LCOV - code coverage report
Current view: top level - isdb - Caliber.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 115 146 78.8 %
Date: 2024-10-18 13:59:31 Functions: 5 8 62.5 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2018-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "bias/Bias.h"
      23             : #include "core/ActionRegister.h"
      24             : #include "core/PlumedMain.h"
      25             : #include "tools/Communicator.h"
      26             : #include <fstream>
      27             : 
      28             : namespace PLMD {
      29             : namespace isdb {
      30             : 
      31             : //+PLUMEDOC ISDB_BIAS CALIBER
      32             : /*
      33             : Add a time-dependent, harmonic restraint on one or more variables.
      34             : 
      35             : This allows implementing a maximum caliber restraint on one or more experimental time series by replica-averaged restrained simulations.
      36             : See \cite Capelli:2018jt .
      37             : 
      38             : The time resolved experiments are read from a text file and intermediate values are obtained by splines.
      39             : 
      40             : \par Examples
      41             : 
      42             : In the following example a restraint is applied on the time evolution of a saxs spectrum
      43             : 
      44             : \plumedfile
      45             : MOLINFO STRUCTURE=first.pdb
      46             : 
      47             : # Define saxs variable
      48             : SAXS ...
      49             : LABEL=saxs
      50             : ATOMISTIC
      51             : ATOMS=1-436
      52             : QVALUE1=0.02 # Q-value at which calculate the scattering
      53             : QVALUE2=0.0808
      54             : QVALUE3=0.1264
      55             : QVALUE4=0.1568
      56             : QVALUE5=0.172
      57             : QVALUE6=0.1872
      58             : QVALUE7=0.2176
      59             : QVALUE8=0.2328
      60             : QVALUE9=0.248
      61             : QVALUE10=0.2632
      62             : QVALUE11=0.2936
      63             : QVALUE12=0.3088
      64             : QVALUE13=0.324
      65             : QVALUE14=0.3544
      66             : QVALUE15=0.4
      67             : ... SAXS
      68             : 
      69             : 
      70             : #define the caliber restraint
      71             : CALIBER ...
      72             :   ARG=(saxs\.q_.*)
      73             :   FILE=expsaxs.dat
      74             :   KAPPA=10
      75             :   LABEL=cal0
      76             :   STRIDE=10
      77             :   REGRES_ZERO=200
      78             :   AVERAGING=200
      79             : ... CALIBER
      80             : \endplumedfile
      81             : 
      82             : In particular the file expsaxs.dat contains the time traces for the 15 intensities at the selected scattering lengths, organized as time, q_1, etc.
      83             : The strength of the bias is automatically evaluated from the standard error of the mean over AVERAGING steps and multiplied by KAPPA. This is useful when working with multiple experimental data
      84             : Because \ref SAXS is usually defined in a manner that is irrespective of a scaling factor the scaling is evaluated from a linear fit every REGRES_ZERO step. Alternatively it can be given as a fixed constant as SCALE.
      85             : The bias is here applied every tenth step.
      86             : 
      87             : */
      88             : //+ENDPLUMEDOC
      89             : 
      90             : 
      91             : class Caliber : public bias::Bias {
      92             : public:
      93             :   explicit Caliber(const ActionOptions&);
      94             :   void calculate();
      95             :   static void registerKeywords( Keywords& keys );
      96             : private:
      97             :   std::vector<double> time;
      98             :   std::vector< std::vector<double> > var;
      99             :   std::vector< std::vector<double> > dvar;
     100             :   double   mult;
     101             :   double   scale_;
     102             :   bool     master;
     103             :   unsigned replica_;
     104             :   unsigned nrep_;
     105             :   // scale and offset regression
     106             :   bool doregres_zero_;
     107             :   int  nregres_zero_;
     108             :   // force constant
     109             :   unsigned optsigmamean_stride_;
     110             :   std::vector<double> sigma_mean2_;
     111             :   std::vector< std::vector<double> > sigma_mean2_last_;
     112             :   std::vector<Value*> x0comp;
     113             :   std::vector<Value*> kcomp;
     114             :   std::vector<Value*> mcomp;
     115             :   Value* valueScale;
     116             : 
     117             :   void get_sigma_mean(const double fact, const std::vector<double> &mean);
     118             :   void replica_averaging(const double fact, std::vector<double> &mean);
     119             :   double getSpline(const unsigned iarg);
     120             :   void do_regression_zero(const std::vector<double> &mean);
     121             : };
     122             : 
     123             : PLUMED_REGISTER_ACTION(Caliber,"CALIBER")
     124             : 
     125           6 : void Caliber::registerKeywords( Keywords& keys ) {
     126           6 :   Bias::registerKeywords(keys);
     127          12 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
     128          12 :   keys.add("compulsory","FILE","the name of the file containing the time-resolved values");
     129          12 :   keys.add("compulsory","KAPPA","a force constant, this can be use to scale a constant estimated on-the-fly using AVERAGING");
     130          12 :   keys.add("optional","AVERAGING", "Stride for calculation of the optimum kappa, if 0 only KAPPA is used.");
     131          12 :   keys.add("compulsory","TSCALE","1.0","Apply a time scaling on the experimental time scale");
     132          12 :   keys.add("compulsory","SCALE","1.0","Apply a constant scaling on the data provided as arguments");
     133          12 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
     134          12 :   keys.addOutputComponent("x0","default","scalar","the instantaneous value of the center of the potential");
     135          12 :   keys.addOutputComponent("mean","default","scalar","the current average value of the calculated observable");
     136          12 :   keys.addOutputComponent("kappa","default","scalar","the current force constant");
     137          12 :   keys.addOutputComponent("scale","REGRES_ZERO","scalar","the current scaling constant");
     138           6 : }
     139             : 
     140           4 : Caliber::Caliber(const ActionOptions&ao):
     141             :   PLUMED_BIAS_INIT(ao),
     142           4 :   mult(0),
     143           4 :   scale_(1),
     144           4 :   doregres_zero_(false),
     145           4 :   nregres_zero_(0),
     146           4 :   optsigmamean_stride_(0)
     147             : {
     148           8 :   parse("KAPPA",mult);
     149             :   std::string filename;
     150           8 :   parse("FILE",filename);
     151           4 :   if( filename.length()==0 ) error("No external variable file was specified");
     152           4 :   unsigned averaging=0;
     153           4 :   parse("AVERAGING", averaging);
     154           4 :   if(averaging>0) optsigmamean_stride_ = averaging;
     155           4 :   double tscale=1.0;
     156           4 :   parse("TSCALE", tscale);
     157           4 :   if(tscale<=0.) error("The time scale factor must be greater than 0.");
     158           4 :   parse("SCALE", scale_);
     159           4 :   if(scale_==0.) error("The time scale factor cannot be 0.");
     160             :   // regression with zero intercept
     161           4 :   parse("REGRES_ZERO", nregres_zero_);
     162           4 :   if(nregres_zero_>0) {
     163             :     // set flag
     164           0 :     doregres_zero_=true;
     165           0 :     log.printf("  doing regression with zero intercept with stride: %d\n", nregres_zero_);
     166             :   }
     167             : 
     168             : 
     169           4 :   bool noensemble = false;
     170           4 :   parseFlag("NOENSEMBLE", noensemble);
     171             : 
     172           4 :   checkRead();
     173             : 
     174             :   // set up replica stuff
     175           4 :   master = (comm.Get_rank()==0);
     176           4 :   if(master) {
     177           4 :     nrep_    = multi_sim_comm.Get_size();
     178           4 :     replica_ = multi_sim_comm.Get_rank();
     179           4 :     if(noensemble) nrep_ = 1;
     180             :   } else {
     181           0 :     nrep_    = 0;
     182           0 :     replica_ = 0;
     183             :   }
     184           4 :   comm.Sum(&nrep_,1);
     185           4 :   comm.Sum(&replica_,1);
     186             : 
     187             :   const unsigned narg = getNumberOfArguments();
     188           4 :   sigma_mean2_.resize(narg,1);
     189           4 :   sigma_mean2_last_.resize(narg);
     190           8 :   for(unsigned j=0; j<narg; j++) sigma_mean2_last_[j].push_back(0.000001);
     191             : 
     192           4 :   log.printf("  Time resolved data from file %s\n",filename.c_str());
     193           4 :   std::ifstream varfile(filename.c_str());
     194           4 :   if(varfile.fail()) error("Cannot open "+filename);
     195           4 :   var.resize(narg);
     196           4 :   dvar.resize(narg);
     197        2012 :   while (!varfile.eof()) {
     198             :     double tempT, tempVar;
     199             :     varfile >> tempT;
     200        2008 :     time.push_back(tempT/tscale);
     201        4016 :     for(unsigned i=0; i<narg; i++) {
     202             :       varfile >> tempVar;
     203        2008 :       var[i].push_back(tempVar);
     204             :     }
     205             :   }
     206           4 :   varfile.close();
     207             : 
     208           4 :   const double deltat = time[1] - time[0];
     209           8 :   for(unsigned i=0; i<narg; i++) {
     210        2012 :     for(unsigned j=0; j<var[i].size(); j++) {
     211        2008 :       if(j==0) dvar[i].push_back((var[i][j+1] - var[i][j])/(deltat));
     212        2004 :       else if(j==var[i].size()-1) dvar[i].push_back((var[i][j] - var[i][j-1])/(deltat));
     213        2000 :       else dvar[i].push_back((var[i][j+1] - var[i][j-1])/(2.*deltat));
     214             :     }
     215             :   }
     216             : 
     217           8 :   for(unsigned i=0; i<narg; i++) {
     218           4 :     std::string num; Tools::convert(i,num);
     219          12 :     addComponent("x0-"+num); componentIsNotPeriodic("x0-"+num); x0comp.push_back(getPntrToComponent("x0-"+num));
     220          12 :     addComponent("kappa-"+num); componentIsNotPeriodic("kappa-"+num); kcomp.push_back(getPntrToComponent("kappa-"+num));
     221          12 :     addComponent("mean-"+num); componentIsNotPeriodic("mean-"+num); mcomp.push_back(getPntrToComponent("mean-"+num));
     222             :   }
     223             : 
     224           4 :   if(doregres_zero_) {
     225           0 :     addComponent("scale");
     226           0 :     componentIsNotPeriodic("scale");
     227           0 :     valueScale=getPntrToComponent("scale");
     228             :   }
     229             : 
     230           8 :   log<<"  Bibliography "<<plumed.cite("Capelli, Tiana, Camilloni, J Chem Phys, 148, 184114");
     231           8 : }
     232             : 
     233           0 : void Caliber::get_sigma_mean(const double fact, const std::vector<double> &mean)
     234             : {
     235           0 :   const unsigned narg = getNumberOfArguments();
     236           0 :   const double dnrep = static_cast<double>(nrep_);
     237             : 
     238           0 :   if(sigma_mean2_last_[0].size()==optsigmamean_stride_) for(unsigned i=0; i<narg; ++i) sigma_mean2_last_[i].erase(sigma_mean2_last_[i].begin());
     239           0 :   std::vector<double> sigma_mean2_now(narg,0);
     240           0 :   if(master) {
     241           0 :     for(unsigned i=0; i<narg; ++i) {
     242           0 :       double tmp = getArgument(i)-mean[i];
     243           0 :       sigma_mean2_now[i] = fact*tmp*tmp;
     244             :     }
     245           0 :     if(nrep_>1) multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
     246             :   }
     247           0 :   comm.Sum(&sigma_mean2_now[0], narg);
     248             : 
     249           0 :   for(unsigned i=0; i<narg; ++i) {
     250           0 :     sigma_mean2_last_[i].push_back(sigma_mean2_now[i]/dnrep);
     251           0 :     sigma_mean2_[i] = *max_element(sigma_mean2_last_[i].begin(), sigma_mean2_last_[i].end());
     252             :   }
     253           0 : }
     254             : 
     255        2004 : void Caliber::replica_averaging(const double fact, std::vector<double> &mean)
     256             : {
     257        2004 :   const unsigned narg = getNumberOfArguments();
     258        2004 :   if(master) {
     259        4008 :     for(unsigned i=0; i<narg; ++i) mean[i] = fact*getArgument(i);
     260        2004 :     if(nrep_>1) multi_sim_comm.Sum(&mean[0], narg);
     261             :   }
     262        2004 :   comm.Sum(&mean[0], narg);
     263        2004 : }
     264             : 
     265        2004 : double Caliber::getSpline(const unsigned iarg)
     266             : {
     267        2004 :   const double deltat = time[1] - time[0];
     268        2004 :   const int tindex = static_cast<int>(getTime()/deltat);
     269             : 
     270             :   unsigned start, end;
     271        2004 :   start=tindex;
     272        2004 :   if(tindex+1<var[iarg].size()) end=tindex+2;
     273           0 :   else end=var[iarg].size();
     274             : 
     275             :   double value=0;
     276        6012 :   for(unsigned ipoint=start; ipoint<end; ++ipoint) {
     277        4008 :     double grid=var[iarg][ipoint];
     278        4008 :     double dder=dvar[iarg][ipoint];
     279             :     double yy=0.;
     280        4008 :     if(std::abs(grid)>0.0000001) yy=-dder/grid;
     281             : 
     282             :     int x0=1;
     283        4008 :     if(ipoint==tindex) x0=0;
     284             : 
     285        4008 :     double X=std::abs((getTime()-time[tindex])/deltat-(double)x0);
     286        4008 :     double X2=X*X;
     287        4008 :     double X3=X2*X;
     288        4008 :     double C=(1.0-3.0*X2+2.0*X3) - (x0?-1.0:1.0)*yy*(X-2.0*X2+X3)*deltat;
     289             : 
     290        4008 :     value+=grid*C;
     291             :   }
     292        2004 :   return value;
     293             : }
     294             : 
     295           0 : void Caliber::do_regression_zero(const std::vector<double> &mean)
     296             : {
     297             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
     298             :   double num = 0.0;
     299             :   double den = 0.0;
     300           0 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) {
     301           0 :     num += mean[i] * getSpline(i);
     302           0 :     den += mean[i] * mean[i];
     303             :   }
     304           0 :   if(den>0) {
     305           0 :     scale_ = num / den;
     306             :   } else {
     307           0 :     scale_ = 1.0;
     308             :   }
     309           0 : }
     310             : 
     311        2004 : void Caliber::calculate()
     312             : {
     313        2004 :   const unsigned narg = getNumberOfArguments();
     314        2004 :   const double dnrep = static_cast<double>(nrep_);
     315        2004 :   const double fact = 1.0/dnrep;
     316             : 
     317        2004 :   std::vector<double> mean(narg,0);
     318        2004 :   std::vector<double> dmean_x(narg,fact);
     319        2004 :   replica_averaging(fact, mean);
     320        2004 :   if(optsigmamean_stride_>0) get_sigma_mean(fact, mean);
     321             : 
     322             :   // in case of regression with zero intercept, calculate scale
     323        2004 :   if(doregres_zero_ && getStep()%nregres_zero_==0) do_regression_zero(mean);
     324             : 
     325             :   double ene=0;
     326        4008 :   for(unsigned i=0; i<narg; ++i) {
     327        2004 :     const double x0 = getSpline(i);
     328        2004 :     const double kappa = mult*dnrep/sigma_mean2_[i];
     329        2004 :     const double cv=difference(i,x0,scale_*mean[i]);
     330        2004 :     const double f=-kappa*cv*dmean_x[i]/scale_;
     331        2004 :     setOutputForce(i,f);
     332        2004 :     ene+=0.5*kappa*cv*cv;
     333        2004 :     x0comp[i]->set(x0);
     334        2004 :     kcomp[i]->set(kappa);
     335        2004 :     mcomp[i]->set(mean[i]);
     336             :   }
     337             : 
     338        2004 :   if(doregres_zero_) valueScale->set(scale_);
     339             : 
     340        2004 :   setBias(ene);
     341        2004 : }
     342             : 
     343             : }
     344             : }
     345             : 
     346             : 

Generated by: LCOV version 1.16