LCOV - code coverage report
Current view: top level - envsim - EnvironmentSimilarity.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 223 244 91.4 %
Date: 2025-03-25 09:33:27 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) envsim 2023-2024 The code team
       3             :    (see the PEOPLE-envsim file at the root of the distribution for a list of names)
       4             : 
       5             :    This file is part of envsim code module.
       6             : 
       7             :    The envsim code module is free software: you can redistribute it and/or modify
       8             :    it under the terms of the GNU Lesser General Public License as published by
       9             :    the Free Software Foundation, either version 3 of the License, or
      10             :    (at your option) any later version.
      11             : 
      12             :    The envsim code module is distributed in the hope that it will be useful,
      13             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15             :    GNU Lesser General Public License for more details.
      16             : 
      17             :    You should have received a copy of the GNU Lesser General Public License
      18             :    along with the envsim code module.  If not, see <http://www.gnu.org/licenses/>.
      19             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      20             : #include "core/ActionShortcut.h"
      21             : #include "core/ActionRegister.h"
      22             : #include "core/ActionWithValue.h"
      23             : #include "core/PlumedMain.h"
      24             : #include "core/ActionSet.h"
      25             : #include "tools/PDB.h"
      26             : #include "multicolvar/MultiColvarShortcuts.h"
      27             : #include <string>
      28             : #include <cmath>
      29             : 
      30             : using namespace std;
      31             : 
      32             : namespace PLMD {
      33             : namespace envsim {
      34             : 
      35             : // N.B. In this equation $\tilde{k}_ {\chi_0}(\chi_0)=1$ space after underscore ensures correct rendering.
      36             : // I don't know why GAT
      37             : 
      38             : //+PLUMEDOC MCOLVAR ENVIRONMENTSIMILARITY
      39             : /*
      40             : Measure how similar the environment around atoms is to that found in some reference crystal structure.
      41             : 
      42             : The starting point for the definition of the CV is the local atomic density around an atom.
      43             : We consider an environment $\chi$ around this atom and we define the density by
      44             : 
      45             : $$
      46             :  \rho_{\chi}(\mathbf{r})=\sum\limits_{i\in\chi} \exp\left(- \frac{|r_i-r|^2} {2\sigma^2} \right),
      47             : $$
      48             : 
      49             : where $i$ runs over the neighbors in the environment $\chi$, $\sigma$ is a broadening parameter, and $r_i$ are the
      50             : coordinates of the neighbors relative to the central atom.
      51             : We now define a reference environment or template $\chi_0$ that contains $n$ reference positions $\{r^0_1,...,r^0_n\}$
      52             : that describe, for instance, the nearest neighbors in a given lattice.
      53             : $\sigma$ is set using the SIGMA keyword and $\chi_0$ is chosen with the CRYSTAL_STRUCTURE keyword.
      54             : If only the SPECIES keyword is given then the atoms defined there will be the central and neighboring atoms.
      55             : If instead the SPECIESA and SPECIESB keywords are given then SPECIESA determines the central atoms and SPECIESB the neighbors.
      56             : 
      57             : The environments $\chi$ and $\chi_0$ are compared using the kernel,
      58             : 
      59             : $$
      60             :  k_{\chi_0}(\chi)= \int d\mathbf{r} \rho_{\chi}(\mathbf{r}) \rho_{\chi_0}(\mathbf{r}) .
      61             : $$
      62             : 
      63             : Combining the two equations above and performing the integration analytically we obtain,
      64             : 
      65             : $$
      66             :  k_{\chi_0}(\chi)= \sum\limits_{i\in\chi} \sum\limits_{j\in\chi_0} \pi^{3/2} \sigma^3  \exp\left(- \frac{|\mathbf{r}_i-\mathbf{r}^0_j|^2} {4\sigma^2} \right).
      67             : $$
      68             : 
      69             : The kernel is finally normalized,
      70             : 
      71             : $$
      72             :  \tilde{k}_{\chi_0}(\chi)  = \frac{1}{n} \sum\limits_{i\in\chi} \sum\limits_{j\in\chi_0} \exp\left( - \frac{|\mathbf{r}_i-\mathbf{r}^0_j|^2} {4\sigma^2} \right),
      73             : $$
      74             : 
      75             : such that $\tilde{k}_ {\chi_0}(\chi_0)=1$.
      76             : The above kernel is computed for each atom in the SPECIES or SPECIESA keywords.
      77             : This quantity is a multicolvar so you can compute it for multiple atoms using a single PLUMED action and then compute
      78             : the average value for the atoms in your system, the number of atoms that have an $\tilde{k}_{\chi_0}$ value that is more that some target and
      79             : so on.
      80             : 
      81             : The kernel can be generalized to crystal structures described as a lattice with a basis of more than one atom.
      82             : In this case there is more than one type of environment.
      83             : We consider the case of $M$ environments $X = \chi_1,\chi_2,...,\chi_M$ and we define the kernel through a best match strategy:
      84             : 
      85             : 
      86             : $$
      87             :  \tilde{k}_X(\chi)= \frac{1}{\lambda} \log \left ( \sum\limits_{l=1}^{M}\exp \left (\lambda \: \tilde{k}_{\chi_l}(\chi) \right ) \right ).
      88             : $$
      89             : 
      90             : For a large enough $\lambda$ this expression will select the largest $\tilde{k}_{\chi_l}(\chi)$ with $\chi_l \in X$.
      91             : This approach can be used, for instance, to target the hexagonal closed packed (HCP keyword) or the diamond structure (DIAMOND keyword).
      92             : 
      93             : The CRYSTAL_STRUCTURE keyword can take the values SC (simple cubic), BCC (body centered cubic), FCC (face centered cubic),
      94             : HCP (hexagonal closed pack), DIAMOND (cubic diamond), and CUSTOM (user defined).
      95             : All options follow the same conventions as in the [lattice command](https://lammps.sandia.gov/doc/lattice.html) of [LAMMPS](https://lammps.sandia.gov/).
      96             : If a CRYSTAL_STRUCTURE other than CUSTOM is used, then the lattice constants have to be specified using the keyword LATTICE_CONSTANTS.
      97             : One value has to be specified for SC, BCC, FCC, and DIAMOND and two values have to be set for HCP (a and c lattice constants in that order).
      98             : 
      99             : If the CUSTOM option is used then the reference environments have to be specified by the user.
     100             : The reference environments are specified in pdb files containing the distance vectors from the central atom to the neighbors.
     101             : Make sure your PDB file is correctly formatted as explained in the documenation for [MOLINFO](MOLINFO.md)
     102             : If only one reference environment is specified then the filename should be given as argument of the keyword REFERENCE.
     103             : If instead several reference environments are given, then they have to be provided in separate pdb files and given as arguments for the
     104             : keywords REFERENCE_1, REFERENCE_2, etc.
     105             : If you have a reference crystal structure configuration you can use the [Environment Finder](https://github.com/PabloPiaggi/EnvironmentFinder) app to determine the reference environments that you should use.
     106             : 
     107             : If multiple chemical species are involved in the calculation, it is possible to provide the atom types (names) both for atoms in the reference environments and in the simulation box.
     108             : This information is provided in pdb files using the atom name field.
     109             : The comparison between environments is performed taking into account whether the atom names match.
     110             : 
     111             : ### Examples
     112             : 
     113             : The following input calculates the ENVIRONMENTSIMILARITY kernel for 250 atoms in the system
     114             : using the BCC atomic environment as target, and then calculates and prints the average value
     115             :  for this quantity.
     116             : 
     117             : ```plumed
     118             : es: ENVIRONMENTSIMILARITY SPECIES=1-250 SIGMA=0.05 LATTICE_CONSTANTS=0.423 CRYSTAL_STRUCTURE=BCC MEAN
     119             : 
     120             : PRINT ARG=es.mean FILE=COLVAR
     121             : ```
     122             : 
     123             : The next example compares the environments of the 96 selected atoms with a user specified reference
     124             : environment. The reference environment is contained in the env1.pdb file. Once the kernel is computed
     125             :  the average and the number of atoms with a kernel larger than 0.5 are computed.
     126             : 
     127             : ```plumed
     128             : #SETTINGS INPUTFILES=regtest/envsim/rt-env-sim-atom-names-match/env1.pdb
     129             : es: ENVIRONMENTSIMILARITY ...
     130             :  SPECIES=1-288:3
     131             :  SIGMA=0.05
     132             :  CRYSTAL_STRUCTURE=CUSTOM
     133             :  REFERENCE=regtest/envsim/rt-env-sim-atom-names-match/env1.pdb
     134             :  MEAN
     135             :  MORE_THAN={RATIONAL R_0=0.5 NN=12 MM=24}
     136             : ...
     137             : 
     138             : PRINT ARG=es.mean,es.morethan FILE=COLVAR
     139             : ```
     140             : 
     141             : The next example is similar to the one above but in this case 4 reference environments are specified.
     142             :  Each reference environment is given in a separate pdb file.
     143             : 
     144             : ```plumed
     145             : #SETTINGS INPUTFILES=regtest/envsim/rt-env-sim-atom-names-match/env1.pdb,regtest/envsim/rt-env-sim-atom-names-match/env2.pdb,regtest/envsim/rt-env-sim-atom-names-match/env3.pdb,regtest/envsim/rt-env-sim-atom-names-match/env4.pdb
     146             : es: ENVIRONMENTSIMILARITY ...
     147             :  SPECIES=1-288:3
     148             :  SIGMA=0.05
     149             :  CRYSTAL_STRUCTURE=CUSTOM
     150             :  REFERENCE_1=regtest/envsim/rt-env-sim-atom-names-match/env1.pdb
     151             :  REFERENCE_2=regtest/envsim/rt-env-sim-atom-names-match/env2.pdb
     152             :  REFERENCE_3=regtest/envsim/rt-env-sim-atom-names-match/env3.pdb
     153             :  REFERENCE_4=regtest/envsim/rt-env-sim-atom-names-match/env4.pdb
     154             :  MEAN
     155             :  MORE_THAN={RATIONAL R_0=0.5 NN=12 MM=24}
     156             : ...
     157             : 
     158             : PRINT ARG=es.mean,es.morethan FILE=COLVAR
     159             : ```
     160             : 
     161             : The following examples illustrates the use of pdb files to provide information about different chemical species:
     162             : 
     163             : 
     164             : ```plumed
     165             : #SETTINGS INPUTFILES=regtest/envsim/rt-env-sim-custom-1env/env1.pdb,regtest/envsim/rt-env-sim-atom-names-match/IceIh-atom-names.pdb
     166             : es: ENVIRONMENTSIMILARITY ...
     167             :  SPECIES=1-384
     168             :  SIGMA=0.05
     169             :  CRYSTAL_STRUCTURE=CUSTOM
     170             :  REFERENCE=regtest/envsim/rt-env-sim-custom-1env/env1.pdb
     171             :  MEAN
     172             :  MORE_THAN={RATIONAL R_0=0.5 NN=12 MM=24}
     173             :  ATOM_NAMES_FILE=regtest/envsim/rt-env-sim-atom-names-match/IceIh-atom-names.pdb
     174             : ...
     175             : ```
     176             : 
     177             : In this case, all atoms are used as centers, but only neighbors of type O are taken into account.
     178             : 
     179             : */
     180             : //+ENDPLUMEDOC
     181             : 
     182             : class EnvironmentSimilarity : public ActionShortcut {
     183             : private:
     184             :   std::vector<std::pair<unsigned,Vector> > getReferenceEnvironment( const PDB& pdb, const std::vector<std::string>& anames, double& maxdist );
     185             : public:
     186             :   static void registerKeywords( Keywords& keys );
     187             :   explicit EnvironmentSimilarity(const ActionOptions&);
     188             : };
     189             : 
     190             : PLUMED_REGISTER_ACTION(EnvironmentSimilarity,"ENVIRONMENTSIMILARITY")
     191             : 
     192          28 : void EnvironmentSimilarity::registerKeywords( Keywords& keys ) {
     193          28 :   ActionShortcut::registerKeywords( keys );
     194          28 :   keys.add("atoms-3","SPECIES","this keyword is used for colvars such as coordination number. In that context it specifies that plumed should calculate "
     195             :            "one coordination number for each of the atoms specified.  Each of these coordination numbers specifies how many of the "
     196             :            "other specified atoms are within a certain cutoff of the central atom.  You can specify the atoms here as another multicolvar "
     197             :            "action or using a MultiColvarFilter or ActionVolume action.  When you do so the quantity is calculated for those atoms specified "
     198             :            "in the previous multicolvar.  This is useful if you would like to calculate the Steinhardt parameter for those atoms that have a "
     199             :            "coordination number more than four for example");
     200          28 :   keys.add("atoms-4","SPECIESA","this keyword is used for colvars such as the coordination number.  In that context it species that plumed should calculate "
     201             :            "one coordination number for each of the atoms specified in SPECIESA.  Each of these cooordination numbers specifies how many "
     202             :            "of the atoms specifies using SPECIESB is within the specified cutoff.  As with the species keyword the input can also be specified "
     203             :            "using the label of another multicolvar");
     204          28 :   keys.add("atoms-4","SPECIESB","this keyword is used for colvars such as the coordination number.  It must appear with SPECIESA.  For a full explanation see "
     205             :            "the documentation for that keyword");
     206          28 :   keys.add("compulsory","CRYSTAL_STRUCTURE","FCC","Targeted crystal structure. Options are: "
     207             :            "SC: simple cubic, "
     208             :            "BCC: body center cubic, "
     209             :            "FCC: face centered cubic, "
     210             :            "HCP: hexagonal closed pack, "
     211             :            "DIAMOND: cubic diamond, "
     212             :            "CUSTOM: user defined "
     213             :            " ");
     214          28 :   keys.add("compulsory","LATTICE_CONSTANTS","Lattice constants. Two comma separated values for HCP, "
     215             :            "one value for all other CRYSTAL_STRUCTURES.");
     216          28 :   keys.add("compulsory","SIGMA","0.1","the width to use for the gaussian kernels");
     217          28 :   keys.add("compulsory","LCUTOFF","0.0001","any atoms separated by less than this tolerance should be ignored");
     218          28 :   keys.add("optional","REFERENCE","PDB files with relative distances from central atom.  Use this keyword if you are targeting a single reference environment.");
     219          28 :   keys.add("numbered","REFERENCE_","PDB files with relative distances from central atom. Each file corresponds to one template. Use these keywords if you are targeting more than one reference environment.");
     220          28 :   keys.add("compulsory","LAMBDA","100","Lambda parameter.  This is only used if you have more than one reference environment");
     221          28 :   keys.add("compulsory","CUTOFF","3","how many multiples of sigma would you like to consider beyond the maximum distance in the environment");
     222          28 :   keys.add("optional","ATOM_NAMES_FILE","PDB file with atom names for all atoms in SPECIES. Atoms in reference environments will be compared only if atom names match.");
     223          56 :   keys.setValueDescription("vector","the environmental similar parameter for each of the input atoms");
     224          28 :   multicolvar::MultiColvarShortcuts::shortcutKeywords( keys );
     225          28 :   keys.needsAction("GROUP");
     226          28 :   keys.needsAction("DISTANCE_MATRIX");
     227          28 :   keys.needsAction("ONES");
     228          28 :   keys.needsAction("CONSTANT");
     229          28 :   keys.needsAction("CUSTOM");
     230          28 :   keys.needsAction("MATRIX_VECTOR_PRODUCT");
     231          28 :   keys.needsAction("COMBINE");
     232          28 :   keys.addDOI("10.1063/1.5102104");
     233          28 : }
     234             : 
     235          10 : EnvironmentSimilarity::EnvironmentSimilarity(const ActionOptions&ao):
     236             :   Action(ao),
     237          10 :   ActionShortcut(ao) {
     238             :   std::string atomNamesFile;
     239          10 :   parse("ATOM_NAMES_FILE",atomNamesFile);
     240          10 :   PDB atomnamepdb;
     241          10 :   if( !atomNamesFile.empty() && !atomnamepdb.read(atomNamesFile,usingNaturalUnits(),0.1/getUnits().getLength()) ) {
     242           0 :     error("missing input file " + atomNamesFile);
     243             :   }
     244             : 
     245          10 :   double maxdist=0;
     246          10 :   std::vector<std::string> allspec(1);
     247             :   std::string crystal_structure;
     248          20 :   parse("CRYSTAL_STRUCTURE", crystal_structure);
     249             :   std::vector<std::vector<std::pair<unsigned,Vector> > > environments;
     250          10 :   if( crystal_structure=="CUSTOM" ) {
     251           5 :     if( !atomNamesFile.empty()  ) {
     252           1 :       allspec[0]=atomnamepdb.getAtomName(atomnamepdb.getAtomNumbers()[0]);
     253           1 :       unsigned natoms=atomnamepdb.getPositions().size();
     254         385 :       for(unsigned i=0; i<natoms; ++i) {
     255             :         bool found=false;
     256         576 :         for(unsigned j=0; j<allspec.size(); ++j) {
     257         575 :           if( allspec[j]==atomnamepdb.getAtomName(atomnamepdb.getAtomNumbers()[i] ) ) {
     258             :             found=true;
     259             :             break;
     260             :           }
     261             :         }
     262         384 :         if( !found ) {
     263           2 :           allspec.push_back( atomnamepdb.getAtomName(atomnamepdb.getAtomNumbers()[i]) );
     264             :         }
     265             :       }
     266             :     }
     267             :     std::string reffile;
     268          10 :     parse("REFERENCE",reffile);
     269           5 :     if( reffile.length()>0 ) {
     270           2 :       PDB pdb;
     271           2 :       pdb.read(reffile,plumed.usingNaturalUnits(),0.1/plumed.getUnits().getLength());
     272           2 :       environments.push_back( getReferenceEnvironment( pdb, allspec, maxdist ) );
     273           2 :       log.printf("  reading %d reference vectors from %s \n", environments[0].size(), reffile.c_str() );
     274           2 :     } else {
     275          12 :       for(unsigned int i=1;; i++) {
     276          15 :         PDB pdb;
     277          30 :         if( !parseNumbered("REFERENCE_",i,reffile) ) {
     278             :           break;
     279             :         }
     280          12 :         if( !pdb.read(reffile,usingNaturalUnits(),0.1/getUnits().getLength()) ) {
     281           0 :           error("missing input file " + reffile );
     282             :         }
     283          12 :         environments.push_back( getReferenceEnvironment( pdb, allspec, maxdist ) );
     284          12 :         log.printf("  Reference environment %d : reading %d reference vectors from %s \n", i, environments[i-1].size(), reffile.c_str() );
     285          15 :       }
     286             :     }
     287             :   } else {
     288             :     std::vector<double> lattice_constants;
     289          10 :     parseVector("LATTICE_CONSTANTS", lattice_constants);
     290           5 :     if (crystal_structure == "FCC") {
     291           1 :       if (lattice_constants.size() != 1) {
     292           0 :         error("Number of LATTICE_CONSTANTS arguments must be one for FCC");
     293             :       }
     294           1 :       environments.resize(1);
     295           1 :       environments[0].resize(12);
     296           1 :       environments[0][0]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+0.5,+0.0)*lattice_constants[0] );
     297           1 :       environments[0][1]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,-0.5,+0.0)*lattice_constants[0] );
     298           1 :       environments[0][2]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,-0.5,+0.0)*lattice_constants[0] );
     299           1 :       environments[0][3]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+0.5,+0.0)*lattice_constants[0] );
     300           1 :       environments[0][4]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+0.0,+0.5)*lattice_constants[0] );
     301           1 :       environments[0][5]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+0.0,-0.5)*lattice_constants[0] );
     302           1 :       environments[0][6]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+0.0,+0.5)*lattice_constants[0] );
     303           1 :       environments[0][7]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+0.0,-0.5)*lattice_constants[0] );
     304           1 :       environments[0][8]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,+0.5,+0.5)*lattice_constants[0] );
     305           1 :       environments[0][9]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,-0.5,-0.5)*lattice_constants[0] );
     306           1 :       environments[0][10] = std::pair<unsigned,Vector>( 0, Vector(+0.0,-0.5,+0.5)*lattice_constants[0] );
     307           1 :       environments[0][11] = std::pair<unsigned,Vector>( 0, Vector(+0.0,+0.5,-0.5)*lattice_constants[0] );
     308           1 :       maxdist = std::sqrt(2)*lattice_constants[0]/2.;
     309           4 :     } else if (crystal_structure == "SC") {
     310           0 :       if (lattice_constants.size() != 1) {
     311           0 :         error("Number of LATTICE_CONSTANTS arguments must be one for SC");
     312             :       }
     313           0 :       environments.resize(1);
     314           0 :       environments[0].resize(6);
     315           0 :       environments[0][0]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,+0.0,+0.0)*lattice_constants[0] );
     316           0 :       environments[0][1]  = std::pair<unsigned,Vector>( 0, Vector(-1.0,+0.0,+0.0)*lattice_constants[0] );
     317           0 :       environments[0][2]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,+1.0,+0.0)*lattice_constants[0] );
     318           0 :       environments[0][3]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,-1.0,+0.0)*lattice_constants[0] );
     319           0 :       environments[0][4]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,+0.0,+1.0)*lattice_constants[0] );
     320           0 :       environments[0][5]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,+0.0,-1.0)*lattice_constants[0] );
     321           0 :       maxdist = lattice_constants[0];
     322           4 :     } else if( crystal_structure == "BCC") {
     323           2 :       if (lattice_constants.size() != 1) {
     324           0 :         error("Number of LATTICE_CONSTANTS arguments must be one for BCC");
     325             :       }
     326           2 :       environments.resize(1);
     327           2 :       environments[0].resize(14);
     328           2 :       environments[0][0]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+0.5,+0.5)*lattice_constants[0] );
     329           2 :       environments[0][1]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,-0.5,-0.5)*lattice_constants[0] );
     330           2 :       environments[0][2]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+0.5,+0.5)*lattice_constants[0] );
     331           2 :       environments[0][3]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,-0.5,+0.5)*lattice_constants[0] );
     332           2 :       environments[0][4]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+0.5,-0.5)*lattice_constants[0] );
     333           2 :       environments[0][5]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,-0.5,+0.5)*lattice_constants[0] );
     334           2 :       environments[0][6]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,-0.5,-0.5)*lattice_constants[0] );
     335           2 :       environments[0][7]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+0.5,-0.5)*lattice_constants[0] );
     336           2 :       environments[0][8]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,+0.0,+0.0)*lattice_constants[0] );
     337           2 :       environments[0][9]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,+1.0,+0.0)*lattice_constants[0] );
     338           2 :       environments[0][10] = std::pair<unsigned,Vector>( 0, Vector(+0.0,+0.0,+1.0)*lattice_constants[0] );
     339           2 :       environments[0][11] = std::pair<unsigned,Vector>( 0, Vector(-1.0,+0.0,+0.0)*lattice_constants[0] );
     340           2 :       environments[0][12] = std::pair<unsigned,Vector>( 0, Vector(+0.0,-1.0,+0.0)*lattice_constants[0] );
     341           2 :       environments[0][13] = std::pair<unsigned,Vector>( 0, Vector(+0.0,+0.0,-1.0)*lattice_constants[0] );
     342           2 :       maxdist = lattice_constants[0];
     343           2 :     } else if (crystal_structure == "HCP") {
     344           1 :       if (lattice_constants.size() != 2) {
     345           0 :         error("Number of LATTICE_CONSTANTS arguments must be two for HCP");
     346             :       }
     347           1 :       environments.resize(2);
     348           1 :       environments[0].resize(12);
     349           1 :       environments[1].resize(12);
     350             :       double sqrt3=std::sqrt(3);
     351           1 :       environments[0][0]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+sqrt3/2.0,+0.0)*lattice_constants[0] );
     352           1 :       environments[0][1]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+sqrt3/2.0,+0.0)*lattice_constants[0] );
     353           1 :       environments[0][2]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,-sqrt3/2.0,+0.0)*lattice_constants[0] );
     354           1 :       environments[0][3]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,-sqrt3/2.0,+0.0)*lattice_constants[0] );
     355           1 :       environments[0][4]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,+0.0,+0.0)      *lattice_constants[0] );
     356           1 :       environments[0][5]  = std::pair<unsigned,Vector>( 0, Vector(-1.0,+0.0,+0.0)      *lattice_constants[0] );
     357           1 :       environments[0][6]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,+0.5)*lattice_constants[1] );
     358           1 :       environments[0][7]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,+0.5)*lattice_constants[1] );
     359           1 :       environments[0][8]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,-sqrt3/3.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,+0.5)*lattice_constants[1] );
     360           1 :       environments[0][9]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,-0.5)*lattice_constants[1] );
     361           1 :       environments[0][10] = std::pair<unsigned,Vector>( 0, Vector(-0.5,+sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,-0.5)*lattice_constants[1] );
     362           1 :       environments[0][11] = std::pair<unsigned,Vector>( 0, Vector(+0.0,-sqrt3/3.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,-0.5)*lattice_constants[1] );
     363           1 :       environments[1][0]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,+sqrt3/2.0,+0.0)*lattice_constants[0] );
     364           1 :       environments[1][1]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,+sqrt3/2.0,+0.0)*lattice_constants[0] );
     365           1 :       environments[1][2]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,-sqrt3/2.0,+0.0)*lattice_constants[0] );
     366           1 :       environments[1][3]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,-sqrt3/2.0,+0.0)*lattice_constants[0] );
     367           1 :       environments[1][4]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,+0.0,+0.0)      *lattice_constants[0] );
     368           1 :       environments[1][5]  = std::pair<unsigned,Vector>( 0, Vector(-1.0,+0.0,+0.0)      *lattice_constants[0] );
     369           1 :       environments[1][6]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,-sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,+0.5)*lattice_constants[1] );
     370           1 :       environments[1][7]  = std::pair<unsigned,Vector>( 0, Vector(-0.5,-sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,+0.5)*lattice_constants[1] );
     371           1 :       environments[1][8]  = std::pair<unsigned,Vector>( 0, Vector(+0.0,+sqrt3/3.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,+0.5)*lattice_constants[1] );
     372           1 :       environments[1][9]  = std::pair<unsigned,Vector>( 0, Vector(+0.5,-sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,-0.5)*lattice_constants[1] );
     373           1 :       environments[1][10] = std::pair<unsigned,Vector>( 0, Vector(-0.5,-sqrt3/6.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,-0.5)*lattice_constants[1] );
     374           1 :       environments[1][11] = std::pair<unsigned,Vector>( 0, Vector(+0.0,+sqrt3/3.0,+0.0)*lattice_constants[0] + Vector(+0.0,+0.0,-0.5)*lattice_constants[1] );
     375           1 :       maxdist = lattice_constants[0];
     376           1 :     } else if (crystal_structure == "DIAMOND") {
     377           1 :       if (lattice_constants.size() != 1) {
     378           0 :         error("Number of LATTICE_CONSTANTS arguments must be one for DIAMOND");
     379             :       }
     380           1 :       environments.resize(2);
     381           1 :       environments[0].resize(4);
     382           1 :       environments[1].resize(4);
     383           1 :       environments[0][0]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,+1.0,+1.0)*lattice_constants[0]/4.0 );
     384           1 :       environments[0][1]  = std::pair<unsigned,Vector>( 0, Vector(-1.0,-1.0,+1.0)*lattice_constants[0]/4.0 );
     385           1 :       environments[0][2]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,-1.0,-1.0)*lattice_constants[0]/4.0 );
     386           1 :       environments[0][3]  = std::pair<unsigned,Vector>( 0, Vector(-1.0,+1.0,-1.0)*lattice_constants[0]/4.0 );
     387           1 :       environments[1][0]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,-1.0,+1.0)*lattice_constants[0]/4.0 );
     388           1 :       environments[1][1]  = std::pair<unsigned,Vector>( 0, Vector(-1.0,+1.0,+1.0)*lattice_constants[0]/4.0 );
     389           1 :       environments[1][2]  = std::pair<unsigned,Vector>( 0, Vector(+1.0,+1.0,-1.0)*lattice_constants[0]/4.0 );
     390           1 :       environments[1][3]  = std::pair<unsigned,Vector>( 0, Vector(-1.0,-1.0,-1.0)*lattice_constants[0]/4.0 );
     391           1 :       maxdist = std::sqrt(3)*lattice_constants[0]/4.0;
     392             :     } else {
     393           0 :       error( crystal_structure + " is not a valid input for keyword CRYSTAL_STRUCTURE");
     394             :     }
     395             :   }
     396          10 :   std::string matlab = getShortcutLabel() + "_cmat";
     397             :   double cutoff, sig;
     398          10 :   parse("SIGMA",sig);
     399          20 :   parse("CUTOFF",cutoff);
     400             :   std::string lcutoff;
     401          20 :   parse("LCUTOFF",lcutoff);
     402             :   std::string sig2;
     403          10 :   Tools::convert( sig*sig, sig2 );
     404          10 :   std::vector<std::vector<std::string> > funcstr(environments.size());
     405             :   std::string str_cutoff;
     406          10 :   Tools::convert( maxdist + cutoff*sig, str_cutoff );
     407             :   std::string str_natoms, xpos, ypos, zpos;
     408          10 :   Tools::convert( environments[0].size(), str_natoms );
     409          31 :   for(unsigned j=0; j<environments.size(); ++j) {
     410          21 :     funcstr[j].resize( allspec.size() );
     411          46 :     for(unsigned k=0; k<allspec.size(); ++k) {
     412         177 :       for(unsigned i=0; i<environments[j].size(); ++i) {
     413         152 :         if( environments[j][i].first!=k ) {
     414          16 :           continue ;
     415             :         }
     416         136 :         Tools::convert( environments[j][i].second[0], xpos );
     417         136 :         Tools::convert( environments[j][i].second[1], ypos );
     418         136 :         Tools::convert( environments[j][i].second[2], zpos );
     419         136 :         if( i==0 ) {
     420          42 :           funcstr[j][k] = "FUNC=(step(w-" + lcutoff + ")*step(" + str_cutoff + "-w)/" + str_natoms + ")*(exp(-((x-" + xpos + ")^2+(y-" + ypos + ")^2+(z-" + zpos + ")^2)/(4*" + sig2 + "))";
     421             :         } else {
     422         230 :           funcstr[j][k] += "+exp(-((x-" + xpos + ")^2+(y-" + ypos + ")^2+(z-" + zpos + ")^2)/(4*" + sig2 + "))";
     423             :         }
     424             :       }
     425          25 :       if( funcstr[j][k].length()>0 ) {
     426             :         funcstr[j][k] += ")";
     427             :       } else {
     428             :         funcstr[j][k] ="FUNC=0";
     429             :       }
     430             :     }
     431             :   }
     432             : 
     433             :   // Create the constact matrix
     434             :   std::string sp_str, specA, specB;
     435          10 :   parse("SPECIES",sp_str);
     436          10 :   parse("SPECIESA",specA);
     437          20 :   parse("SPECIESB",specB);
     438          10 :   if( sp_str.length()>0 ) {
     439          18 :     readInputLine( matlab + ": DISTANCE_MATRIX COMPONENTS GROUP=" + sp_str + " CUTOFF=" + str_cutoff );
     440          18 :     readInputLine( getShortcutLabel() + "_grp: GROUP ATOMS=" + sp_str );
     441             :   } else {
     442           1 :     if( specA.length()==0 ) {
     443           0 :       error("no atoms were specified use SPECIES or SPECIESA+SPECIESB");
     444             :     }
     445           1 :     if( specB.length()==0 ) {
     446           0 :       error("no atoms were specified for SPECIESB");
     447             :     }
     448           2 :     readInputLine( matlab + ": DISTANCE_MATRIX COMPONENTS GROUPA=" + specA + " GROUPB=" + specB + " CUTOFF=" + str_cutoff );
     449           2 :     readInputLine( getShortcutLabel() + "_grp: GROUP ATOMS=" + specA );
     450             :   }
     451             : 
     452             :   // Make a vector containing all ones
     453          10 :   ActionWithValue* av = plumed.getActionSet().selectWithLabel<ActionWithValue*>( matlab );
     454          10 :   plumed_assert( av && av->getNumberOfComponents()>0 && (av->copyOutput(0))->getRank()==2 );
     455             :   std::string size;
     456          10 :   Tools::convert( (av->copyOutput(0))->getShape()[1], size );
     457          10 :   if( allspec.size()==1 ) {
     458          18 :     readInputLine( getShortcutLabel() + "_ones: ONES SIZE=" + size );
     459             :   } else {
     460           1 :     unsigned natoms=atomnamepdb.getPositions().size();
     461             :     unsigned firstneigh=0;
     462           1 :     if( sp_str.length()==0 ) {
     463           1 :       firstneigh = (av->copyOutput(0))->getShape()[0];
     464             :     }
     465           3 :     for(unsigned i=0; i<allspec.size(); ++i) {
     466           2 :       std::string onesstr="0";
     467           2 :       if( atomnamepdb.getAtomName(atomnamepdb.getAtomNumbers()[firstneigh])==allspec[i] ) {
     468             :         onesstr = "1";
     469             :       }
     470         576 :       for(unsigned j=firstneigh+1; j<natoms; ++j) {
     471         574 :         if( atomnamepdb.getAtomName(atomnamepdb.getAtomNumbers()[j])==allspec[i] ) {
     472             :           onesstr += ",1";
     473             :         } else {
     474             :           onesstr += ",0";
     475             :         }
     476             :       }
     477           4 :       readInputLine( getShortcutLabel() + "_ones_" + allspec[i] + ": CONSTANT VALUES=" + onesstr );
     478             :     }
     479             :   }
     480             : 
     481             :   std::string envargstr,varstr, maxfuncstr, lambda;
     482          10 :   if( funcstr.size()>1 ) {
     483          10 :     parse("LAMBDA",lambda);
     484             :   }
     485             :   // And now do the funcstr bit
     486          31 :   for(unsigned j=0; j<funcstr.size(); ++j) {
     487             :     std::string jnum;
     488          21 :     Tools::convert( j+1, jnum );
     489          21 :     if(j==0) {
     490          10 :       varstr = "v" + jnum;
     491          20 :       maxfuncstr = "(1/" + lambda + ")*log(exp(" + lambda + "*v1)";
     492          20 :       envargstr = getShortcutLabel() + "_env" + jnum;
     493             :     } else {
     494          11 :       varstr += ",v" + jnum;
     495          22 :       maxfuncstr += "+exp(" + lambda + "*v" + jnum + ")";
     496          22 :       envargstr += "," + getShortcutLabel() + "_env" + jnum;
     497             :     }
     498             :     // And coordination numbers
     499          21 :     if( allspec.size()>1 ) {
     500             :       std::string argnames;
     501          12 :       for(unsigned i=0; i<allspec.size(); ++i) {
     502          16 :         readInputLine( getShortcutLabel() + "_" + allspec[i] + "_matenv" + jnum + ": CUSTOM ARG=" + matlab + ".x," + matlab + ".y," + matlab + ".z," + matlab + ".w VAR=x,y,z,w PERIODIC=NO " + funcstr[j][i] );
     503          16 :         readInputLine( getShortcutLabel() + "_" + allspec[i] + "_env" + jnum + ": MATRIX_VECTOR_PRODUCT ARG=" + getShortcutLabel() + "_" + allspec[i] + "_matenv" + jnum + "," + getShortcutLabel() + "_ones_" + allspec[i] );
     504           8 :         if( i==0 ) {
     505           8 :           argnames = getShortcutLabel() + "_" + allspec[i] + "_env" + jnum;
     506             :         } else {
     507           8 :           argnames += "," + getShortcutLabel() + "_" + allspec[i] + "_env" + jnum;
     508             :         }
     509             :       }
     510           4 :       if( funcstr.size()==1) {
     511           0 :         readInputLine( getShortcutLabel() + ": COMBINE PERIODIC=NO ARG=" + argnames );
     512             :       } else {
     513           8 :         readInputLine( getShortcutLabel() + "_env" + jnum + ": COMBINE PERIODIC=NO ARG=" + argnames );
     514             :       }
     515             :     } else {
     516          34 :       readInputLine( getShortcutLabel() + "_matenv" + jnum + ": CUSTOM ARG=" + matlab + ".x," + matlab + ".y," + matlab + ".z," + matlab + ".w VAR=x,y,z,w PERIODIC=NO " + funcstr[j][0] );
     517          17 :       if( funcstr.size()==1) {
     518          10 :         readInputLine( getShortcutLabel() + ": MATRIX_VECTOR_PRODUCT ARG=" + getShortcutLabel() + "_matenv" + jnum + "," + getShortcutLabel() + "_ones");
     519             :       } else {
     520          24 :         readInputLine( getShortcutLabel() + "_env" + jnum + ": MATRIX_VECTOR_PRODUCT ARG=" + getShortcutLabel() + "_matenv" + jnum + "," + getShortcutLabel() + "_ones");
     521             :       }
     522             :     }
     523             :   }
     524             :   // And get the maximum
     525          10 :   if( funcstr.size()>1 ) {
     526          10 :     readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + envargstr + " PERIODIC=NO VAR=" + varstr + " FUNC=" + maxfuncstr + ")" );
     527             :   }
     528             :   // Read in all the shortcut stuff
     529             :   std::map<std::string,std::string> keymap;
     530          10 :   multicolvar::MultiColvarShortcuts::readShortcutKeywords( keymap, this );
     531          20 :   multicolvar::MultiColvarShortcuts::expandFunctions( getShortcutLabel(), getShortcutLabel(), "", keymap, this );
     532          40 : }
     533             : 
     534          14 : std::vector<std::pair<unsigned,Vector> > EnvironmentSimilarity::getReferenceEnvironment( const PDB& pdb, const std::vector<std::string>& anames,  double& maxdist ) {
     535          14 :   unsigned natoms = pdb.getPositions().size();
     536          14 :   std::vector<std::pair<unsigned,Vector> > env( natoms );
     537          78 :   for(unsigned i=0; i<natoms; ++i) {
     538             :     unsigned identity=0;
     539          80 :     for(unsigned j=1; j<anames.size(); ++j) {
     540          16 :       if( pdb.getAtomName(pdb.getAtomNumbers()[i])==anames[j] ) {
     541             :         identity=j;
     542             :         break;
     543             :       }
     544             :     }
     545          64 :     env[i] = std::pair<unsigned,Vector>( identity, pdb.getPositions()[i] );
     546          64 :     double dist = env[i].second.modulo();
     547          64 :     if( dist>maxdist ) {
     548          13 :       maxdist = dist;
     549             :     }
     550             :   }
     551          14 :   return env;
     552             : }
     553             : 
     554             : }
     555             : }

Generated by: LCOV version 1.16