Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 : Copyright (c) 2015-2020 The plumed team
3 : (see the PEOPLE file at the root of the distribution for a list of names)
4 :
5 : See http://www.plumed.org for more information.
6 :
7 : This file is part of plumed, version 2.
8 :
9 : plumed is free software: you can redistribute it and/or modify
10 : it under the terms of the GNU Lesser General Public License as published by
11 : the Free Software Foundation, either version 3 of the License, or
12 : (at your option) any later version.
13 :
14 : plumed is distributed in the hope that it will be useful,
15 : but WITHOUT ANY WARRANTY; without even the implied warranty of
16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 : GNU Lesser General Public License for more details.
18 :
19 : You should have received a copy of the GNU Lesser General Public License
20 : along with plumed. If not, see <http://www.gnu.org/licenses/>.
21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
22 : #include "SMACOF.h"
23 :
24 : namespace PLMD {
25 : namespace dimred {
26 :
27 1 : SMACOF::SMACOF( const Value* target) {
28 1 : std::vector<unsigned> shape( target->getShape() );
29 1 : Distances.resize( shape[0], shape[1] );
30 1 : Weights.resize( shape[0], shape[1] );
31 501 : for(unsigned i=0; i<shape[0]; ++i) {
32 250500 : for(unsigned j=0; j<shape[1]; ++j) {
33 250000 : Distances(i,j) = sqrt( target->get(shape[0]*i+j) );
34 : }
35 : }
36 1 : }
37 :
38 1 : void SMACOF::optimize( const double& tol, const unsigned& maxloops, std::vector<double>& proj ) {
39 : unsigned M = Distances.nrows();
40 1 : unsigned nlow=proj.size() / M;
41 : Matrix<double> Z( M, nlow );
42 : // Transfer initial projection to matrix
43 : unsigned k = 0;
44 501 : for(unsigned i=0; i<M; ++i) {
45 1500 : for(unsigned j=0; j<nlow; ++j) {
46 1000 : Z(i,j)=proj[k];
47 1000 : k++;
48 : }
49 : }
50 :
51 : // Calculate V
52 : Matrix<double> V(M,M);
53 501 : for(unsigned i=0; i<M; ++i) {
54 250500 : for(unsigned j=0; j<M; ++j) {
55 250000 : if(i==j) {
56 500 : continue;
57 : }
58 249500 : V(i,j)=-Weights(i,j);
59 : }
60 250500 : for(unsigned j=0; j<M; ++j) {
61 250000 : if(i==j) {
62 500 : continue;
63 : }
64 249500 : V(i,i)-=V(i,j);
65 : }
66 : }
67 : // And pseudo invert V
68 : Matrix<double> mypseudo(M, M);
69 1 : pseudoInvert(V, mypseudo);
70 : Matrix<double> dists( M, M );
71 1 : double myfirstsig = calculateSigma( Z, dists );
72 :
73 : // initial sigma is made up of the original distances minus the distances between the projections all squared.
74 : Matrix<double> temp( M, M ), BZ( M, M ), newZ( M, nlow );
75 14 : for(unsigned n=0; n<maxloops; ++n) {
76 14 : if(n==maxloops-1) {
77 0 : plumed_merror("ran out of steps in SMACOF algorithm");
78 : }
79 :
80 : // Recompute BZ matrix
81 7014 : for(unsigned i=0; i<M; ++i) {
82 3507000 : for(unsigned j=0; j<M; ++j) {
83 3500000 : if(i==j) {
84 7000 : continue; //skips over the diagonal elements
85 : }
86 :
87 3493000 : if( dists(i,j)>0 ) {
88 3493000 : BZ(i,j) = -Weights(i,j)*Distances(i,j) / dists(i,j);
89 : } else {
90 0 : BZ(i,j)=0.;
91 : }
92 : }
93 : //the diagonal elements are -off diagonal elements BZ(i,i)-=BZ(i,j) (Equation 8.25)
94 7000 : BZ(i,i)=0; //create the space memory for the diagonal elements which are scalars
95 3507000 : for(unsigned j=0; j<M; ++j) {
96 3500000 : if(i==j) {
97 7000 : continue;
98 : }
99 3493000 : BZ(i,i)-=BZ(i,j);
100 : }
101 : }
102 :
103 14 : mult( mypseudo, BZ, temp);
104 14 : mult(temp, Z, newZ);
105 : //Compute new sigma
106 14 : double newsig = calculateSigma( newZ, dists );
107 : //Computing whether the algorithm has converged (has the mass of the potato changed
108 : //when we put it back in the oven!)
109 14 : if( fabs( newsig - myfirstsig )<tol ) {
110 : break;
111 : }
112 : myfirstsig=newsig;
113 : Z = newZ;
114 : }
115 :
116 : // Transfer final projection matrix to output proj
117 : k = 0;
118 501 : for(unsigned i=0; i<M; ++i) {
119 1500 : for(unsigned j=0; j<nlow; ++j) {
120 1000 : proj[k]=Z(i,j);
121 1000 : k++;
122 : }
123 : }
124 1 : }
125 :
126 15 : double SMACOF::calculateSigma( const Matrix<double>& Z, Matrix<double>& dists ) {
127 : unsigned M = Distances.nrows();
128 : double sigma=0;
129 : double totalWeight=0;
130 7500 : for(unsigned i=1; i<M; ++i) {
131 1878735 : for(unsigned j=0; j<i; ++j) {
132 : double dlow=0;
133 5613750 : for(unsigned k=0; k<Z.ncols(); ++k) {
134 3742500 : double tmp=Z(i,k) - Z(j,k);
135 3742500 : dlow+=tmp*tmp;
136 : }
137 1871250 : dists(i,j)=dists(j,i)=sqrt(dlow);
138 1871250 : double tmp3 = Distances(i,j) - dists(i,j);
139 1871250 : sigma += Weights(i,j)*tmp3*tmp3;
140 1871250 : totalWeight+=Weights(i,j);
141 : }
142 : }
143 15 : return sigma / totalWeight;
144 : }
145 :
146 : }
147 : }
|