LCOV - code coverage report
Current view: top level - isdb - Metainference.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 831 993 83.7 %
Date: 2025-04-08 21:11:17 Functions: 25 27 92.6 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "bias/Bias.h"
      24             : #include "core/ActionRegister.h"
      25             : #include "core/PlumedMain.h"
      26             : #include "core/Value.h"
      27             : #include "tools/File.h"
      28             : #include "tools/OpenMP.h"
      29             : #include "tools/Random.h"
      30             : #include "tools/Communicator.h"
      31             : #include <chrono>
      32             : #include <numeric>
      33             : 
      34             : #ifndef M_PI
      35             : #define M_PI           3.14159265358979323846
      36             : #endif
      37             : 
      38             : namespace PLMD {
      39             : namespace isdb {
      40             : 
      41             : //+PLUMEDOC ISDB_BIAS METAINFERENCE
      42             : /*
      43             : Calculates the Metainference energy for a set of experimental data.
      44             : 
      45             : Metainference \cite Bonomi:2016ip is a Bayesian framework
      46             : to model heterogeneous systems by integrating prior information with noisy, ensemble-averaged data.
      47             : Metainference models a system and quantifies the level of noise in the data by considering a set of replicas of the system.
      48             : 
      49             : Calculated experimental data are given in input as ARG while reference experimental values
      50             : can be given either from fixed components of other actions using PARARG or as numbers using
      51             : PARAMETERS. The default behavior is that of averaging the data over the available replicas,
      52             : if this is not wanted the keyword NOENSEMBLE prevent this averaging.
      53             : 
      54             : Metadynamics Metainference \cite Bonomi:2016ge or more in general biased Metainference requires the knowledge of
      55             : biasing potential in order to calculate the weighted average. In this case the value of the bias
      56             : can be provided as the last argument in ARG and adding the keyword REWEIGHT. To avoid the noise
      57             : resulting from the instantaneous value of the bias the weight of each replica can be averaged
      58             : over a give time using the keyword AVERAGING.
      59             : 
      60             : The data can be averaged by using multiple replicas and weighted for a bias if present.
      61             : The functional form of Metainference can be chosen among four variants selected
      62             : with NOISE=GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC which correspond to modelling the noise for
      63             : the arguments as a single gaussian common to all the data points, a gaussian per data
      64             : point, a single long-tailed gaussian common to all the data points, a log-tailed
      65             :  gaussian per data point or using two distinct noises as for the most general formulation of Metainference.
      66             : In this latter case the noise of the replica-averaging is gaussian (one per data point) and the noise for
      67             : the comparison with the experimental data can chosen using the keyword LIKELIHOOD
      68             : between gaussian or log-normal (one per data point), furthermore the evolution of the estimated average
      69             : over an infinite number of replicas is driven by DFTILDE.
      70             : 
      71             : As for Metainference theory there are two sigma values: SIGMA_MEAN0 represent the
      72             : error of calculating an average quantity using a finite set of replica and should
      73             : be set as small as possible following the guidelines for replica-averaged simulations
      74             : in the framework of the Maximum Entropy Principle. Alternatively, this can be obtained
      75             : automatically using the internal sigma mean optimization as introduced in \cite Lohr:2017gc
      76             : (OPTSIGMAMEAN=SEM), in this second case sigma_mean is estimated from the maximum standard error
      77             : of the mean either over the simulation or over a defined time using the keyword AVERAGING.
      78             : SIGMA_BIAS is an uncertainty parameter, sampled by a MC algorithm in the bounded interval
      79             : defined by SIGMA_MIN and SIGMA_MAX. The initial value is set at SIGMA0. The MC move is a
      80             : random displacement of maximum value equal to DSIGMA. If the number of data point is
      81             : too large and the acceptance rate drops it is possible to make the MC move over mutually
      82             : exclusive, random subset of size MC_CHUNKSIZE and run more than one move setting MC_STEPS
      83             : in such a way that MC_CHUNKSIZE*MC_STEPS will cover all the data points.
      84             : 
      85             : Calculated and experimental data can be compared modulo a scaling factor and/or an offset
      86             : using SCALEDATA and/or ADDOFFSET, the sampling is obtained by a MC algorithm either using
      87             : a flat or a gaussian prior setting it with SCALE_PRIOR or OFFSET_PRIOR.
      88             : 
      89             : \par Examples
      90             : 
      91             : In the following example we calculate a set of \ref RDC, take the replica-average of
      92             : them and comparing them with a set of experimental values. RDCs are compared with
      93             : the experimental data but for a multiplication factor SCALE that is also sampled by
      94             : MC on-the-fly
      95             : 
      96             : \plumedfile
      97             : RDC ...
      98             : LABEL=rdc
      99             : SCALE=0.0001
     100             : GYROM=-72.5388
     101             : ATOMS1=22,23
     102             : ATOMS2=25,27
     103             : ATOMS3=29,31
     104             : ATOMS4=33,34
     105             : ... RDC
     106             : 
     107             : METAINFERENCE ...
     108             : ARG=rdc.*
     109             : NOISETYPE=MGAUSS
     110             : PARAMETERS=1.9190,2.9190,3.9190,4.9190
     111             : SCALEDATA SCALE0=1 SCALE_MIN=0.1 SCALE_MAX=3 DSCALE=0.01
     112             : SIGMA0=0.01 SIGMA_MIN=0.00001 SIGMA_MAX=3 DSIGMA=0.01
     113             : SIGMA_MEAN0=0.001
     114             : LABEL=spe
     115             : ... METAINFERENCE
     116             : 
     117             : PRINT ARG=spe.bias FILE=BIAS STRIDE=1
     118             : \endplumedfile
     119             : 
     120             : in the following example instead of using one uncertainty parameter per data point we use
     121             : a single uncertainty value in a long-tailed gaussian to take into account for outliers, furthermore
     122             : the data are weighted for the bias applied to other variables of the system.
     123             : 
     124             : \plumedfile
     125             : RDC ...
     126             : LABEL=rdc
     127             : SCALE=0.0001
     128             : GYROM=-72.5388
     129             : ATOMS1=22,23
     130             : ATOMS2=25,27
     131             : ATOMS3=29,31
     132             : ATOMS4=33,34
     133             : ... RDC
     134             : 
     135             : cv1: TORSION ATOMS=1,2,3,4
     136             : cv2: TORSION ATOMS=2,3,4,5
     137             : mm: METAD ARG=cv1,cv2 HEIGHT=0.5 SIGMA=0.3,0.3 PACE=200 BIASFACTOR=8 WALKERS_MPI
     138             : 
     139             : METAINFERENCE ...
     140             : #SETTINGS NREPLICAS=2
     141             : ARG=rdc.*,mm.bias
     142             : REWEIGHT
     143             : NOISETYPE=OUTLIERS
     144             : PARAMETERS=1.9190,2.9190,3.9190,4.9190
     145             : SCALEDATA SCALE0=1 SCALE_MIN=0.1 SCALE_MAX=3 DSCALE=0.01
     146             : SIGMA0=0.01 SIGMA_MIN=0.00001 SIGMA_MAX=3 DSIGMA=0.01
     147             : SIGMA_MEAN0=0.001
     148             : LABEL=spe
     149             : ... METAINFERENCE
     150             : \endplumedfile
     151             : 
     152             : (See also \ref RDC, \ref PBMETAD).
     153             : 
     154             : */
     155             : //+ENDPLUMEDOC
     156             : 
     157             : class Metainference : public bias::Bias {
     158             :   // experimental values
     159             :   std::vector<double> parameters;
     160             :   // noise type
     161             :   unsigned noise_type_;
     162             :   enum { GAUSS, MGAUSS, OUTLIERS, MOUTLIERS, GENERIC };
     163             :   unsigned gen_likelihood_;
     164             :   enum { LIKE_GAUSS, LIKE_LOGN };
     165             :   // scale is data scaling factor
     166             :   // noise type
     167             :   unsigned scale_prior_;
     168             :   enum { SC_GAUSS, SC_FLAT };
     169             :   bool   doscale_;
     170             :   double scale_;
     171             :   double scale_mu_;
     172             :   double scale_min_;
     173             :   double scale_max_;
     174             :   double Dscale_;
     175             :   // scale is data scaling factor
     176             :   // noise type
     177             :   unsigned offset_prior_;
     178             :   bool   dooffset_;
     179             :   double offset_;
     180             :   double offset_mu_;
     181             :   double offset_min_;
     182             :   double offset_max_;
     183             :   double Doffset_;
     184             :   // scale and offset regression
     185             :   bool doregres_zero_;
     186             :   int  nregres_zero_;
     187             :   // sigma is data uncertainty
     188             :   std::vector<double> sigma_;
     189             :   std::vector<double> sigma_min_;
     190             :   std::vector<double> sigma_max_;
     191             :   std::vector<double> Dsigma_;
     192             :   // sigma_mean is uncertainty in the mean estimate
     193             :   std::vector<double> sigma_mean2_;
     194             :   // this is the estimator of the mean value per replica for generic metainference
     195             :   std::vector<double> ftilde_;
     196             :   double Dftilde_;
     197             : 
     198             :   // temperature in kbt
     199             :   double   kbt_;
     200             : 
     201             :   // Monte Carlo stuff
     202             :   std::vector<Random> random;
     203             :   unsigned MCsteps_;
     204             :   long long unsigned MCaccept_;
     205             :   long long unsigned MCacceptScale_;
     206             :   long long unsigned MCacceptFT_;
     207             :   long long unsigned MCtrial_;
     208             :   unsigned MCchunksize_;
     209             : 
     210             :   // output
     211             :   Value*   valueScale;
     212             :   Value*   valueOffset;
     213             :   Value*   valueAccept;
     214             :   Value*   valueAcceptScale;
     215             :   Value*   valueAcceptFT;
     216             :   std::vector<Value*> valueSigma;
     217             :   std::vector<Value*> valueSigmaMean;
     218             :   std::vector<Value*> valueFtilde;
     219             : 
     220             :   // restart
     221             :   unsigned write_stride_;
     222             :   OFile    sfile_;
     223             : 
     224             :   // others
     225             :   bool         firstTime;
     226             :   std::vector<bool> firstTimeW;
     227             :   bool     master;
     228             :   bool     do_reweight_;
     229             :   unsigned do_optsigmamean_;
     230             :   unsigned nrep_;
     231             :   unsigned replica_;
     232             :   unsigned narg;
     233             : 
     234             :   // selector
     235             :   std::string selector_;
     236             : 
     237             :   // optimize sigma mean
     238             :   std::vector< std::vector < std::vector <double> > > sigma_mean2_last_;
     239             :   unsigned optsigmamean_stride_;
     240             :   // optimize sigma max
     241             :   unsigned N_optimized_step_;
     242             :   unsigned optimized_step_;
     243             :   bool sigmamax_opt_done_;
     244             :   std::vector<double> sigma_max_est_;
     245             : 
     246             :   // average weights
     247             :   unsigned                   average_weights_stride_;
     248             :   std::vector< std::vector <double> >  average_weights_;
     249             : 
     250             :   double getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
     251             :                         const double scale, const double offset);
     252             :   double getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
     253             :                      const double scale, const double offset);
     254             :   double getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
     255             :                       const double scale, const double offset);
     256             :   double getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
     257             :                      const double scale, const double offset);
     258             :   double getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
     259             :                       const double scale, const double offset);
     260             :   void moveTilde(const std::vector<double> &mean_, double &old_energy);
     261             :   void moveScaleOffset(const std::vector<double> &mean_, double &old_energy);
     262             :   void moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow);
     263             :   double doMonteCarlo(const std::vector<double> &mean);
     264             :   void getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     265             :   void getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     266             :   void getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     267             :   void getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     268             :   void getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     269             :   void get_weights(const unsigned iselect, double &weight, double &norm, double &neff);
     270             :   void replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b);
     271             :   void get_sigma_mean(const unsigned iselect, const double weight, const double norm, const double neff, const std::vector<double> &mean);
     272             :   void writeStatus();
     273             :   void do_regression_zero(const std::vector<double> &mean);
     274             : 
     275             : public:
     276             :   explicit Metainference(const ActionOptions&);
     277             :   ~Metainference();
     278             :   void calculate() override;
     279             :   void update() override;
     280             :   static void registerKeywords(Keywords& keys);
     281             : };
     282             : 
     283             : 
     284             : PLUMED_REGISTER_ACTION(Metainference,"METAINFERENCE")
     285             : 
     286          34 : void Metainference::registerKeywords(Keywords& keys) {
     287          34 :   Bias::registerKeywords(keys);
     288          68 :   keys.addInputKeyword("optional","PARARG","scalar","reference values for the experimental data, these can be provided as arguments without derivatives");
     289          34 :   keys.add("optional","PARAMETERS","reference values for the experimental data");
     290          34 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
     291          34 :   keys.addFlag("REWEIGHT",false,"simple REWEIGHT using the latest ARG as energy");
     292          34 :   keys.add("optional","AVERAGING", "Stride for calculation of averaged weights and sigma_mean");
     293          34 :   keys.add("compulsory","NOISETYPE","MGAUSS","functional form of the noise (GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC)");
     294          34 :   keys.add("compulsory","LIKELIHOOD","GAUSS","the likelihood for the GENERIC metainference model, GAUSS or LOGN");
     295          34 :   keys.add("compulsory","DFTILDE","0.1","fraction of sigma_mean used to evolve ftilde");
     296          34 :   keys.addFlag("SCALEDATA",false,"Set to TRUE if you want to sample a scaling factor common to all values and replicas");
     297          34 :   keys.add("compulsory","SCALE0","1.0","initial value of the scaling factor");
     298          34 :   keys.add("compulsory","SCALE_PRIOR","FLAT","either FLAT or GAUSSIAN");
     299          34 :   keys.add("optional","SCALE_MIN","minimum value of the scaling factor");
     300          34 :   keys.add("optional","SCALE_MAX","maximum value of the scaling factor");
     301          34 :   keys.add("optional","DSCALE","maximum MC move of the scaling factor");
     302          34 :   keys.addFlag("ADDOFFSET",false,"Set to TRUE if you want to sample an offset common to all values and replicas");
     303          34 :   keys.add("compulsory","OFFSET0","0.0","initial value of the offset");
     304          34 :   keys.add("compulsory","OFFSET_PRIOR","FLAT","either FLAT or GAUSSIAN");
     305          34 :   keys.add("optional","OFFSET_MIN","minimum value of the offset");
     306          34 :   keys.add("optional","OFFSET_MAX","maximum value of the offset");
     307          34 :   keys.add("optional","DOFFSET","maximum MC move of the offset");
     308          34 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
     309          34 :   keys.add("compulsory","SIGMA0","1.0","initial value of the uncertainty parameter");
     310          34 :   keys.add("compulsory","SIGMA_MIN","0.0","minimum value of the uncertainty parameter");
     311          34 :   keys.add("compulsory","SIGMA_MAX","10.","maximum value of the uncertainty parameter");
     312          34 :   keys.add("optional","DSIGMA","maximum MC move of the uncertainty parameter");
     313          34 :   keys.add("compulsory","OPTSIGMAMEAN","NONE","Set to NONE/SEM to manually set sigma mean, or to estimate it on the fly");
     314          34 :   keys.add("optional","SIGMA_MEAN0","starting value for the uncertainty in the mean estimate");
     315          34 :   keys.add("optional","SIGMA_MAX_STEPS", "Number of steps used to optimise SIGMA_MAX, before that the SIGMA_MAX value is used");
     316          34 :   keys.add("optional","TEMP","the system temperature - this is only needed if code doesn't pass the temperature to plumed");
     317          34 :   keys.add("optional","MC_STEPS","number of MC steps");
     318          34 :   keys.add("optional","MC_CHUNKSIZE","MC chunksize");
     319          34 :   keys.add("optional","STATUS_FILE","write a file with all the data useful for restart/continuation of Metainference");
     320          34 :   keys.add("optional","FMT","specify format for HILLS files (useful for decrease the number of digits in regtests)");
     321          34 :   keys.add("compulsory","WRITE_STRIDE","10000","write the status to a file every N steps, this can be used for restart/continuation");
     322          34 :   keys.add("optional","SELECTOR","name of selector");
     323          34 :   keys.add("optional","NSELECT","range of values for selector [0, N-1]");
     324          34 :   keys.use("RESTART");
     325          68 :   keys.addOutputComponent("sigma",        "default",      "scalar","uncertainty parameter");
     326          68 :   keys.addOutputComponent("sigmaMean",    "default",      "scalar","uncertainty in the mean estimate");
     327          68 :   keys.addOutputComponent("neff",         "default",      "scalar","effective number of replicas");
     328          68 :   keys.addOutputComponent("acceptSigma",  "default",      "scalar","MC acceptance for sigma values");
     329          68 :   keys.addOutputComponent("acceptScale",  "SCALEDATA",    "scalar","MC acceptance for scale value");
     330          68 :   keys.addOutputComponent("acceptFT",     "GENERIC",      "scalar","MC acceptance for general metainference f tilde value");
     331          68 :   keys.addOutputComponent("weight",       "REWEIGHT",     "scalar","weights of the weighted average");
     332          68 :   keys.addOutputComponent("biasDer",      "REWEIGHT",     "scalar","derivatives with respect to the bias");
     333          68 :   keys.addOutputComponent("scale",        "SCALEDATA",    "scalar","scale parameter");
     334          68 :   keys.addOutputComponent("offset",       "ADDOFFSET",    "scalar","offset parameter");
     335          68 :   keys.addOutputComponent("ftilde",       "GENERIC",      "scalar","ensemble average estimator");
     336          34 : }
     337             : 
     338          32 : Metainference::Metainference(const ActionOptions&ao):
     339             :   PLUMED_BIAS_INIT(ao),
     340          32 :   doscale_(false),
     341          32 :   scale_(1.),
     342          32 :   scale_mu_(0),
     343          32 :   scale_min_(1),
     344          32 :   scale_max_(-1),
     345          32 :   Dscale_(-1),
     346          32 :   dooffset_(false),
     347          32 :   offset_(0.),
     348          32 :   offset_mu_(0),
     349          32 :   offset_min_(1),
     350          32 :   offset_max_(-1),
     351          32 :   Doffset_(-1),
     352          32 :   doregres_zero_(false),
     353          32 :   nregres_zero_(0),
     354          32 :   Dftilde_(0.1),
     355          32 :   random(3),
     356          32 :   MCsteps_(1),
     357          32 :   MCaccept_(0),
     358          32 :   MCacceptScale_(0),
     359          32 :   MCacceptFT_(0),
     360          32 :   MCtrial_(0),
     361          32 :   MCchunksize_(0),
     362          32 :   write_stride_(0),
     363          32 :   firstTime(true),
     364          32 :   do_reweight_(false),
     365          32 :   do_optsigmamean_(0),
     366          32 :   optsigmamean_stride_(0),
     367          32 :   N_optimized_step_(0),
     368          32 :   optimized_step_(0),
     369          32 :   sigmamax_opt_done_(false),
     370          32 :   average_weights_stride_(1) {
     371          32 :   bool noensemble = false;
     372          32 :   parseFlag("NOENSEMBLE", noensemble);
     373             : 
     374             :   // set up replica stuff
     375          32 :   master = (comm.Get_rank()==0);
     376          32 :   if(master) {
     377          24 :     nrep_    = multi_sim_comm.Get_size();
     378          24 :     replica_ = multi_sim_comm.Get_rank();
     379          24 :     if(noensemble) {
     380           0 :       nrep_ = 1;
     381             :     }
     382             :   } else {
     383           8 :     nrep_    = 0;
     384           8 :     replica_ = 0;
     385             :   }
     386          32 :   comm.Sum(&nrep_,1);
     387          32 :   comm.Sum(&replica_,1);
     388             : 
     389          32 :   unsigned nsel = 1;
     390          32 :   parse("SELECTOR", selector_);
     391          64 :   parse("NSELECT", nsel);
     392             :   // do checks
     393          32 :   if(selector_.length()>0 && nsel<=1) {
     394           0 :     error("With SELECTOR active, NSELECT must be greater than 1");
     395             :   }
     396          32 :   if(selector_.length()==0 && nsel>1) {
     397           0 :     error("With NSELECT greater than 1, you must specify SELECTOR");
     398             :   }
     399             : 
     400             :   // initialise firstTimeW
     401          32 :   firstTimeW.resize(nsel, true);
     402             : 
     403             :   // reweight implies a different number of arguments (the latest one must always be the bias)
     404          32 :   parseFlag("REWEIGHT", do_reweight_);
     405          32 :   if(do_reweight_&&nrep_<2) {
     406           0 :     error("REWEIGHT can only be used in parallel with 2 or more replicas");
     407             :   }
     408          32 :   if(!getRestart()) {
     409          56 :     average_weights_.resize(nsel, std::vector<double> (nrep_, 1./static_cast<double>(nrep_)));
     410             :   } else {
     411           8 :     average_weights_.resize(nsel, std::vector<double> (nrep_, 0.));
     412             :   }
     413          32 :   narg = getNumberOfArguments();
     414          32 :   if(do_reweight_) {
     415          16 :     narg--;
     416             :   }
     417             : 
     418          32 :   unsigned averaging=0;
     419          32 :   parse("AVERAGING", averaging);
     420          32 :   if(averaging>0) {
     421           1 :     average_weights_stride_ = averaging;
     422           1 :     optsigmamean_stride_    = averaging;
     423             :   }
     424             : 
     425          64 :   parseVector("PARAMETERS",parameters);
     426          32 :   if(parameters.size()!=static_cast<unsigned>(narg)&&!parameters.empty()) {
     427           0 :     error("Size of PARAMETERS array should be either 0 or the same as of the number of arguments in ARG1");
     428             :   }
     429             : 
     430             :   std::vector<Value*> arg2;
     431          64 :   parseArgumentList("PARARG",arg2);
     432          32 :   if(!arg2.empty()) {
     433           4 :     if(parameters.size()>0) {
     434           0 :       error("It is not possible to use PARARG and PARAMETERS together");
     435             :     }
     436           4 :     if(arg2.size()!=narg) {
     437           0 :       error("Size of PARARG array should be the same as number for arguments in ARG");
     438             :     }
     439        2360 :     for(unsigned i=0; i<arg2.size(); i++) {
     440        2356 :       parameters.push_back(arg2[i]->get());
     441        2356 :       if(arg2[i]->hasDerivatives()==true) {
     442           0 :         error("PARARG can only accept arguments without derivatives");
     443             :       }
     444             :     }
     445             :   }
     446             : 
     447          32 :   if(parameters.size()!=narg) {
     448           0 :     error("PARARG or PARAMETERS arrays should include the same number of elements as the arguments in ARG");
     449             :   }
     450             : 
     451             :   std::string stringa_noise;
     452          64 :   parse("NOISETYPE",stringa_noise);
     453          32 :   if(stringa_noise=="GAUSS") {
     454           3 :     noise_type_ = GAUSS;
     455          29 :   } else if(stringa_noise=="MGAUSS") {
     456           8 :     noise_type_ = MGAUSS;
     457          21 :   } else if(stringa_noise=="OUTLIERS") {
     458          14 :     noise_type_ = OUTLIERS;
     459           7 :   } else if(stringa_noise=="MOUTLIERS") {
     460           4 :     noise_type_ = MOUTLIERS;
     461           3 :   } else if(stringa_noise=="GENERIC") {
     462           3 :     noise_type_ = GENERIC;
     463             :   } else {
     464           0 :     error("Unknown noise type!");
     465             :   }
     466             : 
     467          32 :   if(noise_type_== GENERIC) {
     468             :     std::string stringa_like;
     469           6 :     parse("LIKELIHOOD",stringa_like);
     470           3 :     if(stringa_like=="GAUSS") {
     471           2 :       gen_likelihood_ = LIKE_GAUSS;
     472           1 :     } else if(stringa_like=="LOGN") {
     473           1 :       gen_likelihood_ = LIKE_LOGN;
     474             :     } else {
     475           0 :       error("Unknown likelihood type!");
     476             :     }
     477             : 
     478           6 :     parse("DFTILDE",Dftilde_);
     479             :   }
     480             : 
     481          64 :   parse("WRITE_STRIDE",write_stride_);
     482             :   std::string status_file_name_;
     483          64 :   parse("STATUS_FILE",status_file_name_);
     484          32 :   if(status_file_name_=="") {
     485          64 :     status_file_name_ = "MISTATUS"+getLabel();
     486             :   } else {
     487           0 :     status_file_name_ = status_file_name_+getLabel();
     488             :   }
     489             : 
     490             :   std::string stringa_optsigma;
     491          64 :   parse("OPTSIGMAMEAN", stringa_optsigma);
     492          32 :   if(stringa_optsigma=="NONE") {
     493          30 :     do_optsigmamean_=0;
     494           2 :   } else if(stringa_optsigma=="SEM") {
     495           0 :     do_optsigmamean_=1;
     496           2 :   } else if(stringa_optsigma=="SEM_MAX") {
     497           0 :     do_optsigmamean_=2;
     498             :   }
     499             : 
     500          32 :   unsigned aver_max_steps=0;
     501          32 :   parse("SIGMA_MAX_STEPS", aver_max_steps);
     502          32 :   if(aver_max_steps==0&&do_optsigmamean_==2) {
     503           0 :     aver_max_steps=averaging*2000;
     504             :   }
     505          32 :   if(aver_max_steps>0&&do_optsigmamean_<2) {
     506           0 :     error("SIGMA_MAX_STEPS can only be used together with OPTSIGMAMEAN=SEM_MAX");
     507             :   }
     508          32 :   if(aver_max_steps>0&&do_optsigmamean_==2) {
     509           0 :     N_optimized_step_=aver_max_steps;
     510             :   }
     511          32 :   if(aver_max_steps>0&&aver_max_steps<averaging) {
     512           0 :     error("SIGMA_MAX_STEPS must be greater than AVERAGING");
     513             :   }
     514             : 
     515             :   // resize std::vector for sigma_mean history
     516          32 :   sigma_mean2_last_.resize(nsel);
     517          64 :   for(unsigned i=0; i<nsel; i++) {
     518          32 :     sigma_mean2_last_[i].resize(narg);
     519             :   }
     520             : 
     521             :   std::vector<double> read_sigma_mean_;
     522          32 :   parseVector("SIGMA_MEAN0",read_sigma_mean_);
     523          32 :   if(do_optsigmamean_==0 && read_sigma_mean_.size()==0 && !getRestart()) {
     524           0 :     error("If you don't use OPTSIGMAMEAN and you are not RESTARTING then you MUST SET SIGMA_MEAN0");
     525             :   }
     526             : 
     527          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     528          15 :     if(read_sigma_mean_.size()==narg) {
     529           0 :       sigma_mean2_.resize(narg);
     530           0 :       for(unsigned i=0; i<narg; i++) {
     531           0 :         sigma_mean2_[i]=read_sigma_mean_[i]*read_sigma_mean_[i];
     532             :       }
     533          15 :     } else if(read_sigma_mean_.size()==1) {
     534          15 :       sigma_mean2_.resize(narg,read_sigma_mean_[0]*read_sigma_mean_[0]);
     535           0 :     } else if(read_sigma_mean_.size()==0) {
     536           0 :       sigma_mean2_.resize(narg,0.000001);
     537             :     } else {
     538           0 :       error("SIGMA_MEAN0 can accept either one single value or as many values as the arguments (with NOISETYPE=MGAUSS|MOUTLIERS)");
     539             :     }
     540             :     // set the initial value for the history
     541          30 :     for(unsigned i=0; i<nsel; i++)
     542        2409 :       for(unsigned j=0; j<narg; j++) {
     543        2394 :         sigma_mean2_last_[i][j].push_back(sigma_mean2_[j]);
     544             :       }
     545             :   } else {
     546          17 :     if(read_sigma_mean_.size()==1) {
     547          17 :       sigma_mean2_.resize(1, read_sigma_mean_[0]*read_sigma_mean_[0]);
     548           0 :     } else if(read_sigma_mean_.size()==0) {
     549           0 :       sigma_mean2_.resize(1, 0.000001);
     550             :     } else {
     551           0 :       error("If you want to use more than one SIGMA_MEAN0 you should use NOISETYPE=MGAUSS|MOUTLIERS");
     552             :     }
     553             :     // set the initial value for the history
     554          34 :     for(unsigned i=0; i<nsel; i++)
     555         109 :       for(unsigned j=0; j<narg; j++) {
     556          92 :         sigma_mean2_last_[i][j].push_back(sigma_mean2_[0]);
     557             :       }
     558             :   }
     559             : 
     560          32 :   parseFlag("SCALEDATA", doscale_);
     561          32 :   if(doscale_) {
     562             :     std::string stringa_noise;
     563          24 :     parse("SCALE_PRIOR",stringa_noise);
     564          12 :     if(stringa_noise=="GAUSSIAN") {
     565           0 :       scale_prior_ = SC_GAUSS;
     566          12 :     } else if(stringa_noise=="FLAT") {
     567          12 :       scale_prior_ = SC_FLAT;
     568             :     } else {
     569           0 :       error("Unknown SCALE_PRIOR type!");
     570             :     }
     571          12 :     parse("SCALE0",scale_);
     572          12 :     parse("DSCALE",Dscale_);
     573          12 :     if(Dscale_<0.) {
     574           0 :       error("DSCALE must be set when using SCALEDATA");
     575             :     }
     576          12 :     if(scale_prior_==SC_GAUSS) {
     577           0 :       scale_mu_=scale_;
     578             :     } else {
     579          12 :       parse("SCALE_MIN",scale_min_);
     580          12 :       parse("SCALE_MAX",scale_max_);
     581          12 :       if(scale_max_<scale_min_) {
     582           0 :         error("SCALE_MAX and SCALE_MIN must be set when using SCALE_PRIOR=FLAT");
     583             :       }
     584             :     }
     585             :   }
     586             : 
     587          32 :   parseFlag("ADDOFFSET", dooffset_);
     588          32 :   if(dooffset_) {
     589             :     std::string stringa_noise;
     590          12 :     parse("OFFSET_PRIOR",stringa_noise);
     591           6 :     if(stringa_noise=="GAUSSIAN") {
     592           0 :       offset_prior_ = SC_GAUSS;
     593           6 :     } else if(stringa_noise=="FLAT") {
     594           6 :       offset_prior_ = SC_FLAT;
     595             :     } else {
     596           0 :       error("Unknown OFFSET_PRIOR type!");
     597             :     }
     598           6 :     parse("OFFSET0",offset_);
     599           6 :     parse("DOFFSET",Doffset_);
     600           6 :     if(offset_prior_==SC_GAUSS) {
     601           0 :       offset_mu_=offset_;
     602           0 :       if(Doffset_<0.) {
     603           0 :         error("DOFFSET must be set when using OFFSET_PRIOR=GAUSS");
     604             :       }
     605             :     } else {
     606           6 :       parse("OFFSET_MIN",offset_min_);
     607           6 :       parse("OFFSET_MAX",offset_max_);
     608           6 :       if(Doffset_<0) {
     609           0 :         Doffset_ = 0.05*(offset_max_ - offset_min_);
     610             :       }
     611           6 :       if(offset_max_<offset_min_) {
     612           0 :         error("OFFSET_MAX and OFFSET_MIN must be set when using OFFSET_PRIOR=FLAT");
     613             :       }
     614             :     }
     615             :   }
     616             : 
     617             :   // regression with zero intercept
     618          32 :   parse("REGRES_ZERO", nregres_zero_);
     619          32 :   if(nregres_zero_>0) {
     620             :     // set flag
     621           1 :     doregres_zero_=true;
     622             :     // check if already sampling scale and offset
     623           1 :     if(doscale_) {
     624           0 :       error("REGRES_ZERO and SCALEDATA are mutually exclusive");
     625             :     }
     626           1 :     if(dooffset_) {
     627           0 :       error("REGRES_ZERO and ADDOFFSET are mutually exclusive");
     628             :     }
     629             :   }
     630             : 
     631             :   std::vector<double> readsigma;
     632          32 :   parseVector("SIGMA0",readsigma);
     633          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma.size()>1) {
     634           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     635             :   }
     636          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     637          15 :     sigma_.resize(readsigma.size());
     638          15 :     sigma_=readsigma;
     639             :   } else {
     640          17 :     sigma_.resize(1, readsigma[0]);
     641             :   }
     642             : 
     643             :   std::vector<double> readsigma_min;
     644          32 :   parseVector("SIGMA_MIN",readsigma_min);
     645          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_min.size()>1) {
     646           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     647             :   }
     648          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     649          15 :     sigma_min_.resize(readsigma_min.size());
     650          15 :     sigma_min_=readsigma_min;
     651             :   } else {
     652          17 :     sigma_min_.resize(1, readsigma_min[0]);
     653             :   }
     654             : 
     655             :   std::vector<double> readsigma_max;
     656          32 :   parseVector("SIGMA_MAX",readsigma_max);
     657          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1) {
     658           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     659             :   }
     660          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     661          15 :     sigma_max_.resize(readsigma_max.size());
     662          15 :     sigma_max_=readsigma_max;
     663             :   } else {
     664          17 :     sigma_max_.resize(1, readsigma_max[0]);
     665             :   }
     666             : 
     667          32 :   if(sigma_max_.size()!=sigma_min_.size()) {
     668           0 :     error("The number of values for SIGMA_MIN and SIGMA_MAX must be the same");
     669             :   }
     670             : 
     671             :   std::vector<double> read_dsigma;
     672          32 :   parseVector("DSIGMA",read_dsigma);
     673          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1) {
     674           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     675             :   }
     676          32 :   if(read_dsigma.size()>0) {
     677          32 :     Dsigma_.resize(read_dsigma.size());
     678          32 :     Dsigma_=read_dsigma;
     679             :   } else {
     680           0 :     Dsigma_.resize(sigma_max_.size(), -1.);
     681             :     /* in this case Dsigma is initialised after reading the restart file if present */
     682             :   }
     683             : 
     684             :   std::string fmt_;
     685          32 :   parse("FMT",fmt_);
     686             : 
     687             :   // monte carlo stuff
     688          32 :   parse("MC_STEPS",MCsteps_);
     689          32 :   parse("MC_CHUNKSIZE", MCchunksize_);
     690             :   // get temperature
     691          32 :   kbt_ = getkBT();
     692          32 :   if(kbt_==0.0) {
     693           0 :     error("Unless the MD engine passes the temperature to plumed, you must specify it using TEMP");
     694             :   }
     695             : 
     696          32 :   checkRead();
     697             : 
     698             :   // set sigma_bias
     699          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     700          15 :     if(sigma_.size()==1) {
     701          15 :       double tmp = sigma_[0];
     702          15 :       sigma_.resize(narg, tmp);
     703           0 :     } else if(sigma_.size()>1&&sigma_.size()!=narg) {
     704           0 :       error("SIGMA0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     705             :     }
     706          15 :     if(sigma_min_.size()==1) {
     707          15 :       double tmp = sigma_min_[0];
     708          15 :       sigma_min_.resize(narg, tmp);
     709           0 :     } else if(sigma_min_.size()>1&&sigma_min_.size()!=narg) {
     710           0 :       error("SIGMA_MIN can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     711             :     }
     712          15 :     if(sigma_max_.size()==1) {
     713          15 :       double tmp = sigma_max_[0];
     714          15 :       sigma_max_.resize(narg, tmp);
     715           0 :     } else if(sigma_max_.size()>1&&sigma_max_.size()!=narg) {
     716           0 :       error("SIGMA_MAX can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     717             :     }
     718          15 :     if(Dsigma_.size()==1) {
     719          15 :       double tmp = Dsigma_[0];
     720          15 :       Dsigma_.resize(narg, tmp);
     721           0 :     } else if(Dsigma_.size()>1&&Dsigma_.size()!=narg) {
     722           0 :       error("DSIGMA can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     723             :     }
     724             :   }
     725             : 
     726          32 :   sigma_max_est_.resize(sigma_max_.size(), 0.);
     727             : 
     728          32 :   IFile restart_sfile;
     729          32 :   restart_sfile.link(*this);
     730          32 :   if(getRestart()&&restart_sfile.FileExist(status_file_name_)) {
     731           4 :     firstTime = false;
     732           8 :     for(unsigned i=0; i<nsel; i++) {
     733             :       firstTimeW[i] = false;
     734             :     }
     735           4 :     restart_sfile.open(status_file_name_);
     736           4 :     log.printf("  Restarting from %s\n", status_file_name_.c_str());
     737             :     double dummy;
     738           8 :     if(restart_sfile.scanField("time",dummy)) {
     739             :       // check for syncronisation
     740           4 :       std::vector<double> dummy_time(nrep_,0);
     741           4 :       if(master&&nrep_>1) {
     742           2 :         dummy_time[replica_] = dummy;
     743           2 :         multi_sim_comm.Sum(dummy_time);
     744             :       }
     745           4 :       comm.Sum(dummy_time);
     746           8 :       for(unsigned i=1; i<nrep_; i++) {
     747           4 :         std::string msg = "METAINFERENCE restart files " + status_file_name_ + "  are not in sync";
     748           4 :         if(dummy_time[i]!=dummy_time[0]) {
     749           0 :           plumed_merror(msg);
     750             :         }
     751             :       }
     752             :       // nsel
     753           8 :       for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
     754             :         std::string msg_i;
     755           4 :         Tools::convert(i,msg_i);
     756             :         // narg
     757           4 :         if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     758          20 :           for(unsigned j=0; j<narg; ++j) {
     759             :             std::string msg_j;
     760          16 :             Tools::convert(j,msg_j);
     761          16 :             std::string msg = msg_i+"_"+msg_j;
     762             :             double read_sm;
     763          16 :             restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     764          16 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     765             :           }
     766             :         }
     767           4 :         if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
     768             :           double read_sm;
     769             :           std::string msg_j;
     770           0 :           Tools::convert(0,msg_j);
     771           0 :           std::string msg = msg_i+"_"+msg_j;
     772           0 :           restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     773           0 :           for(unsigned j=0; j<narg; j++) {
     774           0 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     775             :           }
     776             :         }
     777             :       }
     778             : 
     779          20 :       for(unsigned i=0; i<sigma_.size(); ++i) {
     780             :         std::string msg;
     781          16 :         Tools::convert(i,msg);
     782          32 :         restart_sfile.scanField("sigma_"+msg,sigma_[i]);
     783             :       }
     784          20 :       for(unsigned i=0; i<sigma_max_.size(); ++i) {
     785             :         std::string msg;
     786          16 :         Tools::convert(i,msg);
     787          16 :         restart_sfile.scanField("sigma_max_"+msg,sigma_max_[i]);
     788          16 :         sigmamax_opt_done_=true;
     789             :       }
     790           4 :       if(noise_type_==GENERIC) {
     791           0 :         for(unsigned i=0; i<ftilde_.size(); ++i) {
     792             :           std::string msg;
     793           0 :           Tools::convert(i,msg);
     794           0 :           restart_sfile.scanField("ftilde_"+msg,ftilde_[i]);
     795             :         }
     796             :       }
     797           4 :       restart_sfile.scanField("scale0_",scale_);
     798           4 :       restart_sfile.scanField("offset0_",offset_);
     799             : 
     800           8 :       for(unsigned i=0; i<nsel; i++) {
     801             :         std::string msg;
     802           4 :         Tools::convert(i,msg);
     803             :         double tmp_w;
     804           4 :         restart_sfile.scanField("weight_"+msg,tmp_w);
     805           4 :         if(master) {
     806           2 :           average_weights_[i][replica_] = tmp_w;
     807           2 :           if(nrep_>1) {
     808           2 :             multi_sim_comm.Sum(&average_weights_[i][0], nrep_);
     809             :           }
     810             :         }
     811           4 :         comm.Sum(&average_weights_[i][0], nrep_);
     812             :       }
     813             : 
     814             :     }
     815           4 :     restart_sfile.scanField();
     816           4 :     restart_sfile.close();
     817             :   }
     818             : 
     819             :   /* If DSIGMA is not yet initialised do it now */
     820        2443 :   for(unsigned i=0; i<sigma_max_.size(); i++)
     821        2411 :     if(Dsigma_[i]==-1) {
     822           0 :       Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
     823             :     }
     824             : 
     825          32 :   switch(noise_type_) {
     826           3 :   case GENERIC:
     827           3 :     log.printf("  with general metainference ");
     828           3 :     if(gen_likelihood_==LIKE_GAUSS) {
     829           2 :       log.printf(" and a gaussian likelihood\n");
     830           1 :     } else if(gen_likelihood_==LIKE_LOGN) {
     831           1 :       log.printf(" and a log-normal likelihood\n");
     832             :     }
     833           3 :     log.printf("  ensemble average parameter sampled with a step %lf of sigma_mean\n", Dftilde_);
     834             :     break;
     835           3 :   case GAUSS:
     836           3 :     log.printf("  with gaussian noise and a single noise parameter for all the data\n");
     837             :     break;
     838           8 :   case MGAUSS:
     839           8 :     log.printf("  with gaussian noise and a noise parameter for each data point\n");
     840             :     break;
     841          14 :   case OUTLIERS:
     842          14 :     log.printf("  with long tailed gaussian noise and a single noise parameter for all the data\n");
     843             :     break;
     844           4 :   case MOUTLIERS:
     845           4 :     log.printf("  with long tailed gaussian noise and a noise parameter for each data point\n");
     846             :     break;
     847             :   }
     848             : 
     849          32 :   if(doscale_) {
     850             :     // check that the scale value is the same for all replicas
     851          12 :     std::vector<double> dummy_scale(nrep_,0);
     852          12 :     if(master&&nrep_>1) {
     853           6 :       dummy_scale[replica_] = scale_;
     854           6 :       multi_sim_comm.Sum(dummy_scale);
     855             :     }
     856          12 :     comm.Sum(dummy_scale);
     857          24 :     for(unsigned i=1; i<nrep_; i++) {
     858          12 :       std::string msg = "The SCALE value must be the same for all replicas: check your input or restart file";
     859          12 :       if(dummy_scale[i]!=dummy_scale[0]) {
     860           0 :         plumed_merror(msg);
     861             :       }
     862             :     }
     863          12 :     log.printf("  sampling a common scaling factor with:\n");
     864          12 :     log.printf("    initial scale parameter %f\n",scale_);
     865          12 :     if(scale_prior_==SC_GAUSS) {
     866           0 :       log.printf("    gaussian prior with mean %f and width %f\n",scale_mu_,Dscale_);
     867             :     }
     868          12 :     if(scale_prior_==SC_FLAT) {
     869          12 :       log.printf("    flat prior between %f - %f\n",scale_min_,scale_max_);
     870          12 :       log.printf("    maximum MC move of scale parameter %f\n",Dscale_);
     871             :     }
     872             :   }
     873             : 
     874          32 :   if(dooffset_) {
     875             :     // check that the offset value is the same for all replicas
     876           6 :     std::vector<double> dummy_offset(nrep_,0);
     877           6 :     if(master&&nrep_>1) {
     878           0 :       dummy_offset[replica_] = offset_;
     879           0 :       multi_sim_comm.Sum(dummy_offset);
     880             :     }
     881           6 :     comm.Sum(dummy_offset);
     882           6 :     for(unsigned i=1; i<nrep_; i++) {
     883           0 :       std::string msg = "The OFFSET value must be the same for all replicas: check your input or restart file";
     884           0 :       if(dummy_offset[i]!=dummy_offset[0]) {
     885           0 :         plumed_merror(msg);
     886             :       }
     887             :     }
     888           6 :     log.printf("  sampling a common offset with:\n");
     889           6 :     log.printf("    initial offset parameter %f\n",offset_);
     890           6 :     if(offset_prior_==SC_GAUSS) {
     891           0 :       log.printf("    gaussian prior with mean %f and width %f\n",offset_mu_,Doffset_);
     892             :     }
     893           6 :     if(offset_prior_==SC_FLAT) {
     894           6 :       log.printf("    flat prior between %f - %f\n",offset_min_,offset_max_);
     895           6 :       log.printf("    maximum MC move of offset parameter %f\n",Doffset_);
     896             :     }
     897             :   }
     898             : 
     899          32 :   if(doregres_zero_) {
     900           1 :     log.printf("  doing regression with zero intercept with stride: %d\n", nregres_zero_);
     901             :   }
     902             : 
     903          32 :   log.printf("  number of experimental data points %u\n",narg);
     904          32 :   log.printf("  number of replicas %u\n",nrep_);
     905          32 :   log.printf("  initial data uncertainties");
     906        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     907        2411 :     log.printf(" %f", sigma_[i]);
     908             :   }
     909          32 :   log.printf("\n");
     910          32 :   log.printf("  minimum data uncertainties");
     911        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     912        2411 :     log.printf(" %f",sigma_min_[i]);
     913             :   }
     914          32 :   log.printf("\n");
     915          32 :   log.printf("  maximum data uncertainties");
     916        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     917        2411 :     log.printf(" %f",sigma_max_[i]);
     918             :   }
     919          32 :   log.printf("\n");
     920          32 :   log.printf("  maximum MC move of data uncertainties");
     921        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     922        2411 :     log.printf(" %f",Dsigma_[i]);
     923             :   }
     924          32 :   log.printf("\n");
     925          32 :   log.printf("  temperature of the system %f\n",kbt_);
     926          32 :   log.printf("  MC steps %u\n",MCsteps_);
     927          32 :   log.printf("  initial standard errors of the mean");
     928        2443 :   for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     929        2411 :     log.printf(" %f", std::sqrt(sigma_mean2_[i]));
     930             :   }
     931          32 :   log.printf("\n");
     932             : 
     933          32 :   if(do_reweight_) {
     934          32 :     addComponent("biasDer");
     935          32 :     componentIsNotPeriodic("biasDer");
     936          32 :     addComponent("weight");
     937          32 :     componentIsNotPeriodic("weight");
     938             :   }
     939             : 
     940          64 :   addComponent("neff");
     941          32 :   componentIsNotPeriodic("neff");
     942             : 
     943          32 :   if(doscale_ || doregres_zero_) {
     944          26 :     addComponent("scale");
     945          13 :     componentIsNotPeriodic("scale");
     946          13 :     valueScale=getPntrToComponent("scale");
     947             :   }
     948             : 
     949          32 :   if(dooffset_) {
     950          12 :     addComponent("offset");
     951           6 :     componentIsNotPeriodic("offset");
     952           6 :     valueOffset=getPntrToComponent("offset");
     953             :   }
     954             : 
     955          32 :   if(dooffset_||doscale_) {
     956          36 :     addComponent("acceptScale");
     957          18 :     componentIsNotPeriodic("acceptScale");
     958          18 :     valueAcceptScale=getPntrToComponent("acceptScale");
     959             :   }
     960             : 
     961          32 :   if(noise_type_==GENERIC) {
     962           6 :     addComponent("acceptFT");
     963           3 :     componentIsNotPeriodic("acceptFT");
     964           3 :     valueAcceptFT=getPntrToComponent("acceptFT");
     965             :   }
     966             : 
     967          64 :   addComponent("acceptSigma");
     968          32 :   componentIsNotPeriodic("acceptSigma");
     969          32 :   valueAccept=getPntrToComponent("acceptSigma");
     970             : 
     971          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     972        2409 :     for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     973             :       std::string num;
     974        2394 :       Tools::convert(i,num);
     975        4788 :       addComponent("sigmaMean-"+num);
     976        2394 :       componentIsNotPeriodic("sigmaMean-"+num);
     977        2394 :       valueSigmaMean.push_back(getPntrToComponent("sigmaMean-"+num));
     978        4788 :       getPntrToComponent("sigmaMean-"+num)->set(std::sqrt(sigma_mean2_[i]));
     979        4788 :       addComponent("sigma-"+num);
     980        2394 :       componentIsNotPeriodic("sigma-"+num);
     981        2394 :       valueSigma.push_back(getPntrToComponent("sigma-"+num));
     982        2394 :       getPntrToComponent("sigma-"+num)->set(sigma_[i]);
     983        2394 :       if(noise_type_==GENERIC) {
     984          12 :         addComponent("ftilde-"+num);
     985           6 :         componentIsNotPeriodic("ftilde-"+num);
     986           6 :         valueFtilde.push_back(getPntrToComponent("ftilde-"+num));
     987             :       }
     988             :     }
     989          15 :   } else {
     990          34 :     addComponent("sigmaMean");
     991          17 :     componentIsNotPeriodic("sigmaMean");
     992          17 :     valueSigmaMean.push_back(getPntrToComponent("sigmaMean"));
     993          34 :     getPntrToComponent("sigmaMean")->set(std::sqrt(sigma_mean2_[0]));
     994          34 :     addComponent("sigma");
     995          17 :     componentIsNotPeriodic("sigma");
     996          17 :     valueSigma.push_back(getPntrToComponent("sigma"));
     997          34 :     getPntrToComponent("sigma")->set(sigma_[0]);
     998             :   }
     999             : 
    1000             :   // initialize random seed
    1001             :   unsigned iseed;
    1002          32 :   if(master) {
    1003          24 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
    1004          24 :     iseed = static_cast<unsigned>(ts)+replica_;
    1005             :   } else {
    1006           8 :     iseed = 0;
    1007             :   }
    1008          32 :   comm.Sum(&iseed, 1);
    1009             :   // this is used for ftilde and sigma both the move and the acceptance
    1010             :   // this is different for each replica
    1011          32 :   random[0].setSeed(-iseed);
    1012          32 :   if(doscale_||dooffset_) {
    1013             :     // in this case we want the same seed everywhere
    1014          18 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
    1015          18 :     iseed = static_cast<unsigned>(ts);
    1016          18 :     if(master&&nrep_>1) {
    1017           6 :       multi_sim_comm.Bcast(iseed,0);
    1018             :     }
    1019          18 :     comm.Bcast(iseed,0);
    1020             :     // this is used for scale and offset sampling and acceptance
    1021          18 :     random[1].setSeed(-iseed);
    1022             :   }
    1023             :   // this is used for random chunk of sigmas, and it is different for each replica
    1024          32 :   if(master) {
    1025          24 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
    1026          24 :     iseed = static_cast<unsigned>(ts)+replica_;
    1027             :   } else {
    1028           8 :     iseed = 0;
    1029             :   }
    1030          32 :   comm.Sum(&iseed, 1);
    1031          32 :   random[2].setSeed(-iseed);
    1032             : 
    1033             :   // outfile stuff
    1034          32 :   if(write_stride_>0) {
    1035          32 :     sfile_.link(*this);
    1036          32 :     sfile_.open(status_file_name_);
    1037          32 :     if(fmt_.length()>0) {
    1038           1 :       sfile_.fmtField(fmt_);
    1039             :     }
    1040             :   }
    1041             : 
    1042          64 :   log<<"  Bibliography "<<plumed.cite("Bonomi, Camilloni, Cavalli, Vendruscolo, Sci. Adv. 2, e150117 (2016)");
    1043          32 :   if(do_reweight_) {
    1044          32 :     log<<plumed.cite("Bonomi, Camilloni, Vendruscolo, Sci. Rep. 6, 31232 (2016)");
    1045             :   }
    1046          32 :   if(do_optsigmamean_>0) {
    1047           0 :     log<<plumed.cite("Loehr, Jussupow, Camilloni, J. Chem. Phys. 146, 165102 (2017)");
    1048             :   }
    1049          64 :   log<<plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)");
    1050          32 :   log<<"\n";
    1051          64 : }
    1052             : 
    1053          64 : Metainference::~Metainference() {
    1054          32 :   if(sfile_.isOpen()) {
    1055          32 :     sfile_.close();
    1056             :   }
    1057         192 : }
    1058             : 
    1059         264 : double Metainference::getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
    1060             :                                   const double scale, const double offset) {
    1061         264 :   const double scale2 = scale*scale;
    1062         264 :   const double sm2    = sigma_mean2_[0];
    1063         264 :   const double ss2    = sigma[0]*sigma[0] + scale2*sm2;
    1064         264 :   const double sss    = sigma[0]*sigma[0] + sm2;
    1065             : 
    1066             :   double ene = 0.0;
    1067         264 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1068             :   {
    1069             :     #pragma omp for reduction( + : ene)
    1070             :     for(unsigned i=0; i<narg; ++i) {
    1071             :       const double dev = scale*mean[i]-parameters[i]+offset;
    1072             :       const double a2 = 0.5*dev*dev + ss2;
    1073             :       if(sm2 > 0.0) {
    1074             :         ene += std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
    1075             :       } else {
    1076             :         ene += std::log(2.0*a2);
    1077             :       }
    1078             :     }
    1079             :   }
    1080             :   // add one single Jeffrey's prior and one normalisation per data point
    1081         264 :   ene += 0.5*std::log(sss) + static_cast<double>(narg)*0.5*std::log(0.5*M_PI*M_PI/ss2);
    1082         264 :   if(doscale_ || doregres_zero_) {
    1083         156 :     ene += 0.5*std::log(sss);
    1084             :   }
    1085         264 :   if(dooffset_) {
    1086           0 :     ene += 0.5*std::log(sss);
    1087             :   }
    1088         264 :   return kbt_ * ene;
    1089             : }
    1090             : 
    1091         144 : double Metainference::getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
    1092             :                                    const double scale, const double offset) {
    1093         144 :   const double scale2 = scale*scale;
    1094             :   double ene = 0.0;
    1095         144 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1096             :   {
    1097             :     #pragma omp for reduction( + : ene)
    1098             :     for(unsigned i=0; i<narg; ++i) {
    1099             :       const double sm2 = sigma_mean2_[i];
    1100             :       const double ss2 = sigma[i]*sigma[i] + scale2*sm2;
    1101             :       const double sss = sigma[i]*sigma[i] + sm2;
    1102             :       const double dev = scale*mean[i]-parameters[i]+offset;
    1103             :       const double a2  = 0.5*dev*dev + ss2;
    1104             :       if(sm2 > 0.0) {
    1105             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
    1106             :       } else {
    1107             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2);
    1108             :       }
    1109             :       if(doscale_ || doregres_zero_) {
    1110             :         ene += 0.5*std::log(sss);
    1111             :       }
    1112             :       if(dooffset_) {
    1113             :         ene += 0.5*std::log(sss);
    1114             :       }
    1115             :     }
    1116             :   }
    1117         144 :   return kbt_ * ene;
    1118             : }
    1119             : 
    1120         144 : double Metainference::getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
    1121             :                                      const double scale, const double offset) {
    1122             :   double ene = 0.0;
    1123         144 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1124             :   {
    1125             :     #pragma omp for reduction( + : ene)
    1126             :     for(unsigned i=0; i<narg; ++i) {
    1127             :       const double inv_sb2  = 1./(sigma[i]*sigma[i]);
    1128             :       const double inv_sm2  = 1./sigma_mean2_[i];
    1129             :       double devb = 0;
    1130             :       if(gen_likelihood_==LIKE_GAUSS) {
    1131             :         devb = scale*ftilde[i]-parameters[i]+offset;
    1132             :       } else if(gen_likelihood_==LIKE_LOGN) {
    1133             :         devb = std::log(scale*ftilde[i]/parameters[i]);
    1134             :       }
    1135             :       double devm = mean[i] - ftilde[i];
    1136             :       // deviation + normalisation + jeffrey
    1137             :       double normb = 0.;
    1138             :       if(gen_likelihood_==LIKE_GAUSS) {
    1139             :         normb = -0.5*std::log(0.5/M_PI*inv_sb2);
    1140             :       } else if(gen_likelihood_==LIKE_LOGN) {
    1141             :         normb = -0.5*std::log(0.5/M_PI*inv_sb2/(parameters[i]*parameters[i]));
    1142             :       }
    1143             :       const double normm         = -0.5*std::log(0.5/M_PI*inv_sm2);
    1144             :       const double jeffreys      = -0.5*std::log(2.*inv_sb2);
    1145             :       ene += 0.5*devb*devb*inv_sb2 + 0.5*devm*devm*inv_sm2 + normb + normm + jeffreys;
    1146             :       if(doscale_ || doregres_zero_) {
    1147             :         ene += jeffreys;
    1148             :       }
    1149             :       if(dooffset_) {
    1150             :         ene += jeffreys;
    1151             :       }
    1152             :     }
    1153             :   }
    1154         144 :   return kbt_ * ene;
    1155             : }
    1156             : 
    1157         108 : double Metainference::getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
    1158             :                                   const double scale, const double offset) {
    1159         108 :   const double scale2  = scale*scale;
    1160         108 :   const double inv_s2  = 1./(sigma[0]*sigma[0] + scale2*sigma_mean2_[0]);
    1161         108 :   const double inv_sss = 1./(sigma[0]*sigma[0] + sigma_mean2_[0]);
    1162             : 
    1163             :   double ene = 0.0;
    1164         108 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1165             :   {
    1166             :     #pragma omp for reduction( + : ene)
    1167             :     for(unsigned i=0; i<narg; ++i) {
    1168             :       double dev = scale*mean[i]-parameters[i]+offset;
    1169             :       ene += 0.5*dev*dev*inv_s2;
    1170             :     }
    1171             :   }
    1172         108 :   const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
    1173         108 :   const double jeffreys = -0.5*std::log(2.*inv_sss);
    1174             :   // add Jeffrey's prior in case one sigma for all data points + one normalisation per datapoint
    1175         108 :   ene += jeffreys + static_cast<double>(narg)*normalisation;
    1176         108 :   if(doscale_ || doregres_zero_) {
    1177           0 :     ene += jeffreys;
    1178             :   }
    1179         108 :   if(dooffset_) {
    1180         108 :     ene += jeffreys;
    1181             :   }
    1182             : 
    1183         108 :   return kbt_ * ene;
    1184             : }
    1185             : 
    1186         152 : double Metainference::getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
    1187             :                                    const double scale, const double offset) {
    1188         152 :   const double scale2 = scale*scale;
    1189             : 
    1190             :   double ene = 0.0;
    1191         152 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1192             :   {
    1193             :     #pragma omp for reduction( + : ene)
    1194             :     for(unsigned i=0; i<narg; ++i) {
    1195             :       const double inv_s2  = 1./(sigma[i]*sigma[i] + scale2*sigma_mean2_[i]);
    1196             :       const double inv_sss = 1./(sigma[i]*sigma[i] + sigma_mean2_[i]);
    1197             :       double dev = scale*mean[i]-parameters[i]+offset;
    1198             :       // deviation + normalisation + jeffrey
    1199             :       const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
    1200             :       const double jeffreys      = -0.5*std::log(2.*inv_sss);
    1201             :       ene += 0.5*dev*dev*inv_s2 + normalisation + jeffreys;
    1202             :       if(doscale_ || doregres_zero_) {
    1203             :         ene += jeffreys;
    1204             :       }
    1205             :       if(dooffset_) {
    1206             :         ene += jeffreys;
    1207             :       }
    1208             :     }
    1209             :   }
    1210         152 :   return kbt_ * ene;
    1211             : }
    1212             : 
    1213          36 : void Metainference::moveTilde(const std::vector<double> &mean_, double &old_energy) {
    1214          36 :   std::vector<double> new_ftilde(sigma_.size());
    1215          36 :   new_ftilde = ftilde_;
    1216             : 
    1217             :   // change all tildes
    1218         108 :   for(unsigned j=0; j<sigma_.size(); j++) {
    1219          72 :     const double r3 = random[0].Gaussian();
    1220          72 :     const double ds3 = Dftilde_*std::sqrt(sigma_mean2_[j])*r3;
    1221          72 :     new_ftilde[j] = ftilde_[j] + ds3;
    1222             :   }
    1223             :   // calculate new energy
    1224          36 :   double new_energy = getEnergyMIGEN(mean_,new_ftilde,sigma_,scale_,offset_);
    1225             : 
    1226             :   // accept or reject
    1227          36 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1228             :   // if delta is negative always accept move
    1229          36 :   if( delta <= 0.0 ) {
    1230          36 :     old_energy = new_energy;
    1231          36 :     ftilde_ = new_ftilde;
    1232          36 :     MCacceptFT_++;
    1233             :     // otherwise extract random number
    1234             :   } else {
    1235           0 :     const double s = random[0].RandU01();
    1236           0 :     if( s < std::exp(-delta) ) {
    1237           0 :       old_energy = new_energy;
    1238           0 :       ftilde_ = new_ftilde;
    1239           0 :       MCacceptFT_++;
    1240             :     }
    1241             :   }
    1242          36 : }
    1243             : 
    1244         216 : void Metainference::moveScaleOffset(const std::vector<double> &mean_, double &old_energy) {
    1245         216 :   double new_scale = scale_;
    1246             : 
    1247         216 :   if(doscale_) {
    1248         144 :     if(scale_prior_==SC_FLAT) {
    1249         144 :       const double r1 = random[1].Gaussian();
    1250         144 :       const double ds1 = Dscale_*r1;
    1251         144 :       new_scale += ds1;
    1252             :       // check boundaries
    1253         144 :       if(new_scale > scale_max_) {
    1254           0 :         new_scale = 2.0 * scale_max_ - new_scale;
    1255             :       }
    1256         144 :       if(new_scale < scale_min_) {
    1257           0 :         new_scale = 2.0 * scale_min_ - new_scale;
    1258             :       }
    1259             :     } else {
    1260           0 :       const double r1 = random[1].Gaussian();
    1261           0 :       const double ds1 = 0.5*(scale_mu_-new_scale)+Dscale_*std::exp(1)/M_PI*r1;
    1262           0 :       new_scale += ds1;
    1263             :     }
    1264             :   }
    1265             : 
    1266         216 :   double new_offset = offset_;
    1267             : 
    1268         216 :   if(dooffset_) {
    1269          72 :     if(offset_prior_==SC_FLAT) {
    1270          72 :       const double r1 = random[1].Gaussian();
    1271          72 :       const double ds1 = Doffset_*r1;
    1272          72 :       new_offset += ds1;
    1273             :       // check boundaries
    1274          72 :       if(new_offset > offset_max_) {
    1275           0 :         new_offset = 2.0 * offset_max_ - new_offset;
    1276             :       }
    1277          72 :       if(new_offset < offset_min_) {
    1278           0 :         new_offset = 2.0 * offset_min_ - new_offset;
    1279             :       }
    1280             :     } else {
    1281           0 :       const double r1 = random[1].Gaussian();
    1282           0 :       const double ds1 = 0.5*(offset_mu_-new_offset)+Doffset_*std::exp(1)/M_PI*r1;
    1283           0 :       new_offset += ds1;
    1284             :     }
    1285             :   }
    1286             : 
    1287             :   // calculate new energy
    1288             :   double new_energy = 0.;
    1289             : 
    1290         216 :   switch(noise_type_) {
    1291          36 :   case GAUSS:
    1292          36 :     new_energy = getEnergyGJ(mean_,sigma_,new_scale,new_offset);
    1293             :     break;
    1294          48 :   case MGAUSS:
    1295          48 :     new_energy = getEnergyGJE(mean_,sigma_,new_scale,new_offset);
    1296             :     break;
    1297          48 :   case OUTLIERS:
    1298          48 :     new_energy = getEnergySP(mean_,sigma_,new_scale,new_offset);
    1299             :     break;
    1300          48 :   case MOUTLIERS:
    1301          48 :     new_energy = getEnergySPE(mean_,sigma_,new_scale,new_offset);
    1302             :     break;
    1303          36 :   case GENERIC:
    1304          36 :     new_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,new_scale,new_offset);
    1305             :     break;
    1306             :   }
    1307             : 
    1308             :   // for the scale/offset we need to consider the total energy
    1309         216 :   std::vector<double> totenergies(2);
    1310         216 :   if(master) {
    1311         144 :     totenergies[0] = old_energy;
    1312         144 :     totenergies[1] = new_energy;
    1313         144 :     if(nrep_>1) {
    1314          72 :       multi_sim_comm.Sum(totenergies);
    1315             :     }
    1316             :   } else {
    1317          72 :     totenergies[0] = 0;
    1318          72 :     totenergies[1] = 0;
    1319             :   }
    1320         216 :   comm.Sum(totenergies);
    1321             : 
    1322             :   // accept or reject
    1323         216 :   const double delta = ( totenergies[1] - totenergies[0] ) / kbt_;
    1324             :   // if delta is negative always accept move
    1325         216 :   if( delta <= 0.0 ) {
    1326         216 :     old_energy = new_energy;
    1327         216 :     scale_ = new_scale;
    1328         216 :     offset_ = new_offset;
    1329         216 :     MCacceptScale_++;
    1330             :     // otherwise extract random number
    1331             :   } else {
    1332           0 :     double s = random[1].RandU01();
    1333           0 :     if( s < std::exp(-delta) ) {
    1334           0 :       old_energy = new_energy;
    1335           0 :       scale_ = new_scale;
    1336           0 :       offset_ = new_offset;
    1337           0 :       MCacceptScale_++;
    1338             :     }
    1339             :   }
    1340         216 : }
    1341             : 
    1342         280 : void Metainference::moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow) {
    1343         280 :   std::vector<double> new_sigma(sigma_.size());
    1344         280 :   new_sigma = sigma_;
    1345             : 
    1346             :   // change MCchunksize_ sigmas
    1347         280 :   if (MCchunksize_ > 0) {
    1348           6 :     if ((MCchunksize_ * i) >= sigma_.size()) {
    1349             :       // This means we are not moving any sigma, so we should break immediately
    1350           0 :       breaknow = true;
    1351             :     }
    1352             : 
    1353             :     // change random sigmas
    1354          12 :     for(unsigned j=0; j<MCchunksize_; j++) {
    1355           6 :       const unsigned shuffle_index = j + MCchunksize_ * i;
    1356           6 :       if (shuffle_index >= sigma_.size()) {
    1357             :         // Going any further will segfault but we should still evaluate the sigmas we changed
    1358             :         break;
    1359             :       }
    1360           6 :       const unsigned index = indices[shuffle_index];
    1361           6 :       const double r2 = random[0].Gaussian();
    1362           6 :       const double ds2 = Dsigma_[index]*r2;
    1363           6 :       new_sigma[index] = sigma_[index] + ds2;
    1364             :       // check boundaries
    1365           6 :       if(new_sigma[index] > sigma_max_[index]) {
    1366           0 :         new_sigma[index] = 2.0 * sigma_max_[index] - new_sigma[index];
    1367             :       }
    1368           6 :       if(new_sigma[index] < sigma_min_[index]) {
    1369           0 :         new_sigma[index] = 2.0 * sigma_min_[index] - new_sigma[index];
    1370             :       }
    1371             :     }
    1372             :   } else {
    1373             :     // change all sigmas
    1374        3224 :     for(unsigned j=0; j<sigma_.size(); j++) {
    1375        2950 :       const double r2 = random[0].Gaussian();
    1376        2950 :       const double ds2 = Dsigma_[j]*r2;
    1377        2950 :       new_sigma[j] = sigma_[j] + ds2;
    1378             :       // check boundaries
    1379        2950 :       if(new_sigma[j] > sigma_max_[j]) {
    1380           0 :         new_sigma[j] = 2.0 * sigma_max_[j] - new_sigma[j];
    1381             :       }
    1382        2950 :       if(new_sigma[j] < sigma_min_[j]) {
    1383           0 :         new_sigma[j] = 2.0 * sigma_min_[j] - new_sigma[j];
    1384             :       }
    1385             :     }
    1386             :   }
    1387             : 
    1388         280 :   if (breaknow) {
    1389             :     // We didnt move any sigmas, so no sense in evaluating anything
    1390             :     return;
    1391             :   }
    1392             : 
    1393             :   // calculate new energy
    1394             :   double new_energy = 0.;
    1395         280 :   switch(noise_type_) {
    1396          36 :   case GAUSS:
    1397          36 :     new_energy = getEnergyGJ(mean_,new_sigma,scale_,offset_);
    1398             :     break;
    1399          52 :   case MGAUSS:
    1400          52 :     new_energy = getEnergyGJE(mean_,new_sigma,scale_,offset_);
    1401             :     break;
    1402         108 :   case OUTLIERS:
    1403         108 :     new_energy = getEnergySP(mean_,new_sigma,scale_,offset_);
    1404             :     break;
    1405          48 :   case MOUTLIERS:
    1406          48 :     new_energy = getEnergySPE(mean_,new_sigma,scale_,offset_);
    1407             :     break;
    1408          36 :   case GENERIC:
    1409          36 :     new_energy = getEnergyMIGEN(mean_,ftilde_,new_sigma,scale_,offset_);
    1410             :     break;
    1411             :   }
    1412             : 
    1413             :   // accept or reject
    1414         280 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1415             :   // if delta is negative always accept move
    1416         280 :   if( delta <= 0.0 ) {
    1417         280 :     old_energy = new_energy;
    1418         280 :     sigma_ = new_sigma;
    1419         280 :     MCaccept_++;
    1420             :     // otherwise extract random number
    1421             :   } else {
    1422           0 :     const double s = random[0].RandU01();
    1423           0 :     if( s < std::exp(-delta) ) {
    1424           0 :       old_energy = new_energy;
    1425           0 :       sigma_ = new_sigma;
    1426           0 :       MCaccept_++;
    1427             :     }
    1428             :   }
    1429             : }
    1430             : 
    1431         280 : double Metainference::doMonteCarlo(const std::vector<double> &mean_) {
    1432             :   // calculate old energy with the updated coordinates
    1433         280 :   double old_energy=0.;
    1434             : 
    1435         280 :   switch(noise_type_) {
    1436          36 :   case GAUSS:
    1437          36 :     old_energy = getEnergyGJ(mean_,sigma_,scale_,offset_);
    1438          36 :     break;
    1439          52 :   case MGAUSS:
    1440          52 :     old_energy = getEnergyGJE(mean_,sigma_,scale_,offset_);
    1441          52 :     break;
    1442         108 :   case OUTLIERS:
    1443         108 :     old_energy = getEnergySP(mean_,sigma_,scale_,offset_);
    1444         108 :     break;
    1445          48 :   case MOUTLIERS:
    1446          48 :     old_energy = getEnergySPE(mean_,sigma_,scale_,offset_);
    1447          48 :     break;
    1448          36 :   case GENERIC:
    1449          36 :     old_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,scale_,offset_);
    1450          36 :     break;
    1451             :   }
    1452             : 
    1453             :   // do not run MC if this is a replica-exchange trial
    1454         280 :   if(!getExchangeStep()) {
    1455             : 
    1456             :     // Create std::vector of random sigma indices
    1457             :     std::vector<unsigned> indices;
    1458         280 :     if (MCchunksize_ > 0) {
    1459          12 :       for (unsigned j=0; j<sigma_.size(); j++) {
    1460           6 :         indices.push_back(j);
    1461             :       }
    1462           6 :       random[2].Shuffle(indices);
    1463             :     }
    1464         280 :     bool breaknow = false;
    1465             : 
    1466             :     // cycle on MC steps
    1467         560 :     for(unsigned i=0; i<MCsteps_; ++i) {
    1468         280 :       MCtrial_++;
    1469             :       // propose move for ftilde
    1470         280 :       if(noise_type_==GENERIC) {
    1471          36 :         moveTilde(mean_, old_energy);
    1472             :       }
    1473             :       // propose move for scale and/or offset
    1474         280 :       if(doscale_||dooffset_) {
    1475         216 :         moveScaleOffset(mean_, old_energy);
    1476             :       }
    1477             :       // propose move for sigma
    1478         280 :       moveSigmas(mean_, old_energy, i, indices, breaknow);
    1479             :       // exit from the loop if this is the case
    1480         280 :       if(breaknow) {
    1481             :         break;
    1482             :       }
    1483             :     }
    1484             : 
    1485             :     /* save the result of the sampling */
    1486             :     /* ftilde */
    1487         280 :     if(noise_type_==GENERIC) {
    1488          36 :       double accept = static_cast<double>(MCacceptFT_) / static_cast<double>(MCtrial_);
    1489          36 :       valueAcceptFT->set(accept);
    1490         108 :       for(unsigned i=0; i<sigma_.size(); i++) {
    1491          72 :         valueFtilde[i]->set(ftilde_[i]);
    1492             :       }
    1493             :     }
    1494             :     /* scale and offset */
    1495         280 :     if(doscale_ || doregres_zero_) {
    1496         150 :       valueScale->set(scale_);
    1497             :     }
    1498         280 :     if(dooffset_) {
    1499          72 :       valueOffset->set(offset_);
    1500             :     }
    1501         280 :     if(doscale_||dooffset_) {
    1502         216 :       double accept = static_cast<double>(MCacceptScale_) / static_cast<double>(MCtrial_);
    1503         216 :       valueAcceptScale->set(accept);
    1504             :     }
    1505             :     /* sigmas */
    1506        3236 :     for(unsigned i=0; i<sigma_.size(); i++) {
    1507        2956 :       valueSigma[i]->set(sigma_[i]);
    1508             :     }
    1509         280 :     double accept = static_cast<double>(MCaccept_) / static_cast<double>(MCtrial_);
    1510         280 :     valueAccept->set(accept);
    1511             :   }
    1512             : 
    1513             :   // here we sum the score over the replicas to get the full metainference score that we save as a bias
    1514         280 :   if(master) {
    1515         206 :     if(nrep_>1) {
    1516          74 :       multi_sim_comm.Sum(old_energy);
    1517             :     }
    1518             :   } else {
    1519          74 :     old_energy=0;
    1520             :   }
    1521         280 :   comm.Sum(old_energy);
    1522             : 
    1523             :   // this is the energy with current coordinates and parameters
    1524         280 :   return old_energy;
    1525             : }
    1526             : 
    1527             : /*
    1528             :    In the following energy-force functions we don't add the normalisation and the jeffreys priors
    1529             :    because they are not needed for the forces, the correct MetaInference energy is the one calculated
    1530             :    in the Monte-Carlo
    1531             : */
    1532             : 
    1533         108 : void Metainference::getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1534             :                                      const std::vector<double> &dmean_b) {
    1535         108 :   const double scale2 = scale_*scale_;
    1536         108 :   const double sm2    = sigma_mean2_[0];
    1537         108 :   const double ss2    = sigma_[0]*sigma_[0] + scale2*sm2;
    1538         108 :   std::vector<double> f(narg,0);
    1539             : 
    1540         108 :   if(master) {
    1541          84 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1542             :     {
    1543             :       #pragma omp for
    1544             :       for(unsigned i=0; i<narg; ++i) {
    1545             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1546             :         const double a2 = 0.5*dev*dev + ss2;
    1547             :         if(sm2 > 0.0) {
    1548             :           const double t = std::exp(-a2/sm2);
    1549             :           const double dt = 1./t;
    1550             :           const double dit = 1./(1.-dt);
    1551             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1552             :         } else {
    1553             :           f[i] = -scale_*dev*(1./a2);
    1554             :         }
    1555             :       }
    1556             :     }
    1557             :     // collect contribution to forces and energy from other replicas
    1558          84 :     if(nrep_>1) {
    1559          24 :       multi_sim_comm.Sum(&f[0],narg);
    1560             :     }
    1561             :   }
    1562             :   // intra-replica summation
    1563         108 :   comm.Sum(&f[0],narg);
    1564             : 
    1565             :   double w_tmp = 0.;
    1566         720 :   for(unsigned i=0; i<narg; ++i) {
    1567         612 :     setOutputForce(i, kbt_*f[i]*dmean_x[i]);
    1568         612 :     w_tmp += kbt_*f[i]*dmean_b[i];
    1569             :   }
    1570             : 
    1571         108 :   if(do_reweight_) {
    1572          48 :     setOutputForce(narg, w_tmp);
    1573          96 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1574             :   }
    1575         108 : }
    1576             : 
    1577          48 : void Metainference::getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1578             :                                       const std::vector<double> &dmean_b) {
    1579          48 :   const double scale2 = scale_*scale_;
    1580          48 :   std::vector<double> f(narg,0);
    1581             : 
    1582          48 :   if(master) {
    1583          24 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1584             :     {
    1585             :       #pragma omp for
    1586             :       for(unsigned i=0; i<narg; ++i) {
    1587             :         const double sm2 = sigma_mean2_[i];
    1588             :         const double ss2 = sigma_[i]*sigma_[i] + scale2*sm2;
    1589             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1590             :         const double a2  = 0.5*dev*dev + ss2;
    1591             :         if(sm2 > 0.0) {
    1592             :           const double t   = std::exp(-a2/sm2);
    1593             :           const double dt  = 1./t;
    1594             :           const double dit = 1./(1.-dt);
    1595             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1596             :         } else {
    1597             :           f[i] = -scale_*dev*(1./a2);
    1598             :         }
    1599             :       }
    1600             :     }
    1601             :     // collect contribution to forces and energy from other replicas
    1602          24 :     if(nrep_>1) {
    1603          24 :       multi_sim_comm.Sum(&f[0],narg);
    1604             :     }
    1605             :   }
    1606          48 :   comm.Sum(&f[0],narg);
    1607             : 
    1608             :   double w_tmp = 0.;
    1609         240 :   for(unsigned i=0; i<narg; ++i) {
    1610         192 :     setOutputForce(i, kbt_ * dmean_x[i] * f[i]);
    1611         192 :     w_tmp += kbt_ * dmean_b[i] *f[i];
    1612             :   }
    1613             : 
    1614          48 :   if(do_reweight_) {
    1615          48 :     setOutputForce(narg, w_tmp);
    1616          96 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1617             :   }
    1618          48 : }
    1619             : 
    1620          36 : void Metainference::getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1621             :                                      const std::vector<double> &dmean_b) {
    1622          36 :   const double scale2 = scale_*scale_;
    1623          36 :   double inv_s2=0.;
    1624             : 
    1625          36 :   if(master) {
    1626          36 :     inv_s2 = 1./(sigma_[0]*sigma_[0] + scale2*sigma_mean2_[0]);
    1627          36 :     if(nrep_>1) {
    1628           0 :       multi_sim_comm.Sum(inv_s2);
    1629             :     }
    1630             :   }
    1631          36 :   comm.Sum(inv_s2);
    1632             : 
    1633             :   double w_tmp = 0.;
    1634          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1635             :   {
    1636             :     #pragma omp for reduction( + : w_tmp)
    1637             :     for(unsigned i=0; i<narg; ++i) {
    1638             :       const double dev = scale_*mean[i]-parameters[i]+offset_;
    1639             :       const double mult = dev*scale_*inv_s2;
    1640             :       setOutputForce(i, -kbt_*dmean_x[i]*mult);
    1641             :       w_tmp += kbt_*dmean_b[i]*mult;
    1642             :     }
    1643             :   }
    1644             : 
    1645          36 :   if(do_reweight_) {
    1646           0 :     setOutputForce(narg, -w_tmp);
    1647           0 :     getPntrToComponent("biasDer")->set(w_tmp);
    1648             :   }
    1649          36 : }
    1650             : 
    1651          52 : void Metainference::getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1652             :                                       const std::vector<double> &dmean_b) {
    1653          52 :   const double scale2 = scale_*scale_;
    1654          52 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1655             : 
    1656          52 :   if(master) {
    1657        1300 :     for(unsigned i=0; i<sigma_.size(); ++i) {
    1658        1274 :       inv_s2[i] = 1./(sigma_[i]*sigma_[i] + scale2*sigma_mean2_[i]);
    1659             :     }
    1660          26 :     if(nrep_>1) {
    1661          26 :       multi_sim_comm.Sum(&inv_s2[0],sigma_.size());
    1662             :     }
    1663             :   }
    1664          52 :   comm.Sum(&inv_s2[0],sigma_.size());
    1665             : 
    1666             :   double w_tmp = 0.;
    1667          52 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1668             :   {
    1669             :     #pragma omp for reduction( + : w_tmp)
    1670             :     for(unsigned i=0; i<narg; ++i) {
    1671             :       const double dev  = scale_*mean[i]-parameters[i]+offset_;
    1672             :       const double mult = dev*scale_*inv_s2[i];
    1673             :       setOutputForce(i, -kbt_*dmean_x[i]*mult);
    1674             :       w_tmp += kbt_*dmean_b[i]*mult;
    1675             :     }
    1676             :   }
    1677             : 
    1678          52 :   if(do_reweight_) {
    1679          52 :     setOutputForce(narg, -w_tmp);
    1680         104 :     getPntrToComponent("biasDer")->set(w_tmp);
    1681             :   }
    1682          52 : }
    1683             : 
    1684          36 : void Metainference::getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b) {
    1685          36 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1686          36 :   std::vector<double> dev(sigma_.size(),0.);
    1687          36 :   std::vector<double> dev2(sigma_.size(),0.);
    1688             : 
    1689         108 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1690          72 :     inv_s2[i]   = 1./sigma_mean2_[i];
    1691          72 :     if(master) {
    1692          72 :       dev[i]  = (mean[i]-ftilde_[i]);
    1693          72 :       dev2[i] = dev[i]*dev[i];
    1694             :     }
    1695             :   }
    1696          36 :   if(master&&nrep_>1) {
    1697           0 :     multi_sim_comm.Sum(&dev[0],dev.size());
    1698           0 :     multi_sim_comm.Sum(&dev2[0],dev2.size());
    1699             :   }
    1700          36 :   comm.Sum(&dev[0],dev.size());
    1701          36 :   comm.Sum(&dev2[0],dev2.size());
    1702             : 
    1703             :   double dene_b = 0.;
    1704          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(dene_b)
    1705             :   {
    1706             :     #pragma omp for reduction( + : dene_b)
    1707             :     for(unsigned i=0; i<narg; ++i) {
    1708             :       const double dene_x  = kbt_*inv_s2[i]*dmean_x[i]*dev[i];
    1709             :       dene_b += kbt_*inv_s2[i]*dmean_b[i]*dev[i];
    1710             :       setOutputForce(i, -dene_x);
    1711             :     }
    1712             :   }
    1713             : 
    1714          36 :   if(do_reweight_) {
    1715           0 :     setOutputForce(narg, -dene_b);
    1716           0 :     getPntrToComponent("biasDer")->set(dene_b);
    1717             :   }
    1718          36 : }
    1719             : 
    1720         280 : void Metainference::get_weights(const unsigned iselect, double &weight, double &norm, double &neff) {
    1721         280 :   const double dnrep = static_cast<double>(nrep_);
    1722             :   // calculate the weights either from BIAS
    1723         280 :   if(do_reweight_) {
    1724         148 :     std::vector<double> bias(nrep_,0);
    1725         148 :     if(master) {
    1726          74 :       bias[replica_] = getArgument(narg);
    1727          74 :       if(nrep_>1) {
    1728          74 :         multi_sim_comm.Sum(&bias[0], nrep_);
    1729             :       }
    1730             :     }
    1731         148 :     comm.Sum(&bias[0], nrep_);
    1732             : 
    1733             :     // accumulate weights
    1734         148 :     const double decay = 1./static_cast<double> (average_weights_stride_);
    1735         148 :     if(!firstTimeW[iselect]) {
    1736         408 :       for(unsigned i=0; i<nrep_; ++i) {
    1737         272 :         const double delta=bias[i]-average_weights_[iselect][i];
    1738         272 :         average_weights_[iselect][i]+=decay*delta;
    1739             :       }
    1740             :     } else {
    1741             :       firstTimeW[iselect] = false;
    1742          36 :       for(unsigned i=0; i<nrep_; ++i) {
    1743          24 :         average_weights_[iselect][i] = bias[i];
    1744             :       }
    1745             :     }
    1746             : 
    1747             :     // set average back into bias and set norm to one
    1748         148 :     const double maxbias = *(std::max_element(average_weights_[iselect].begin(), average_weights_[iselect].end()));
    1749         444 :     for(unsigned i=0; i<nrep_; ++i) {
    1750         296 :       bias[i] = std::exp((average_weights_[iselect][i]-maxbias)/kbt_);
    1751             :     }
    1752             :     // set local weight, norm and weight variance
    1753         148 :     weight = bias[replica_];
    1754             :     double w2=0.;
    1755         444 :     for(unsigned i=0; i<nrep_; ++i) {
    1756         296 :       w2 += bias[i]*bias[i];
    1757         296 :       norm += bias[i];
    1758             :     }
    1759         148 :     neff = norm*norm/w2;
    1760         296 :     getPntrToComponent("weight")->set(weight/norm);
    1761             :   } else {
    1762             :     // or arithmetic ones
    1763         132 :     neff = dnrep;
    1764         132 :     weight = 1.0;
    1765         132 :     norm = dnrep;
    1766             :   }
    1767         280 :   getPntrToComponent("neff")->set(neff);
    1768         280 : }
    1769             : 
    1770         280 : void Metainference::get_sigma_mean(const unsigned iselect, const double weight, const double norm, const double neff, const std::vector<double> &mean) {
    1771         280 :   const double dnrep    = static_cast<double>(nrep_);
    1772         280 :   std::vector<double> sigma_mean2_tmp(sigma_mean2_.size(), 0.);
    1773             : 
    1774         280 :   if(do_optsigmamean_>0) {
    1775             :     // remove first entry of the history std::vector
    1776           0 :     if(sigma_mean2_last_[iselect][0].size()==optsigmamean_stride_&&optsigmamean_stride_>0)
    1777           0 :       for(unsigned i=0; i<narg; ++i) {
    1778           0 :         sigma_mean2_last_[iselect][i].erase(sigma_mean2_last_[iselect][i].begin());
    1779             :       }
    1780             :     /* this is the current estimate of sigma mean for each argument
    1781             :        there is one of this per argument in any case  because it is
    1782             :        the maximum among these to be used in case of GAUSS/OUTLIER */
    1783           0 :     std::vector<double> sigma_mean2_now(narg,0);
    1784           0 :     if(master) {
    1785           0 :       for(unsigned i=0; i<narg; ++i) {
    1786           0 :         sigma_mean2_now[i] = weight*(getArgument(i)-mean[i])*(getArgument(i)-mean[i]);
    1787             :       }
    1788           0 :       if(nrep_>1) {
    1789           0 :         multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
    1790             :       }
    1791             :     }
    1792           0 :     comm.Sum(&sigma_mean2_now[0], narg);
    1793           0 :     for(unsigned i=0; i<narg; ++i) {
    1794           0 :       sigma_mean2_now[i] *= 1.0/(neff-1.)/norm;
    1795             :     }
    1796             : 
    1797             :     // add sigma_mean2 to history
    1798           0 :     if(optsigmamean_stride_>0) {
    1799           0 :       for(unsigned i=0; i<narg; ++i) {
    1800           0 :         sigma_mean2_last_[iselect][i].push_back(sigma_mean2_now[i]);
    1801             :       }
    1802             :     } else {
    1803           0 :       for(unsigned i=0; i<narg; ++i)
    1804           0 :         if(sigma_mean2_now[i] > sigma_mean2_last_[iselect][i][0]) {
    1805           0 :           sigma_mean2_last_[iselect][i][0] = sigma_mean2_now[i];
    1806             :         }
    1807             :     }
    1808             : 
    1809           0 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1810           0 :       for(unsigned i=0; i<narg; ++i) {
    1811             :         /* set to the maximum in history std::vector */
    1812           0 :         sigma_mean2_tmp[i] = *max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end());
    1813             :         /* the standard error of the mean */
    1814           0 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1815           0 :         if(noise_type_==GENERIC) {
    1816           0 :           sigma_min_[i] = std::sqrt(sigma_mean2_tmp[i]);
    1817           0 :           if(sigma_[i] < sigma_min_[i]) {
    1818           0 :             sigma_[i] = sigma_min_[i];
    1819             :           }
    1820             :         }
    1821             :       }
    1822           0 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1823             :       // find maximum for each data point
    1824             :       std::vector <double> max_values;
    1825           0 :       for(unsigned i=0; i<narg; ++i) {
    1826           0 :         max_values.push_back(*max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end()));
    1827             :       }
    1828             :       // find maximum across data points
    1829           0 :       const double max_now = *max_element(max_values.begin(), max_values.end());
    1830             :       // set new value
    1831           0 :       sigma_mean2_tmp[0] = max_now;
    1832           0 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1833             :     }
    1834             :     // endif sigma mean optimization
    1835             :     // start sigma max optimization
    1836           0 :     if(do_optsigmamean_>1&&!sigmamax_opt_done_) {
    1837           0 :       for(unsigned i=0; i<sigma_max_.size(); i++) {
    1838           0 :         if(sigma_max_est_[i]<sigma_mean2_tmp[i]&&optimized_step_>optsigmamean_stride_) {
    1839           0 :           sigma_max_est_[i]=sigma_mean2_tmp[i];
    1840             :         }
    1841             :         // ready to set once and for all the value of sigma_max
    1842           0 :         if(optimized_step_==N_optimized_step_) {
    1843           0 :           sigmamax_opt_done_=true;
    1844           0 :           for(unsigned i=0; i<sigma_max_.size(); i++) {
    1845           0 :             sigma_max_[i]=std::sqrt(sigma_max_est_[i]*dnrep);
    1846           0 :             Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
    1847           0 :             if(sigma_[i]>sigma_max_[i]) {
    1848           0 :               sigma_[i]=sigma_max_[i];
    1849             :             }
    1850             :           }
    1851             :         }
    1852             :       }
    1853           0 :       optimized_step_++;
    1854             :     }
    1855             :     // end sigma max optimization
    1856             :   } else {
    1857         280 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1858        2948 :       for(unsigned i=0; i<narg; ++i) {
    1859        2812 :         sigma_mean2_tmp[i] = sigma_mean2_last_[iselect][i][0];
    1860        2812 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1861             :       }
    1862         144 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1863         144 :       sigma_mean2_tmp[0] = sigma_mean2_last_[iselect][0][0];
    1864         144 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1865             :     }
    1866             :   }
    1867             : 
    1868         280 :   sigma_mean2_ = sigma_mean2_tmp;
    1869         280 : }
    1870             : 
    1871         280 : void Metainference::replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b) {
    1872         280 :   if(master) {
    1873        2236 :     for(unsigned i=0; i<narg; ++i) {
    1874        2030 :       mean[i] = weight/norm*getArgument(i);
    1875             :     }
    1876         206 :     if(nrep_>1) {
    1877          74 :       multi_sim_comm.Sum(&mean[0], narg);
    1878             :     }
    1879             :   }
    1880         280 :   comm.Sum(&mean[0], narg);
    1881             :   // set the derivative of the mean with respect to the bias
    1882        3776 :   for(unsigned i=0; i<narg; ++i) {
    1883        3496 :     dmean_b[i] = weight/norm/kbt_*(getArgument(i)-mean[i])/static_cast<double>(average_weights_stride_);
    1884             :   }
    1885             : 
    1886             :   // this is only for generic metainference
    1887         280 :   if(firstTime) {
    1888          28 :     ftilde_ = mean;
    1889          28 :     firstTime = false;
    1890             :   }
    1891         280 : }
    1892             : 
    1893           6 : void Metainference::do_regression_zero(const std::vector<double> &mean) {
    1894             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
    1895             :   double num = 0.0;
    1896             :   double den = 0.0;
    1897          48 :   for(unsigned i=0; i<parameters.size(); ++i) {
    1898          42 :     num += mean[i] * parameters[i];
    1899          42 :     den += mean[i] * mean[i];
    1900             :   }
    1901           6 :   if(den>0) {
    1902           6 :     scale_ = num / den;
    1903             :   } else {
    1904           0 :     scale_ = 1.0;
    1905             :   }
    1906           6 : }
    1907             : 
    1908         280 : void Metainference::calculate() {
    1909             :   // get step
    1910         280 :   const long long int step = getStep();
    1911             : 
    1912             :   unsigned iselect = 0;
    1913             :   // set the value of selector for  REM-like stuff
    1914         280 :   if(selector_.length()>0) {
    1915           0 :     iselect = static_cast<unsigned>(plumed.passMap[selector_]);
    1916             :   }
    1917             : 
    1918             :   /* 1) collect weights */
    1919         280 :   double weight = 0.;
    1920         280 :   double neff = 0.;
    1921         280 :   double norm = 0.;
    1922         280 :   get_weights(iselect, weight, norm, neff);
    1923             : 
    1924             :   /* 2) calculate average */
    1925         280 :   std::vector<double> mean(narg,0);
    1926             :   // this is the derivative of the mean with respect to the argument
    1927         280 :   std::vector<double> dmean_x(narg,weight/norm);
    1928             :   // this is the derivative of the mean with respect to the bias
    1929         280 :   std::vector<double> dmean_b(narg,0);
    1930             :   // calculate it
    1931         280 :   replica_averaging(weight, norm, mean, dmean_b);
    1932             : 
    1933             :   /* 3) calculates parameters */
    1934         280 :   get_sigma_mean(iselect, weight, norm, neff, mean);
    1935             : 
    1936             :   // in case of regression with zero intercept, calculate scale
    1937         280 :   if(doregres_zero_ && step%nregres_zero_==0) {
    1938           6 :     do_regression_zero(mean);
    1939             :   }
    1940             : 
    1941             :   /* 4) run monte carlo */
    1942         280 :   double ene = doMonteCarlo(mean);
    1943             : 
    1944             :   // calculate bias and forces
    1945         280 :   switch(noise_type_) {
    1946          36 :   case GAUSS:
    1947          36 :     getEnergyForceGJ(mean, dmean_x, dmean_b);
    1948             :     break;
    1949          52 :   case MGAUSS:
    1950          52 :     getEnergyForceGJE(mean, dmean_x, dmean_b);
    1951             :     break;
    1952         108 :   case OUTLIERS:
    1953         108 :     getEnergyForceSP(mean, dmean_x, dmean_b);
    1954             :     break;
    1955          48 :   case MOUTLIERS:
    1956          48 :     getEnergyForceSPE(mean, dmean_x, dmean_b);
    1957             :     break;
    1958          36 :   case GENERIC:
    1959          36 :     getEnergyForceMIGEN(mean, dmean_x, dmean_b);
    1960             :     break;
    1961             :   }
    1962             : 
    1963         280 :   setBias(ene);
    1964         280 : }
    1965             : 
    1966          32 : void Metainference::writeStatus() {
    1967          32 :   sfile_.rewind();
    1968          32 :   sfile_.printField("time",getTimeStep()*getStep());
    1969             :   //nsel
    1970          64 :   for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
    1971             :     std::string msg_i,msg_j;
    1972          32 :     Tools::convert(i,msg_i);
    1973             :     std::vector <double> max_values;
    1974             :     //narg
    1975        2518 :     for(unsigned j=0; j<narg; ++j) {
    1976        2486 :       Tools::convert(j,msg_j);
    1977        2486 :       std::string msg = msg_i+"_"+msg_j;
    1978        2486 :       if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1979        7182 :         sfile_.printField("sigmaMean_"+msg,std::sqrt(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end())));
    1980             :       } else {
    1981             :         // find maximum for each data point
    1982         184 :         max_values.push_back(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end()));
    1983             :       }
    1984             :     }
    1985          32 :     if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1986             :       // find maximum across data points
    1987          17 :       const double max_now = std::sqrt(*max_element(max_values.begin(), max_values.end()));
    1988          17 :       Tools::convert(0,msg_j);
    1989          17 :       std::string msg = msg_i+"_"+msg_j;
    1990          34 :       sfile_.printField("sigmaMean_"+msg, max_now);
    1991             :     }
    1992             :   }
    1993        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1994             :     std::string msg;
    1995        2411 :     Tools::convert(i,msg);
    1996        4822 :     sfile_.printField("sigma_"+msg,sigma_[i]);
    1997             :   }
    1998        2443 :   for(unsigned i=0; i<sigma_max_.size(); ++i) {
    1999             :     std::string msg;
    2000        2411 :     Tools::convert(i,msg);
    2001        4822 :     sfile_.printField("sigma_max_"+msg,sigma_max_[i]);
    2002             :   }
    2003          32 :   if(noise_type_==GENERIC) {
    2004           9 :     for(unsigned i=0; i<ftilde_.size(); ++i) {
    2005             :       std::string msg;
    2006           6 :       Tools::convert(i,msg);
    2007          12 :       sfile_.printField("ftilde_"+msg,ftilde_[i]);
    2008             :     }
    2009             :   }
    2010          32 :   sfile_.printField("scale0_",scale_);
    2011          32 :   sfile_.printField("offset0_",offset_);
    2012          64 :   for(unsigned i=0; i<average_weights_.size(); i++) {
    2013             :     std::string msg_i;
    2014          32 :     Tools::convert(i,msg_i);
    2015          64 :     sfile_.printField("weight_"+msg_i,average_weights_[i][replica_]);
    2016             :   }
    2017          32 :   sfile_.printField();
    2018          32 :   sfile_.flush();
    2019          32 : }
    2020             : 
    2021         280 : void Metainference::update() {
    2022             :   // write status file
    2023         280 :   if(write_stride_>0&& (getStep()%write_stride_==0 || getCPT()) ) {
    2024          32 :     writeStatus();
    2025             :   }
    2026         280 : }
    2027             : 
    2028             : }
    2029             : }
    2030             : 

Generated by: LCOV version 1.16