LCOV - code coverage report
Current view: top level - core - FlexibleBin.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 115 146 78.8 %
Date: 2024-10-18 13:59:31 Functions: 6 7 85.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2012-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "FlexibleBin.h"
      23             : #include "ActionWithArguments.h"
      24             : #include <cmath>
      25             : #include <iostream>
      26             : #include <vector>
      27             : #include "tools/Matrix.h"
      28             : 
      29             : namespace PLMD {
      30             : 
      31             : 
      32          22 : FlexibleBin::FlexibleBin(int type, ActionWithArguments *paction, double const &d, std::vector<double> &smin, const std::vector<double> &smax):
      33          22 :   type(type),
      34          22 :   paction(paction),
      35          22 :   sigma(d),
      36          22 :   sigmamin(smin),
      37          22 :   sigmamax(smax)
      38             : {
      39             :   // initialize the averages and the variance matrices
      40          22 :   if(type==diffusion) {
      41           3 :     unsigned ncv=paction->getNumberOfArguments();
      42           3 :     std::vector<double> average(ncv*(ncv+1)/2);
      43           3 :     std::vector<double> variance(ncv*(ncv+1)/2);
      44             :   }
      45          22 :   paction->log<<"  Limits for sigmas using adaptive hills:  \n";
      46          64 :   for(unsigned i=0; i<paction->getNumberOfArguments(); ++i) {
      47          42 :     paction->log<<"   CV  "<<paction->getPntrToArgument(i)->getName()<<":\n";
      48          42 :     if(sigmamin[i]>0.) {
      49           0 :       limitmin.push_back(true);
      50           0 :       paction->log<<"       Min "<<sigmamin[i];
      51           0 :       sigmamin[i]*=sigmamin[i]; // this is because the matrix which is calculated is the sigmasquared
      52             :     } else {
      53          42 :       limitmin.push_back(false);
      54          42 :       paction->log<<"       Min No ";
      55             :     }
      56          42 :     if(sigmamax[i]>0.) {
      57           0 :       limitmax.push_back(true);
      58           0 :       paction->log<<"       Max "<<sigmamax[i];
      59           0 :       sigmamax[i]*=sigmamax[i];
      60             :     } else {
      61          42 :       limitmax.push_back(false);
      62          42 :       paction->log<<"       Max No ";
      63             :     }
      64          42 :     paction->log<<" \n";
      65             :   }
      66             : 
      67          22 : }
      68             : 
      69             : /// Constructure for 1D FB for PBMETAD
      70           8 : FlexibleBin::FlexibleBin(int type, ActionWithArguments *paction, unsigned iarg,
      71           8 :                          double const &d, std::vector<double> &smin, const std::vector<double> &smax):
      72           8 :   type(type),paction(paction),sigma(d),sigmamin(smin),sigmamax(smax)
      73             : {
      74             :   // initialize the averages and the variance matrices
      75           8 :   if(type==diffusion) {
      76           8 :     std::vector<double> average(1);
      77           8 :     std::vector<double> variance(1);
      78             :   }
      79           8 :   paction->log<<"  Limits for sigmas using adaptive hills:  \n";
      80           8 :   paction->log<<"   CV  "<<paction->getPntrToArgument(iarg)->getName()<<":\n";
      81           8 :   if(sigmamin[0]>0.) {
      82           8 :     limitmin.push_back(true);
      83           8 :     paction->log<<"       Min "<<sigmamin[0];
      84           8 :     sigmamin[0]*=sigmamin[0];
      85             :   } else {
      86           0 :     limitmin.push_back(false);
      87           0 :     paction->log<<"       Min No ";
      88             :   }
      89           8 :   if(sigmamax[0]>0.) {
      90           0 :     limitmax.push_back(true);
      91           0 :     paction->log<<"       Max "<<sigmamax[0];
      92           0 :     sigmamax[0]*=sigmamax[0];
      93             :   } else {
      94           8 :     limitmax.push_back(false);
      95           8 :     paction->log<<"       Max No ";
      96             :   }
      97           8 :   paction->log<<" \n";
      98           8 : }
      99             : 
     100             : /// Update the flexible bin
     101             : /// in case of diffusion based: update at every step
     102             : /// in case of gradient based: update only when you add the hill
     103         778 : void FlexibleBin::update(bool nowAddAHill) {
     104         778 :   unsigned ncv=paction->getNumberOfArguments();
     105         778 :   unsigned dimension=ncv*(ncv+1)/2;
     106             :   std::vector<double> delta;
     107             :   std::vector<double> cv;
     108         778 :   double decay=1./sigma;
     109             :   // this is done all the times from scratch. It is not an accumulator
     110             :   // here update the flexible bin according to the needs
     111         778 :   switch (type) {
     112             :   // This should be called every time
     113         586 :   case diffusion:
     114             :     // if you use this below then the decay is in time units
     115             :     //double decay=paction->getTimeStep()/sigma;
     116             :     // to be consistent with the rest of the program: everything is better to be in timesteps
     117             :     // THE AVERAGE VALUE
     118             :     // beware: the pbc
     119         586 :     delta.resize(ncv);
     120        1172 :     for(unsigned i=0; i<ncv; i++) cv.push_back(paction->getArgument(i));
     121         586 :     if(average.size()==0) { // initial time: just set the initial vector
     122           2 :       average.resize(ncv);
     123           4 :       for(unsigned i=0; i<ncv; i++) average[i]=cv[i];
     124             :     } else { // accumulate
     125        1168 :       for(unsigned i=0; i<ncv; i++) {
     126         584 :         delta[i]=paction->difference(i,average[i],cv[i]);
     127         584 :         average[i]+=decay*delta[i];
     128         584 :         average[i]=paction->bringBackInPbc(i,average[i]); // equation 8 of "Metadynamics with adaptive Gaussians"
     129             :       }
     130             :     }
     131             :     // THE VARIANCE
     132         586 :     if(variance.size()==0) {
     133           2 :       variance.resize(dimension,0.); // nonredundant members dimension=ncv*(ncv+1)/2;
     134             :     } else {
     135             :       unsigned k=0;
     136        1168 :       for(unsigned i=0; i<ncv; i++) {
     137        1168 :         for(unsigned j=i; j<ncv; j++) { // upper diagonal loop
     138         584 :           variance[k]+=decay*(delta[i]*delta[j]-variance[k]);
     139         584 :           k++;
     140             :         }
     141             :       }
     142             :     }
     143             :     break;
     144         192 :   case geometry:
     145             :     //this calculates in variance the \nabla CV_i \dot \nabla CV_j
     146         192 :     variance.resize(dimension);
     147             :     // now the signal for retrieving the gradients should be already given by checkNeedsGradients.
     148             :     // here just do the projections
     149             :     // note that the call  checkNeedsGradients() in BiasMetaD takes care of switching on the call to gradients
     150         192 :     if (nowAddAHill) { // geometry is sync with hill deposition
     151             :       unsigned k=0;
     152         249 :       for(unsigned i=0; i<ncv; i++) {
     153         415 :         for(unsigned j=i; j<ncv; j++) {
     154             :           // eq 12 of "Metadynamics with adaptive Gaussians"
     155         249 :           variance[k]=sigma*sigma*(paction->getProjection(i,j));
     156         249 :           k++;
     157             :         }
     158             :       }
     159             :     }
     160             :     break;
     161           0 :   default:
     162           0 :     plumed_merror("This flexible bin method is not recognized");
     163             :   }
     164         778 : }
     165             : 
     166           0 : std::vector<double> FlexibleBin::getMatrix() const {
     167           0 :   return variance;
     168             : }
     169             : 
     170             : /// Update the flexible bin for PBMetaD like FlexBin
     171             : /// in case of diffusion based: update at every step
     172             : /// in case of gradient based: update only when you add the hill
     173          80 : void FlexibleBin::update(bool nowAddAHill, unsigned iarg) {
     174             :   // this is done all the times from scratch. It is not an accumulator
     175             :   // here update the flexible bin according to the needs
     176             :   std::vector<double> cv;
     177             :   std::vector<double> delta;
     178             :   // if you use this below then the decay is in time units
     179             :   // to be consistent with the rest of the program: everything is better to be in timesteps
     180          80 :   double decay=1./sigma;
     181          80 :   switch (type) {
     182             :   // This should be called every time
     183          80 :   case diffusion:
     184             :     // THE AVERAGE VALUE
     185          80 :     delta.resize(1);
     186          80 :     cv.push_back(paction->getArgument(iarg));
     187          80 :     if(average.size()==0) { // initial time: just set the initial vector
     188           8 :       average.resize(1);
     189           8 :       average[0]=cv[0];
     190             :     } else { // accumulate
     191          72 :       delta[0]=paction->difference(iarg,average[0],cv[0]);
     192          72 :       average[0]+=decay*delta[0];
     193          72 :       average[0]=paction->bringBackInPbc(iarg,average[0]); // equation 8 of "Metadynamics with adaptive Gaussians"
     194             :     }
     195             :     // THE VARIANCE
     196          80 :     if(variance.size()==0) {
     197           8 :       variance.resize(1,0.); // nonredundant members dimension=ncv*(ncv+1)/2;
     198             :     } else {
     199          72 :       variance[0]+=decay*(delta[0]*delta[0]-variance[0]);
     200             :     }
     201             :     break;
     202           0 :   case geometry:
     203             :     //this calculates in variance the \nabla CV_i \dot \nabla CV_j
     204           0 :     variance.resize(1);
     205             :     // now the signal for retrieving the gradients should be already given by checkNeedsGradients.
     206             :     // here just do the projections
     207             :     // note that the call  checkNeedsGradients() in BiasMetaD takes care of switching on the call to gradients
     208           0 :     if (nowAddAHill) { // geometry is sync with hill deposition
     209             :       // eq 12 of "Metadynamics with adaptive Gaussians"
     210           0 :       variance[0]=sigma*sigma*(paction->getProjection(iarg,iarg));
     211             :     }
     212             :     break;
     213           0 :   default:
     214           0 :     plumed_merror("This flexible bin is not recognized");
     215             :   }
     216          80 : }
     217             : 
     218             : ///
     219             : /// Calculate the matrix of  (dcv_i/dx)*(dcv_j/dx)^-1
     220             : /// that is needed for the metrics in metadynamics
     221             : ///
     222             : ///
     223         374 : std::vector<double> FlexibleBin::getInverseMatrix() const {
     224         374 :   unsigned ncv=paction->getNumberOfArguments();
     225             :   Matrix<double> matrix(ncv,ncv);
     226             :   unsigned i,j,k;
     227             :   k=0;
     228             :   // place the matrix in a complete matrix for compatibility
     229         831 :   for (i=0; i<ncv; i++) {
     230         997 :     for (j=i; j<ncv; j++) {
     231         540 :       matrix(j,i)=matrix(i,j)=variance[k];
     232         540 :       k++;
     233             :     }
     234             :   }
     235             : #define NEWFLEX
     236             : #ifdef NEWFLEX
     237             :   // diagonalize to impose boundaries (only if boundaries are set)
     238             :   Matrix<double>      eigenvecs(ncv,ncv);
     239         374 :   std::vector<double> eigenvals(ncv);
     240             : 
     241             :   //eigenvecs: first is eigenvec number, second is eigenvec component
     242         374 :   if(diagMat( matrix, eigenvals, eigenvecs )!=0) {plumed_merror("diagonalization in FlexibleBin failed! This matrix is weird\n");};
     243             : 
     244         831 :   for (i=0; i<ncv; i++) { //loop on the dimension
     245         457 :     if( limitmax[i] ) {
     246             :       //limit every  component that is larger
     247           0 :       for (j=0; j<ncv; j++) { //loop on components
     248           0 :         if(std::pow(eigenvals[j]*eigenvecs[j][i],2)>std::pow(sigmamax[i],2) ) {
     249           0 :           eigenvals[j]=std::sqrt(std::pow(sigmamax[i]/(eigenvecs[j][i]),2))*copysign(1.,eigenvals[j]);
     250             :         }
     251             :       }
     252             :     }
     253             :   }
     254         831 :   for (i=0; i<ncv; i++) { //loop on the dimension
     255             :     // find the largest one:  if it is smaller than min  then rescale
     256         457 :     if( limitmin[i] ) {
     257             :       unsigned imax=0;
     258             :       double fmax=-1.e10;
     259           0 :       for (j=0; j<ncv; j++) { //loop on components
     260           0 :         double fact=std::pow(eigenvals[j]*eigenvecs[j][i],2);
     261           0 :         if(fact>fmax) {
     262             :           fmax=fact; imax=j;
     263             :         }
     264             :       }
     265           0 :       if(fmax<std::pow(sigmamin[i],2) ) {
     266           0 :         eigenvals[imax]=std::sqrt(std::pow(sigmamin[i]/(eigenvecs[imax][i]),2))*copysign(1.,eigenvals[imax]);
     267             :       }
     268             :     }
     269             :   }
     270             : 
     271             :   // normalize eigenvecs
     272             :   Matrix<double> newinvmatrix(ncv,ncv);
     273         831 :   for (i=0; i<ncv; i++) {
     274        1080 :     for (j=0; j<ncv; j++) {
     275         623 :       newinvmatrix[j][i]=eigenvecs[j][i]/eigenvals[j];
     276             :     }
     277             :   }
     278             : 
     279         374 :   std::vector<double> uppervec(ncv*(ncv+1)/2);
     280             :   k=0;
     281         831 :   for (i=0; i<ncv; i++) {
     282         997 :     for (j=i; j<ncv; j++) {
     283             :       double scal=0;
     284        1329 :       for(unsigned l=0; l<ncv; ++l) {
     285         789 :         scal+=eigenvecs[l][i]*newinvmatrix[l][j];
     286             :       }
     287         540 :       uppervec[k]=scal; k++;
     288             :     }
     289             :   }
     290             : #else
     291             :   // get the inverted matrix
     292             :   Matrix<double> invmatrix(ncv,ncv);
     293             :   Invert(matrix,invmatrix);
     294             :   std::vector<double> uppervec(ncv*(ncv+1)/2);
     295             :   // upper diagonal of the inverted matrix (that is symmetric)
     296             :   k=0;
     297             :   for (i=0; i<ncv; i++) {
     298             :     for (j=i; j<ncv; j++) {
     299             :       uppervec[k]=invmatrix(i,j);
     300             :       k++;
     301             :     }
     302             :   }
     303             : #endif
     304         374 :   return uppervec;
     305             : }
     306             : 
     307             : ///
     308             : /// Calculate the matrix of  (dcv_i/dx)*(dcv_j/dx)^-1
     309             : /// that is needed for the metrics in metadynamics
     310             : /// for PBMetaD like FlexBin
     311             : ///
     312          72 : std::vector<double> FlexibleBin::getInverseMatrix(unsigned iarg) const {
     313             :   // diagonalize to impose boundaries (only if boundaries are set)
     314          72 :   std::vector<double> eigenvals(1, variance[0]);
     315          72 :   if( limitmax[0] ) {
     316           0 :     if(eigenvals[0]>sigmamax[0]) {
     317           0 :       eigenvals[0]=sigmamax[0];
     318             :     }
     319             :   }
     320             :   // find the largest one:  if it is smaller than min  then rescale
     321          72 :   if( limitmin[0] ) {
     322             :     double fmax=-1.e10;
     323          72 :     double fact=eigenvals[0];
     324          72 :     if(fact>fmax) {
     325             :       fmax=fact;
     326             :     }
     327          72 :     if(fmax<sigmamin[0]) {
     328          72 :       eigenvals[0]=sigmamin[0];
     329             :     }
     330             :   }
     331          72 :   std::vector<double> uppervec(1,1./eigenvals[0]);
     332             : 
     333          72 :   return uppervec;
     334             : }
     335             : 
     336             : }

Generated by: LCOV version 1.16