigma")->set(sigma_[0]);
     577             :   }
     578             : 
     579          31 :   switch(noise_type_) {
     580           1 :   case GENERIC:
     581           1 :     log.printf("  with general metainference ");
     582           1 :     if(gen_likelihood_==LIKE_GAUSS) log.printf(" and a gaussian likelihood\n");
     583           0 :     else if(gen_likelihood_==LIKE_LOGN) log.printf(" and a log-normal likelihood\n");
     584           1 :     log.printf("  ensemble average parameter sampled with a step %lf of sigma_mean\n", Dftilde_);
     585             :     break;
     586           7 :   case GAUSS:
     587           7 :     log.printf("  with gaussian noise and a single noise parameter for all the data\n");
     588             :     break;
     589          14 :   case MGAUSS:
     590          14 :     log.printf("  with gaussian noise and a noise parameter for each data point\n");
     591             :     break;
     592           1 :   case OUTLIERS:
     593           1 :     log.printf("  with long tailed gaussian noise and a single noise parameter for all the data\n");
     594             :     break;
     595           8 :   case MOUTLIERS:
     596           8 :     log.printf("  with long tailed gaussian noise and a noise parameter for each data point\n");
     597             :     break;
     598             :   }
     599             : 
     600          31 :   if(doscale_) {
     601             :     // check that the scale value is the same for all replicas
     602          12 :     std::vector<double> dummy_scale(nrep_,0);
     603          12 :     if(master&&nrep_>1) {
     604           6 :       dummy_scale[replica_] = scale_;
     605           6 :       multi_sim_comm.Sum(dummy_scale);
     606             :     }
     607          12 :     comm.Sum(dummy_scale);
     608          24 :     for(unsigned i=1; i<nrep_; i++) {
     609          12 :       std::string msg = "The SCALE value must be the same for all replicas: check your input or restart file";
     610          12 :       if(dummy_scale[i]!=dummy_scale[0]) plumed_merror(msg);
     611             :     }
     612          12 :     log.printf("  sampling a common scaling factor with:\n");
     613          12 :     log.printf("    initial scale parameter %f\n",scale_);
     614          12 :     if(scale_prior_==SC_GAUSS) {
     615           0 :       log.printf("    gaussian prior with mean %f and width %f\n",scale_mu_,Dscale_);
     616             :     }
     617          12 :     if(scale_prior_==SC_FLAT) {
     618          12 :       log.printf("    flat prior between %f - %f\n",scale_min_,scale_max_);
     619          12 :       log.printf("    maximum MC move of scale parameter %f\n",Dscale_);
     620             :     }
     621             :   }
     622             : 
     623          31 :   if(dooffset_) {
     624             :     // check that the offset value is the same for all replicas
     625           2 :     std::vector<double> dummy_offset(nrep_,0);
     626           2 :     if(master&&nrep_>1) {
     627           0 :       dummy_offset[replica_] = offset_;
     628           0 :       multi_sim_comm.Sum(dummy_offset);
     629             :     }
     630           2 :     comm.Sum(dummy_offset);
     631           2 :     for(unsigned i=1; i<nrep_; i++) {
     632           0 :       std::string msg = "The OFFSET value must be the same for all replicas: check your input or restart file";
     633           0 :       if(dummy_offset[i]!=dummy_offset[0]) plumed_merror(msg);
     634             :     }
     635           2 :     log.printf("  sampling a common offset with:\n");
     636           2 :     log.printf("    initial offset parameter %f\n",offset_);
     637           2 :     if(offset_prior_==SC_GAUSS) {
     638           0 :       log.printf("    gaussian prior with mean %f and width %f\n",offset_mu_,Doffset_);
     639             :     }
     640           2 :     if(offset_prior_==SC_FLAT) {
     641           2 :       log.printf("    flat prior between %f - %f\n",offset_min_,offset_max_);
     642           2 :       log.printf("    maximum MC move of offset parameter %f\n",Doffset_);
     643             :     }
     644             :   }
     645             : 
     646          31 :   if(doregres_zero_)
     647           0 :     log.printf("  doing regression with zero intercept with stride: %d\n", nregres_zero_);
     648             : 
     649          31 :   log.printf("  number of experimental data points %u\n",narg);
     650          31 :   log.printf("  number of replicas %u\n",nrep_);
     651          31 :   log.printf("  initial data uncertainties");
     652        2509 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f", sigma_[i]);
     653          31 :   log.printf("\n");
     654          31 :   log.printf("  minimum data uncertainties");
     655        2509 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",sigma_min_[i]);
     656          31 :   log.printf("\n");
     657          31 :   log.printf("  maximum data uncertainties");
     658        2509 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",sigma_max_[i]);
     659          31 :   log.printf("\n");
     660          31 :   log.printf("  maximum MC move of data uncertainties");
     661        2509 :   for(unsigned i=0; i<sigma_.size(); ++i) log.printf(" %f",Dsigma_[i]);
     662          31 :   log.printf("\n");
     663          31 :   log.printf("  temperature of the system %f\n",kbt_);
     664          31 :   log.printf("  MC steps %u\n",MCsteps_);
     665          31 :   log.printf("  initial standard errors of the mean");
     666        2509 :   for(unsigned i=0; i<sigma_mean2_.size(); ++i) log.printf(" %f", std::sqrt(sigma_mean2_[i]));
     667          31 :   log.printf("\n");
     668             : 
     669             :   //resize the number of metainference derivatives and the number of back-calculated data
     670          31 :   metader_.resize(narg, 0.);
     671          31 :   calc_data_.resize(narg, 0.);
     672             : 
     673          62 :   log<<"  Bibliography "<<plumed.cite("Bonomi, Camilloni, Cavalli, Vendruscolo, Sci. Adv. 2, e150117 (2016)");
     674          53 :   if(do_reweight_) log<<plumed.cite("Bonomi, Camilloni, Vendruscolo, Sci. Rep. 6, 31232 (2016)");
     675          35 :   if(do_optsigmamean_>0) log<<plumed.cite("Loehr, Jussupow, Camilloni, J. Chem. Phys. 146, 165102 (2017)");
     676          62 :   log<<plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)");
     677          31 :   log<<"\n";
     678          31 : }
     679             : 
     680           0 : void MetainferenceBase::Selector()
     681             : {
     682           0 :   iselect = 0;
     683             :   // set the value of selector for  REM-like stuff
     684           0 :   if(selector_.length()>0) iselect = static_cast<unsigned>(plumed.passMap[selector_]);
     685           0 : }
     686             : 
     687          12 : double MetainferenceBase::getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
     688             :                                       const double scale, const double offset)
     689             : {
     690          12 :   const double scale2 = scale*scale;
     691          12 :   const double sm2    = sigma_mean2_[0];
     692          12 :   const double ss2    = sigma[0]*sigma[0] + scale2*sm2;
     693          12 :   const double sss    = sigma[0]*sigma[0] + sm2;
     694             : 
     695             :   double ene = 0.0;
     696          12 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     697             :   {
     698             :     #pragma omp for reduction( + : ene)
     699             :     for(unsigned i=0; i<narg; ++i) {
     700             :       const double dev = scale*mean[i]-parameters[i]+offset;
     701             :       const double a2 = 0.5*dev*dev + ss2;
     702             :       if(sm2 > 0.0) {
     703             :         ene += std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
     704             :       }
     705             :       else {
     706             :         ene += std::log(2.0*a2);
     707             :       }
     708             :     }
     709             :   }
     710             :   // add one single Jeffrey's prior and one normalisation per data point
     711          12 :   ene += 0.5*std::log(sss) + static_cast<double>(narg)*0.5*std::log(0.5*M_PI*M_PI/ss2);
     712          12 :   if(doscale_ || doregres_zero_) ene += 0.5*std::log(sss);
     713          12 :   if(dooffset_) ene += 0.5*std::log(sss);
     714          12 :   return kbt_ * ene;
     715             : }
     716             : 
     717        5328 : double MetainferenceBase::getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
     718             :                                        const double scale, const double offset)
     719             : {
     720        5328 :   const double scale2 = scale*scale;
     721             :   double ene = 0.0;
     722        5328 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     723             :   {
     724             :     #pragma omp for reduction( + : ene)
     725             :     for(unsigned i=0; i<narg; ++i) {
     726             :       const double sm2 = sigma_mean2_[i];
     727             :       const double ss2 = sigma[i]*sigma[i] + scale2*sm2;
     728             :       const double sss = sigma[i]*sigma[i] + sm2;
     729             :       const double dev = scale*mean[i]-parameters[i]+offset;
     730             :       const double a2  = 0.5*dev*dev + ss2;
     731             :       if(sm2 > 0.0) {
     732             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
     733             :       }
     734             :       else {
     735             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2);
     736             :       }
     737             :       if(doscale_ || doregres_zero_)  ene += 0.5*std::log(sss);
     738             :       if(dooffset_) ene += 0.5*std::log(sss);
     739             :     }
     740             :   }
     741        5328 :   return kbt_ * ene;
     742             : }
     743             : 
     744          48 : double MetainferenceBase::getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
     745             :     const double scale, const double offset)
     746             : {
     747             :   double ene = 0.0;
     748          48 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     749             :   {
     750             :     #pragma omp for reduction( + : ene)
     751             :     for(unsigned i=0; i<narg; ++i) {
     752             :       const double inv_sb2  = 1./(sigma[i]*sigma[i]);
     753             :       const double inv_sm2  = 1./sigma_mean2_[i];
     754             :       double devb = 0;
     755             :       if(gen_likelihood_==LIKE_GAUSS)     devb = scale*ftilde[i]-parameters[i]+offset;
     756             :       else if(gen_likelihood_==LIKE_LOGN) devb = std::log(scale*ftilde[i]/parameters[i]);
     757             :       double devm = mean[i] - ftilde[i];
     758             :       // deviation + normalisation + jeffrey
     759             :       double normb = 0.;
     760             :       if(gen_likelihood_==LIKE_GAUSS)     normb = -0.5*std::log(0.5/M_PI*inv_sb2);
     761             :       else if(gen_likelihood_==LIKE_LOGN) normb = -0.5*std::log(0.5/M_PI*inv_sb2/(parameters[i]*parameters[i]));
     762             :       const double normm         = -0.5*std::log(0.5/M_PI*inv_sm2);
     763             :       const double jeffreys      = -0.5*std::log(2.*inv_sb2);
     764             :       ene += 0.5*devb*devb*inv_sb2 + 0.5*devm*devm*inv_sm2 + normb + normm + jeffreys;
     765             :       if(doscale_ || doregres_zero_)  ene += jeffreys;
     766             :       if(dooffset_) ene += jeffreys;
     767             :     }
     768             :   }
     769          48 :   return kbt_ * ene;
     770             : }
     771             : 
     772         554 : double MetainferenceBase::getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
     773             :                                       const double scale, const double offset)
     774             : {
     775         554 :   const double scale2  = scale*scale;
     776         554 :   const double inv_s2  = 1./(sigma[0]*sigma[0] + scale2*sigma_mean2_[0]);
     777         554 :   const double inv_sss = 1./(sigma[0]*sigma[0] + sigma_mean2_[0]);
     778             : 
     779             :   double ene = 0.0;
     780         554 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     781             :   {
     782             :     #pragma omp for reduction( + : ene)
     783             :     for(unsigned i=0; i<narg; ++i) {
     784             :       double dev = scale*mean[i]-parameters[i]+offset;
     785             :       ene += 0.5*dev*dev*inv_s2;
     786             :     }
     787             :   }
     788         554 :   const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
     789         554 :   const double jeffreys = -0.5*std::log(2.*inv_sss);
     790             :   // add Jeffrey's prior in case one sigma for all data points + one normalisation per datapoint
     791         554 :   ene += jeffreys + static_cast<double>(narg)*normalisation;
     792         554 :   if(doscale_ || doregres_zero_)  ene += jeffreys;
     793         554 :   if(dooffset_) ene += jeffreys;
     794             : 
     795         554 :   return kbt_ * ene;
     796             : }
     797             : 
     798         368 : double MetainferenceBase::getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
     799             :                                        const double scale, const double offset)
     800             : {
     801         368 :   const double scale2 = scale*scale;
     802             : 
     803             :   double ene = 0.0;
     804         368 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
     805             :   {
     806             :     #pragma omp for reduction( + : ene)
     807             :     for(unsigned i=0; i<narg; ++i) {
     808             :       const double inv_s2  = 1./(sigma[i]*sigma[i] + scale2*sigma_mean2_[i]);
     809             :       const double inv_sss = 1./(sigma[i]*sigma[i] + sigma_mean2_[i]);
     810             :       double dev = scale*mean[i]-parameters[i]+offset;
     811             :       // deviation + normalisation + jeffrey
     812             :       const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
     813             :       const double jeffreys      = -0.5*std::log(2.*inv_sss);
     814             :       ene += 0.5*dev*dev*inv_s2 + normalisation + jeffreys;
     815             :       if(doscale_ || doregres_zero_)  ene += jeffreys;
     816             :       if(dooffset_) ene += jeffreys;
     817             :     }
     818             :   }
     819         368 :   return kbt_ * ene;
     820             : }
     821             : 
     822          12 : void MetainferenceBase::moveTilde(const std::vector<double> &mean_, double &old_energy)
     823             : {
     824          12 :   std::vector<double> new_ftilde(sigma_.size());
     825          12 :   new_ftilde = ftilde_;
     826             : 
     827             :   // change all tildes
     828          36 :   for(unsigned j=0; j<sigma_.size(); j++) {
     829          24 :     const double r3 = random[0].Gaussian();
     830          24 :     const double ds3 = Dftilde_*std::sqrt(sigma_mean2_[j])*r3;
     831          24 :     new_ftilde[j] = ftilde_[j] + ds3;
     832             :   }
     833             :   // calculate new energy
     834          12 :   double new_energy = getEnergyMIGEN(mean_,new_ftilde,sigma_,scale_,offset_);
     835             : 
     836             :   // accept or reject
     837          12 :   const double delta = ( new_energy - old_energy ) / kbt_;
     838             :   // if delta is negative always accept move
     839          12 :   if( delta <= 0.0 ) {
     840          12 :     old_energy = new_energy;
     841          12 :     ftilde_ = new_ftilde;
     842          12 :     MCacceptFT_++;
     843             :     // otherwise extract random number
     844             :   } else {
     845           0 :     const double s = random[0].RandU01();
     846           0 :     if( s < std::exp(-delta) ) {
     847           0 :       old_energy = new_energy;
     848           0 :       ftilde_ = new_ftilde;
     849           0 :       MCacceptFT_++;
     850             :     }
     851             :   }
     852          12 : }
     853             : 
     854        1848 : void MetainferenceBase::moveScaleOffset(const std::vector<double> &mean_, double &old_energy)
     855             : {
     856        1848 :   double new_scale = scale_;
     857             : 
     858        1848 :   if(doscale_) {
     859        1824 :     if(scale_prior_==SC_FLAT) {
     860        1824 :       const double r1 = random[1].Gaussian();
     861        1824 :       const double ds1 = Dscale_*r1;
     862        1824 :       new_scale += ds1;
     863             :       // check boundaries
     864        1824 :       if(new_scale > scale_max_) {new_scale = 2.0 * scale_max_ - new_scale;}
     865        1824 :       if(new_scale < scale_min_) {new_scale = 2.0 * scale_min_ - new_scale;}
     866             :     } else {
     867           0 :       const double r1 = random[1].Gaussian();
     868           0 :       const double ds1 = 0.5*(scale_mu_-new_scale)+Dscale_*std::exp(1)/M_PI*r1;
     869           0 :       new_scale += ds1;
     870             :     }
     871             :   }
     872             : 
     873        1848 :   double new_offset = offset_;
     874             : 
     875        1848 :   if(dooffset_) {
     876          24 :     if(offset_prior_==SC_FLAT) {
     877          24 :       const double r1 = random[1].Gaussian();
     878          24 :       const double ds1 = Doffset_*r1;
     879          24 :       new_offset += ds1;
     880             :       // check boundaries
     881          24 :       if(new_offset > offset_max_) {new_offset = 2.0 * offset_max_ - new_offset;}
     882          24 :       if(new_offset < offset_min_) {new_offset = 2.0 * offset_min_ - new_offset;}
     883             :     } else {
     884           0 :       const double r1 = random[1].Gaussian();
     885           0 :       const double ds1 = 0.5*(offset_mu_-new_offset)+Doffset_*std::exp(1)/M_PI*r1;
     886           0 :       new_offset += ds1;
     887             :     }
     888             :   }
     889             : 
     890             :   // calculate new energy
     891             :   double new_energy = 0.;
     892             : 
     893        1848 :   switch(noise_type_) {
     894          12 :   case GAUSS:
     895          12 :     new_energy = getEnergyGJ(mean_,sigma_,new_scale,new_offset);
     896             :     break;
     897          48 :   case MGAUSS:
     898          48 :     new_energy = getEnergyGJE(mean_,sigma_,new_scale,new_offset);
     899             :     break;
     900           0 :   case OUTLIERS:
     901           0 :     new_energy = getEnergySP(mean_,sigma_,new_scale,new_offset);
     902             :     break;
     903        1776 :   case MOUTLIERS:
     904        1776 :     new_energy = getEnergySPE(mean_,sigma_,new_scale,new_offset);
     905             :     break;
     906          12 :   case GENERIC:
     907          12 :     new_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,new_scale,new_offset);
     908             :     break;
     909             :   }
     910             : 
     911             :   // for the scale/offset we need to consider the total energy
     912        1848 :   std::vector<double> totenergies(2);
     913        1848 :   if(master) {
     914         936 :     totenergies[0] = old_energy;
     915         936 :     totenergies[1] = new_energy;
     916         936 :     if(nrep_>1) multi_sim_comm.Sum(totenergies);
     917             :   } else {
     918         912 :     totenergies[0] = 0;
     919         912 :     totenergies[1] = 0;
     920             :   }
     921        1848 :   comm.Sum(totenergies);
     922             : 
     923             :   // accept or reject
     924        1848 :   const double delta = ( totenergies[1] - totenergies[0] ) / kbt_;
     925             :   // if delta is negative always accept move
     926        1848 :   if( delta <= 0.0 ) {
     927        1848 :     old_energy = new_energy;
     928        1848 :     scale_ = new_scale;
     929        1848 :     offset_ = new_offset;
     930        1848 :     MCacceptScale_++;
     931             :     // otherwise extract random number
     932             :   } else {
     933           0 :     double s = random[1].RandU01();
     934           0 :     if( s < std::exp(-delta) ) {
     935           0 :       old_energy = new_energy;
     936           0 :       scale_ = new_scale;
     937           0 :       offset_ = new_offset;
     938           0 :       MCacceptScale_++;
     939             :     }
     940             :   }
     941        1848 : }
     942             : 
     943        2225 : void MetainferenceBase::moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow)
     944             : {
     945        2225 :   std::vector<double> new_sigma(sigma_.size());
     946        2225 :   new_sigma = sigma_;
     947             : 
     948             :   // change MCchunksize_ sigmas
     949        2225 :   if (MCchunksize_ > 0) {
     950           0 :     if ((MCchunksize_ * i) >= sigma_.size()) {
     951             :       // This means we are not moving any sigma, so we should break immediately
     952           0 :       breaknow = true;
     953             :     }
     954             : 
     955             :     // change random sigmas
     956           0 :     for(unsigned j=0; j<MCchunksize_; j++) {
     957           0 :       const unsigned shuffle_index = j + MCchunksize_ * i;
     958           0 :       if (shuffle_index >= sigma_.size()) {
     959             :         // Going any further will segfault but we should still evaluate the sigmas we changed
     960             :         break;
     961             :       }
     962           0 :       const unsigned index = indices[shuffle_index];
     963           0 :       const double r2 = random[0].Gaussian();
     964           0 :       const double ds2 = Dsigma_[index]*r2;
     965           0 :       new_sigma[index] = sigma_[index] + ds2;
     966             :       // check boundaries
     967           0 :       if(new_sigma[index] > sigma_max_[index]) {new_sigma[index] = 2.0 * sigma_max_[index] - new_sigma[index];}
     968           0 :       if(new_sigma[index] < sigma_min_[index]) {new_sigma[index] = 2.0 * sigma_min_[index] - new_sigma[index];}
     969             :     }
     970             :   } else {
     971             :     // change all sigmas
     972       13486 :     for(unsigned j=0; j<sigma_.size(); j++) {
     973       11261 :       const double r2 = random[0].Gaussian();
     974       11261 :       const double ds2 = Dsigma_[j]*r2;
     975       11261 :       new_sigma[j] = sigma_[j] + ds2;
     976             :       // check boundaries
     977       11261 :       if(new_sigma[j] > sigma_max_[j]) {new_sigma[j] = 2.0 * sigma_max_[j] - new_sigma[j];}
     978       11261 :       if(new_sigma[j] < sigma_min_[j]) {new_sigma[j] = 2.0 * sigma_min_[j] - new_sigma[j];}
     979             :     }
     980             :   }
     981             : 
     982        2225 :   if (breaknow) {
     983             :     // We didnt move any sigmas, so no sense in evaluating anything
     984             :     return;
     985             :   }
     986             : 
     987             :   // calculate new energy
     988             :   double new_energy = 0.;
     989        2225 :   switch(noise_type_) {
     990         271 :   case GAUSS:
     991         271 :     new_energy = getEnergyGJ(mean_,new_sigma,scale_,offset_);
     992             :     break;
     993         160 :   case MGAUSS:
     994         160 :     new_energy = getEnergyGJE(mean_,new_sigma,scale_,offset_);
     995             :     break;
     996           6 :   case OUTLIERS:
     997           6 :     new_energy = getEnergySP(mean_,new_sigma,scale_,offset_);
     998             :     break;
     999        1776 :   case MOUTLIERS:
    1000        1776 :     new_energy = getEnergySPE(mean_,new_sigma,scale_,offset_);
    1001             :     break;
    1002          12 :   case GENERIC:
    1003          12 :     new_energy = getEnergyMIGEN(mean_,ftilde_,new_sigma,scale_,offset_);
    1004             :     break;
    1005             :   }
    1006             : 
    1007             :   // accept or reject
    1008        2225 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1009             :   // if delta is negative always accept move
    1010        2225 :   if( delta <= 0.0 ) {
    1011        2225 :     old_energy = new_energy;
    1012        2225 :     sigma_ = new_sigma;
    1013        2225 :     MCaccept_++;
    1014             :     // otherwise extract random number
    1015             :   } else {
    1016           0 :     const double s = random[0].RandU01();
    1017           0 :     if( s < std::exp(-delta) ) {
    1018           0 :       old_energy = new_energy;
    1019           0 :       sigma_ = new_sigma;
    1020           0 :       MCaccept_++;
    1021             :     }
    1022             :   }
    1023             : }
    1024             : 
    1025        2225 : double MetainferenceBase::doMonteCarlo(const std::vector<double> &mean_)
    1026             : {
    1027             :   // calculate old energy with the updated coordinates
    1028        2225 :   double old_energy=0.;
    1029             : 
    1030        2225 :   switch(noise_type_) {
    1031         271 :   case GAUSS:
    1032         271 :     old_energy = getEnergyGJ(mean_,sigma_,scale_,offset_);
    1033         271 :     break;
    1034         160 :   case MGAUSS:
    1035         160 :     old_energy = getEnergyGJE(mean_,sigma_,scale_,offset_);
    1036         160 :     break;
    1037           6 :   case OUTLIERS:
    1038           6 :     old_energy = getEnergySP(mean_,sigma_,scale_,offset_);
    1039           6 :     break;
    1040        1776 :   case MOUTLIERS:
    1041        1776 :     old_energy = getEnergySPE(mean_,sigma_,scale_,offset_);
    1042        1776 :     break;
    1043          12 :   case GENERIC:
    1044          12 :     old_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,scale_,offset_);
    1045          12 :     break;
    1046             :   }
    1047             : 
    1048             :   // do not run MC if this is a replica-exchange trial
    1049        2225 :   if(!getExchangeStep()) {
    1050             : 
    1051             :     // Create std::vector of random sigma indices
    1052             :     std::vector<unsigned> indices;
    1053        2225 :     if (MCchunksize_ > 0) {
    1054           0 :       for (unsigned j=0; j<sigma_.size(); j++) {
    1055           0 :         indices.push_back(j);
    1056             :       }
    1057           0 :       random[2].Shuffle(indices);
    1058             :     }
    1059        2225 :     bool breaknow = false;
    1060             : 
    1061             :     // cycle on MC steps
    1062        4450 :     for(unsigned i=0; i<MCsteps_; ++i) {
    1063        2225 :       MCtrial_++;
    1064             :       // propose move for ftilde
    1065        2225 :       if(noise_type_==GENERIC) moveTilde(mean_, old_energy);
    1066             :       // propose move for scale and/or offset
    1067        2225 :       if(doscale_||dooffset_) moveScaleOffset(mean_, old_energy);
    1068             :       // propose move for sigma
    1069        2225 :       moveSigmas(mean_, old_energy, i, indices, breaknow);
    1070             :       // exit from the loop if this is the case
    1071        2225 :       if(breaknow) break;
    1072             :     }
    1073             : 
    1074             :     /* save the result of the sampling */
    1075             :     /* ftilde */
    1076        2225 :     if(noise_type_==GENERIC) {
    1077          12 :       double accept = static_cast<double>(MCacceptFT_) / static_cast<double>(MCtrial_);
    1078          12 :       valueAcceptFT->set(accept);
    1079          36 :       for(unsigned i=0; i<sigma_.size(); i++) valueFtilde[i]->set(ftilde_[i]);
    1080             :     }
    1081             :     /* scale and offset */
    1082        2225 :     if(doscale_ || doregres_zero_) valueScale->set(scale_);
    1083        2225 :     if(dooffset_) valueOffset->set(offset_);
    1084        2225 :     if(doscale_||dooffset_) {
    1085        1848 :       double accept = static_cast<double>(MCacceptScale_) / static_cast<double>(MCtrial_);
    1086        1848 :       valueAcceptScale->set(accept);
    1087             :     }
    1088             :     /* sigmas */
    1089       13486 :     for(unsigned i=0; i<sigma_.size(); i++) valueSigma[i]->set(sigma_[i]);
    1090        2225 :     double accept = static_cast<double>(MCaccept_) / static_cast<double>(MCtrial_);
    1091        2225 :     valueAccept->set(accept);
    1092             :   }
    1093             : 
    1094             :   // here we sum the score over the replicas to get the full metainference score that we save as a bias
    1095        2225 :   if(master) {
    1096        1227 :     if(nrep_>1) multi_sim_comm.Sum(old_energy);
    1097             :   } else {
    1098         998 :     old_energy=0;
    1099             :   }
    1100        2225 :   comm.Sum(old_energy);
    1101             : 
    1102             :   // this is the energy with current coordinates and parameters
    1103        2225 :   return old_energy;
    1104             : }
    1105             : 
    1106             : /*
    1107             :    In the following energy-force functions we don't add the normalisation and the jeffreys priors
    1108             :    because they are not needed for the forces, the correct MetaInference energy is the one calculated
    1109             :    in the Monte-Carlo
    1110             : */
    1111             : 
    1112           6 : void MetainferenceBase::getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1113             :     const std::vector<double> &dmean_b)
    1114             : {
    1115           6 :   const double scale2 = scale_*scale_;
    1116           6 :   const double sm2    = sigma_mean2_[0];
    1117           6 :   const double ss2    = sigma_[0]*sigma_[0] + scale2*sm2;
    1118           6 :   std::vector<double> f(narg,0);
    1119             : 
    1120           6 :   if(master) {
    1121           6 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1122             :     {
    1123             :       #pragma omp for
    1124             :       for(unsigned i=0; i<narg; ++i) {
    1125             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1126             :         const double a2 = 0.5*dev*dev + ss2;
    1127             :         if(sm2 > 0.0) {
    1128             :           const double t = std::exp(-a2/sm2);
    1129             :           const double dt = 1./t;
    1130             :           const double dit = 1./(1.-dt);
    1131             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1132             :         }
    1133             :         else {
    1134             :           f[i] = -scale_*dev*(1./a2);
    1135             :         }
    1136             :       }
    1137             :     }
    1138             :     // collect contribution to forces and energy from other replicas
    1139           6 :     if(nrep_>1) multi_sim_comm.Sum(&f[0],narg);
    1140             :   }
    1141             :   // intra-replica summation
    1142           6 :   comm.Sum(&f[0],narg);
    1143             : 
    1144             :   double w_tmp = 0.;
    1145          48 :   for(unsigned i=0; i<narg; ++i) {
    1146          42 :     setMetaDer(i, -kbt_*f[i]*dmean_x[i]);
    1147          42 :     w_tmp += kbt_*f[i]*dmean_b[i];
    1148             :   }
    1149             : 
    1150           6 :   if(do_reweight_) {
    1151           0 :     setArgDerivatives(valueScore, -w_tmp);
    1152           0 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1153             :   }
    1154           6 : }
    1155             : 
    1156        1776 : void MetainferenceBase::getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1157             :     const std::vector<double> &dmean_b)
    1158             : {
    1159        1776 :   const double scale2 = scale_*scale_;
    1160        1776 :   std::vector<double> f(narg,0);
    1161             : 
    1162        1776 :   if(master) {
    1163         888 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1164             :     {
    1165             :       #pragma omp for
    1166             :       for(unsigned i=0; i<narg; ++i) {
    1167             :         const double sm2 = sigma_mean2_[i];
    1168             :         const double ss2 = sigma_[i]*sigma_[i] + scale2*sm2;
    1169             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1170             :         const double a2  = 0.5*dev*dev + ss2;
    1171             :         if(sm2 > 0.0) {
    1172             :           const double t   = std::exp(-a2/sm2);
    1173             :           const double dt  = 1./t;
    1174             :           const double dit = 1./(1.-dt);
    1175             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1176             :         }
    1177             :         else {
    1178             :           f[i] = -scale_*dev*(1./a2);
    1179             :         }
    1180             :       }
    1181             :     }
    1182             :     // collect contribution to forces and energy from other replicas
    1183         888 :     if(nrep_>1) multi_sim_comm.Sum(&f[0],narg);
    1184             :   }
    1185        1776 :   comm.Sum(&f[0],narg);
    1186             : 
    1187             :   double w_tmp = 0.;
    1188        8880 :   for(unsigned i=0; i<narg; ++i) {
    1189        7104 :     setMetaDer(i, -kbt_ * dmean_x[i] * f[i]);
    1190        7104 :     w_tmp += kbt_ * dmean_b[i] *f[i];
    1191             :   }
    1192             : 
    1193        1776 :   if(do_reweight_) {
    1194        1776 :     setArgDerivatives(valueScore, -w_tmp);
    1195        3552 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1196             :   }
    1197        1776 : }
    1198             : 
    1199         271 : void MetainferenceBase::getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1200             :     const std::vector<double> &dmean_b)
    1201             : {
    1202         271 :   const double scale2 = scale_*scale_;
    1203         271 :   double inv_s2=0.;
    1204             : 
    1205         271 :   if(master) {
    1206         229 :     inv_s2 = 1./(sigma_[0]*sigma_[0] + scale2*sigma_mean2_[0]);
    1207         229 :     if(nrep_>1) multi_sim_comm.Sum(inv_s2);
    1208             :   }
    1209         271 :   comm.Sum(inv_s2);
    1210             : 
    1211         271 :   double w_tmp = 0.;
    1212         271 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1213             :   {
    1214             :     #pragma omp for reduction( + : w_tmp)
    1215             :     for(unsigned i=0; i<narg; ++i) {
    1216             :       const double dev = scale_*mean[i]-parameters[i]+offset_;
    1217             :       const double mult = dev*scale_*inv_s2;
    1218             :       setMetaDer(i, kbt_*dmean_x[i]*mult);
    1219             :       w_tmp += kbt_*dmean_b[i]*mult;
    1220             :     }
    1221             :   }
    1222             : 
    1223         271 :   if(do_reweight_) {
    1224          84 :     setArgDerivatives(valueScore, w_tmp);
    1225         168 :     getPntrToComponent("biasDer")->set(w_tmp);
    1226             :   }
    1227         271 : }
    1228             : 
    1229         160 : void MetainferenceBase::getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1230             :     const std::vector<double> &dmean_b)
    1231             : {
    1232         160 :   const double scale2 = scale_*scale_;
    1233         160 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1234             : 
    1235         160 :   if(master) {
    1236        2044 :     for(unsigned i=0; i<sigma_.size(); ++i) inv_s2[i] = 1./(sigma_[i]*sigma_[i] + scale2*sigma_mean2_[i]);
    1237          92 :     if(nrep_>1) multi_sim_comm.Sum(&inv_s2[0],sigma_.size());
    1238             :   }
    1239         160 :   comm.Sum(&inv_s2[0],sigma_.size());
    1240             : 
    1241         160 :   double w_tmp = 0.;
    1242         160 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1243             :   {
    1244             :     #pragma omp for reduction( + : w_tmp)
    1245             :     for(unsigned i=0; i<narg; ++i) {
    1246             :       const double dev  = scale_*mean[i]-parameters[i]+offset_;
    1247             :       const double mult = dev*scale_*inv_s2[i];
    1248             :       setMetaDer(i, kbt_*dmean_x[i]*mult);
    1249             :       w_tmp += kbt_*dmean_b[i]*mult;
    1250             :     }
    1251             :   }
    1252             : 
    1253         160 :   if(do_reweight_) {
    1254          76 :     setArgDerivatives(valueScore, w_tmp);
    1255         152 :     getPntrToComponent("biasDer")->set(w_tmp);
    1256             :   }
    1257         160 : }
    1258             : 
    1259          12 : void MetainferenceBase::getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b)
    1260             : {
    1261          12 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1262          12 :   std::vector<double> dev(sigma_.size(),0.);
    1263          12 :   std::vector<double> dev2(sigma_.size(),0.);
    1264             : 
    1265          36 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1266          24 :     inv_s2[i]   = 1./sigma_mean2_[i];
    1267          24 :     if(master) {
    1268          24 :       dev[i]  = (mean[i]-ftilde_[i]);
    1269          24 :       dev2[i] = dev[i]*dev[i];
    1270             :     }
    1271             :   }
    1272          12 :   if(master&&nrep_>1) {
    1273           0 :     multi_sim_comm.Sum(&dev[0],dev.size());
    1274           0 :     multi_sim_comm.Sum(&dev2[0],dev2.size());
    1275             :   }
    1276          12 :   comm.Sum(&dev[0],dev.size());
    1277          12 :   comm.Sum(&dev2[0],dev2.size());
    1278             : 
    1279          12 :   double dene_b = 0.;
    1280          12 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(dene_b)
    1281             :   {
    1282             :     #pragma omp for reduction( + : dene_b)
    1283             :     for(unsigned i=0; i<narg; ++i) {
    1284             :       const double dene_x  = kbt_*inv_s2[i]*dmean_x[i]*dev[i];
    1285             :       dene_b += kbt_*inv_s2[i]*dmean_b[i]*dev[i];
    1286             :       setMetaDer(i, dene_x);
    1287             :     }
    1288             :   }
    1289             : 
    1290          12 :   if(do_reweight_) {
    1291           0 :     setArgDerivatives(valueScore, dene_b);
    1292           0 :     getPntrToComponent("biasDer")->set(dene_b);
    1293             :   }
    1294          12 : }
    1295             : 
    1296        2225 : void MetainferenceBase::get_weights(double &weight, double &norm, double &neff)
    1297             : {
    1298        2225 :   const double dnrep = static_cast<double>(nrep_);
    1299             :   // calculate the weights either from BIAS
    1300        2225 :   if(do_reweight_) {
    1301        1936 :     std::vector<double> bias(nrep_,0);
    1302        1936 :     if(master) {
    1303         980 :       bias[replica_] = getArgument(0);
    1304         980 :       if(nrep_>1) multi_sim_comm.Sum(&bias[0], nrep_);
    1305             :     }
    1306        1936 :     comm.Sum(&bias[0], nrep_);
    1307             : 
    1308             :     // accumulate weights
    1309        1936 :     if(!firstTimeW[iselect]) {
    1310        5742 :       for(unsigned i=0; i<nrep_; ++i) {
    1311        3828 :         const double delta=bias[i]-average_weights_[iselect][i];
    1312        3828 :         average_weights_[iselect][i]+=decay_w_*delta;
    1313             :       }
    1314             :     } else {
    1315             :       firstTimeW[iselect] = false;
    1316          66 :       for(unsigned i=0; i<nrep_; ++i) average_weights_[iselect][i] = bias[i];
    1317             :     }
    1318             : 
    1319             :     // set average back into bias and set norm to one
    1320        1936 :     const double maxbias = *(std::max_element(average_weights_[iselect].begin(), average_weights_[iselect].end()));
    1321        5808 :     for(unsigned i=0; i<nrep_; ++i) bias[i] = std::exp((average_weights_[iselect][i]-maxbias)/kbt_);
    1322             :     // set local weight, norm and weight variance
    1323        1936 :     weight = bias[replica_];
    1324             :     double w2=0.;
    1325        5808 :     for(unsigned i=0; i<nrep_; ++i) {
    1326        3872 :       w2 += bias[i]*bias[i];
    1327        3872 :       norm += bias[i];
    1328             :     }
    1329        1936 :     neff = norm*norm/w2;
    1330        3872 :     getPntrToComponent("weight")->set(weight/norm);
    1331             :   } else {
    1332             :     // or arithmetic ones
    1333         289 :     neff = dnrep;
    1334         289 :     weight = 1.0;
    1335         289 :     norm = dnrep;
    1336             :   }
    1337        2225 :   getPntrToComponent("neff")->set(neff);
    1338        2225 : }
    1339             : 
    1340        2225 : void MetainferenceBase::get_sigma_mean(const double weight, const double norm, const double neff, const std::vector<double> &mean)
    1341             : {
    1342        2225 :   const double dnrep    = static_cast<double>(nrep_);
    1343        2225 :   std::vector<double> sigma_mean2_tmp(sigma_mean2_.size());
    1344             : 
    1345        2225 :   if(do_optsigmamean_>0) {
    1346             :     // remove first entry of the history std::vector
    1347          84 :     if(sigma_mean2_last_[iselect][0].size()==optsigmamean_stride_&&optsigmamean_stride_>0)
    1348           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[iselect][i].erase(sigma_mean2_last_[iselect][i].begin());
    1349             :     /* this is the current estimate of sigma mean for each argument
    1350             :        there is one of this per argument in any case  because it is
    1351             :        the maximum among these to be used in case of GAUSS/OUTLIER */
    1352          84 :     std::vector<double> sigma_mean2_now(narg,0);
    1353          84 :     if(master) {
    1354         672 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_now[i] = weight*(calc_data_[i]-mean[i])*(calc_data_[i]-mean[i]);
    1355          42 :       if(nrep_>1) multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
    1356             :     }
    1357          84 :     comm.Sum(&sigma_mean2_now[0], narg);
    1358        1344 :     for(unsigned i=0; i<narg; ++i) sigma_mean2_now[i] *= 1.0/(neff-1.)/norm;
    1359             : 
    1360             :     // add sigma_mean2 to history
    1361          84 :     if(optsigmamean_stride_>0) {
    1362           0 :       for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[iselect][i].push_back(sigma_mean2_now[i]);
    1363             :     } else {
    1364        1344 :       for(unsigned i=0; i<narg; ++i) if(sigma_mean2_now[i] > sigma_mean2_last_[iselect][i][0]) sigma_mean2_last_[iselect][i][0] = sigma_mean2_now[i];
    1365             :     }
    1366             : 
    1367          84 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1368        1344 :       for(unsigned i=0; i<narg; ++i) {
    1369             :         /* set to the maximum in history std::vector */
    1370        2520 :         sigma_mean2_tmp[i] = *max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end());
    1371             :         /* the standard error of the mean */
    1372        1260 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1373        1260 :         if(noise_type_==GENERIC) {
    1374           0 :           sigma_min_[i] = std::sqrt(sigma_mean2_tmp[i]);
    1375           0 :           if(sigma_[i] < sigma_min_[i]) sigma_[i] = sigma_min_[i];
    1376             :         }
    1377             :       }
    1378           0 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1379             :       // find maximum for each data point
    1380             :       std::vector <double> max_values;
    1381           0 :       for(unsigned i=0; i<narg; ++i) max_values.push_back(*max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end()));
    1382             :       // find maximum across data points
    1383           0 :       const double max_now = *max_element(max_values.begin(), max_values.end());
    1384             :       // set new value
    1385           0 :       sigma_mean2_tmp[0] = max_now;
    1386           0 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1387             :     }
    1388             :     // endif sigma mean optimization
    1389             :     // start sigma max optimization
    1390          84 :     if(do_optsigmamean_>1&&!sigmamax_opt_done_) {
    1391           0 :       for(unsigned i=0; i<sigma_max_.size(); i++) {
    1392           0 :         if(sigma_max_est_[i]<sigma_mean2_tmp[i]&&optimized_step_>optsigmamean_stride_) sigma_max_est_[i]=sigma_mean2_tmp[i];
    1393             :         // ready to set once and for all the value of sigma_max
    1394           0 :         if(optimized_step_==N_optimized_step_) {
    1395           0 :           sigmamax_opt_done_=true;
    1396           0 :           for(unsigned i=0; i<sigma_max_.size(); i++) {
    1397           0 :             sigma_max_[i]=std::sqrt(sigma_max_est_[i]*dnrep);
    1398           0 :             Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
    1399           0 :             if(sigma_[i]>sigma_max_[i]) sigma_[i]=sigma_max_[i];
    1400             :           }
    1401             :         }
    1402             :       }
    1403           0 :       optimized_step_++;
    1404             :     }
    1405             :     // end sigma max optimization
    1406             :   } else {
    1407        2141 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1408       11588 :       for(unsigned i=0; i<narg; ++i) {
    1409        9724 :         sigma_mean2_tmp[i] = sigma_mean2_last_[iselect][i][0];
    1410        9724 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1411             :       }
    1412         277 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1413         277 :       sigma_mean2_tmp[0] = sigma_mean2_last_[iselect][0][0];
    1414         277 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1415             :     }
    1416             :   }
    1417             : 
    1418        2225 :   sigma_mean2_ = sigma_mean2_tmp;
    1419        2225 : }
    1420             : 
    1421        2225 : void MetainferenceBase::replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b)
    1422             : {
    1423        2225 :   if(master) {
    1424        7472 :     for(unsigned i=0; i<narg; ++i) mean[i] = weight/norm*calc_data_[i];
    1425        1227 :     if(nrep_>1) multi_sim_comm.Sum(&mean[0], narg);
    1426             :   }
    1427        2225 :   comm.Sum(&mean[0], narg);
    1428             :   // set the derivative of the mean with respect to the bias
    1429       14052 :   for(unsigned i=0; i<narg; ++i) dmean_b[i] = weight/norm/kbt_*(calc_data_[i]-mean[i])*decay_w_;
    1430             : 
    1431             :   // this is only for generic metainference
    1432        2225 :   if(firstTime) {ftilde_ = mean; firstTime = false;}
    1433        2225 : }
    1434             : 
    1435           0 : void MetainferenceBase::do_regression_zero(const std::vector<double> &mean)
    1436             : {
    1437             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
    1438             :   double num = 0.0;
    1439             :   double den = 0.0;
    1440           0 :   for(unsigned i=0; i<parameters.size(); ++i) {
    1441           0 :     num += mean[i] * parameters[i];
    1442           0 :     den += mean[i] * mean[i];
    1443             :   }
    1444           0 :   if(den>0) {
    1445           0 :     scale_ = num / den;
    1446             :   } else {
    1447           0 :     scale_ = 1.0;
    1448             :   }
    1449           0 : }
    1450             : 
    1451        2225 : double MetainferenceBase::getScore()
    1452             : {
    1453             :   /* Metainference */
    1454             :   /* 1) collect weights */
    1455        2225 :   double weight = 0.;
    1456        2225 :   double neff = 0.;
    1457        2225 :   double norm = 0.;
    1458        2225 :   get_weights(weight, norm, neff);
    1459             : 
    1460             :   /* 2) calculate average */
    1461        2225 :   std::vector<double> mean(getNarg(),0);
    1462             :   // this is the derivative of the mean with respect to the argument
    1463        2225 :   std::vector<double> dmean_x(getNarg(),weight/norm);
    1464             :   // this is the derivative of the mean with respect to the bias
    1465        2225 :   std::vector<double> dmean_b(getNarg(),0);
    1466             :   // calculate it
    1467        2225 :   replica_averaging(weight, norm, mean, dmean_b);
    1468             : 
    1469             :   /* 3) calculates parameters */
    1470        2225 :   get_sigma_mean(weight, norm, neff, mean);
    1471             : 
    1472             :   // in case of regression with zero intercept, calculate scale
    1473        2225 :   if(doregres_zero_ && getStep()%nregres_zero_==0) do_regression_zero(mean);
    1474             : 
    1475             :   /* 4) run monte carlo */
    1476        2225 :   double ene = doMonteCarlo(mean);
    1477             : 
    1478             :   // calculate bias and forces
    1479        2225 :   switch(noise_type_) {
    1480         271 :   case GAUSS:
    1481         271 :     getEnergyForceGJ(mean, dmean_x, dmean_b);
    1482             :     break;
    1483         160 :   case MGAUSS:
    1484         160 :     getEnergyForceGJE(mean, dmean_x, dmean_b);
    1485             :     break;
    1486           6 :   case OUTLIERS:
    1487           6 :     getEnergyForceSP(mean, dmean_x, dmean_b);
    1488             :     break;
    1489        1776 :   case MOUTLIERS:
    1490        1776 :     getEnergyForceSPE(mean, dmean_x, dmean_b);
    1491             :     break;
    1492          12 :   case GENERIC:
    1493          12 :     getEnergyForceMIGEN(mean, dmean_x, dmean_b);
    1494             :     break;
    1495             :   }
    1496             : 
    1497        2225 :   return ene;
    1498             : }
    1499             : 
    1500         112 : void MetainferenceBase::writeStatus()
    1501             : {
    1502         112 :   if(!doscore_) return;
    1503          31 :   sfile_.rewind();
    1504          31 :   sfile_.printField("time",getTimeStep()*getStep());
    1505             :   //nsel
    1506          62 :   for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
    1507             :     std::string msg_i,msg_j;
    1508          31 :     Tools::convert(i,msg_i);
    1509             :     std::vector <double> max_values;
    1510             :     //narg
    1511        2528 :     for(unsigned j=0; j<narg; ++j) {
    1512        2497 :       Tools::convert(j,msg_j);
    1513        2497 :       std::string msg = msg_i+"_"+msg_j;
    1514        2497 :       if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1515        7410 :         sfile_.printField("sigmaMean_"+msg,std::sqrt(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end())));
    1516             :       } else {
    1517             :         // find maximum for each data point
    1518          54 :         max_values.push_back(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end()));
    1519             :       }
    1520             :     }
    1521          31 :     if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1522             :       // find maximum across data points
    1523           8 :       const double max_now = std::sqrt(*max_element(max_values.begin(), max_values.end()));
    1524           8 :       Tools::convert(0,msg_j);
    1525           8 :       std::string msg = msg_i+"_"+msg_j;
    1526          16 :       sfile_.printField("sigmaMean_"+msg, max_now);
    1527             :     }
    1528             :   }
    1529        2509 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1530             :     std::string msg;
    1531        2478 :     Tools::convert(i,msg);
    1532        4956 :     sfile_.printField("sigma_"+msg,sigma_[i]);
    1533             :   }
    1534        2509 :   for(unsigned i=0; i<sigma_max_.size(); ++i) {
    1535             :     std::string msg;
    1536        2478 :     Tools::convert(i,msg);
    1537        4956 :     sfile_.printField("sigma_max_"+msg,sigma_max_[i]);
    1538             :   }
    1539          31 :   if(noise_type_==GENERIC) {
    1540           3 :     for(unsigned i=0; i<ftilde_.size(); ++i) {
    1541             :       std::string msg;
    1542           2 :       Tools::convert(i,msg);
    1543           4 :       sfile_.printField("ftilde_"+msg,ftilde_[i]);
    1544             :     }
    1545             :   }
    1546          31 :   sfile_.printField("scale0_",scale_);
    1547          31 :   sfile_.printField("offset0_",offset_);
    1548          62 :   for(unsigned i=0; i<average_weights_.size(); i++) {
    1549             :     std::string msg_i;
    1550          31 :     Tools::convert(i,msg_i);
    1551          62 :     sfile_.printField("weight_"+msg_i,average_weights_[i][replica_]);
    1552             :   }
    1553          31 :   sfile_.printField();
    1554          31 :   sfile_.flush();
    1555             : }
    1556             : 
    1557             : }
    1558             : }
    1559             : 

Generated by: LCOV version 1.16