Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2016-2023 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "core/ActionRegister.h" 23 : #include "ContourFindingBase.h" 24 : #include "core/PlumedMain.h" 25 : 26 : //+PLUMEDOC GRIDANALYSIS FIND_CONTOUR_SURFACE 27 : /* 28 : Find an isocontour by searching along either the x, y or z direction. 29 : 30 : As discussed in the part of the manual on \ref Analysis PLUMED contains a number of tools that allow you to calculate 31 : a function on a grid. The function on this grid might be a \ref HISTOGRAM as a function of a few collective variables 32 : or it might be a phase field that has been calculated using \ref MULTICOLVARDENS. If this function has one or two input 33 : arguments it is relatively straightforward to plot the function. If by contrast the data has a three dimensions it can be 34 : difficult to visualize. 35 : 36 : This action provides one tool for visualizing these functions. It can be used to search for a set of points on a contour 37 : where the function takes a particular value. In other words, for the function \f$f(x,y,z)\f$ this action would find a set 38 : of points \f$\{x_c,y_c,z_c\}\f$ that have: 39 : 40 : \f[ 41 : f(x_c,y_c,z_c) - c = 0 42 : \f] 43 : 44 : where \f$c\f$ is some constant value that is specified by the user. The points on this contour are find by searching along lines 45 : that run parallel to the \f$x\f$, \f$y\f$ or \f$z\f$ axis of the simulation cell. The result is, therefore, a two dimensional 46 : function evaluated on a grid that gives us the height of the interface as a function of two coordinates. 47 : 48 : It is important to note that this action can only be used to detect contours in three dimensional functions. In addition, this action will fail to 49 : find the full set of contour points if the contour does not have the same topology as an infinite plane. If you are uncertain that the isocontours in your 50 : function have the appropriate topology you should use \ref FIND_CONTOUR in place of \ref FIND_CONTOUR_SURFACE. 51 : 52 : 53 : \par Examples 54 : 55 : The input shown below was used to analyze the results from a simulation of an interface between solid and molten Lennard Jones. The interface between 56 : the solid and the liquid was set up in the plane perpendicular to the \f$z\f$ direction of the simulation cell. The input below calculates something 57 : akin to a Willard-Chandler dividing surface \cite wcsurface between the solid phase and the liquid phase. There are two of these interfaces within the 58 : simulation box because of the periodic boundary conditions but we were able to determine that one of these two surfaces lies in a particular part of the 59 : simulation box. The input below detects the height profile of one of these two interfaces. It does so by computing a phase field average of the 60 : \ref FCCUBIC symmetry function using the \ref MULTICOLVARDENS action. Notice that we use the fact that we know roughly where the interface is when specifying 61 : how this phase field is to be calculated and specify the region over the \f$z\f$-axis in which we are going to search for the phase field in the line defining 62 : the \ref MULTICOLVARDENS. Once we have calculated the phase field we search for contour points on the lines that run parallel to the \f$z\f$-direction of the cell 63 : box using the FIND_CONTOUR_SURFACE command. The final result is a \f$14 \times 14\f$ grid of values for the height of the interface as a function of the \f$(x,y)\f$ 64 : position. This grid is then output to a file called contour2.dat. 65 : 66 : Notice that the commands below calculate the instantaneous position of the surface separating the solid and liquid and that as such the accumulated average is cleared 67 : on every step. 68 : 69 : \plumedfile 70 : UNITS NATURAL 71 : FCCUBIC ... 72 : SPECIES=1-96000 SWITCH={CUBIC D_0=1.2 D_MAX=1.5} 73 : ALPHA=27 PHI=0.0 THETA=-1.5708 PSI=-2.35619 LABEL=fcc 74 : ... FCCUBIC 75 : 76 : dens2: MULTICOLVARDENS DATA=fcc ORIGIN=1 DIR=xyz NBINS=14,14,50 ZREDUCED ZLOWER=6.0 ZUPPER=11.0 BANDWIDTH=1.0,1.0,1.0 CLEAR=1 77 : 78 : ss2: FIND_CONTOUR_SURFACE GRID=dens2 CONTOUR=0.42 SEARCHDIR=z STRIDE=1 CLEAR=1 79 : DUMPGRID GRID=ss2 FILE=contour2.dat FMT=%8.4f STRIDE=1 80 : \endplumedfile 81 : 82 : */ 83 : //+ENDPLUMEDOC 84 : 85 : namespace PLMD { 86 : namespace contour { 87 : 88 : class FindContourSurface : public ContourFindingBase { 89 : private: 90 : unsigned dir_n; 91 : std::vector<unsigned> ones; 92 : std::vector<unsigned> gdirs; 93 : std::vector<double> direction; 94 : std::vector<std::string> gnames; 95 : gridtools::GridCoordinatesObject gridcoords; 96 : public: 97 : static void registerKeywords( Keywords& keys ); 98 : explicit FindContourSurface(const ActionOptions&ao); 99 : void setupValuesOnFirstStep() override; 100 : unsigned getNumberOfDerivatives() override ; 101 : std::vector<std::string> getGridCoordinateNames() const override ; 102 : const gridtools::GridCoordinatesObject& getGridCoordinatesObject() const override ; 103 : void performTask( const unsigned& current, MultiValue& myvals ) const override; 104 : void gatherStoredValue( const unsigned& valindex, const unsigned& code, const MultiValue& myvals, 105 : const unsigned& bufstart, std::vector<double>& buffer ) const override ; 106 : }; 107 : 108 : PLUMED_REGISTER_ACTION(FindContourSurface,"FIND_CONTOUR_SURFACE") 109 : 110 3 : void FindContourSurface::registerKeywords( Keywords& keys ) { 111 3 : ContourFindingBase::registerKeywords( keys ); 112 6 : keys.add("compulsory","SEARCHDIR","In which directions do you wish to search for the contour."); 113 6 : keys.setValueDescription("grid","a grid containing the location of the points in the Willard-Chandler surface along the chosen direction"); 114 3 : } 115 : 116 1 : FindContourSurface::FindContourSurface(const ActionOptions&ao): 117 : Action(ao), 118 : ContourFindingBase(ao), 119 1 : ones(getPntrToArgument(0)->getRank(),1) 120 : { 121 1 : if( getPntrToArgument(0)->getRank()<2 ) error("cannot find dividing surface if input grid is one dimensional"); 122 : 123 1 : std::string dir; parse("SEARCHDIR",dir); 124 1 : log.printf(" calculating location of contour on %d dimensional grid \n", getPntrToArgument(0)->getRank()-1 ); 125 1 : checkRead(); 126 : 127 : Value* gval=getPntrToArgument(0); unsigned n=0; 128 1 : gdirs.resize( gval->getRank()-1 ); gnames.resize( getPntrToArgument(0)->getRank()-1 ); 129 : 130 1 : gridtools::ActionWithGrid* ag=dynamic_cast<gridtools::ActionWithGrid*>( gval->getPntrToAction() ); 131 1 : if( !ag ) error("input argument must be a grid"); 132 2 : if( getInputGridObject().getGridType()=="fibonacci") error("cannot search for contours in fibonacci grids"); 133 1 : std::vector<std::string> argn( ag->getGridCoordinateNames() ); 134 : 135 4 : for(unsigned i=0; i<gval->getRank(); ++i) { 136 3 : if( argn[i]==dir ) { 137 1 : dir_n=i; 138 : } else { 139 2 : if( n==gdirs.size() ) error("could not find " + dir + " direction in input grid"); 140 4 : gdirs[n]=i; gnames[n]=argn[i]; n++; 141 : } 142 : } 143 1 : if( n!=(gval->getRank()-1) ) error("output of grid is not understood"); 144 : 145 1 : std::vector<bool> ipbc( getInputGridObject().getDimension()-1 ); 146 3 : for(unsigned i=0; i<gdirs.size(); ++i) ipbc[i] = getInputGridObject().isPeriodic(gdirs[i]); 147 2 : gridcoords.setup( "flat", ipbc, 0, 0.0 ); 148 : 149 : // Now add a value 150 1 : std::vector<unsigned> shape( getInputGridObject().getDimension()-1 ); 151 1 : addValueWithDerivatives( shape ); setNotPeriodic(); 152 1 : getPntrToComponent(0)->buildDataStore(); 153 2 : } 154 : 155 1 : void FindContourSurface::setupValuesOnFirstStep() { 156 1 : std::vector<double> fspacing; std::vector<unsigned> snbins( gridcoords.getDimension() ); 157 1 : std::vector<std::string> smin( gridcoords.getDimension() ), smax( gridcoords.getDimension() ); 158 3 : for(unsigned i=0; i<gdirs.size(); ++i) { 159 6 : smin[i]=getInputGridObject().getMin()[gdirs[i]]; smax[i]=getInputGridObject().getMax()[gdirs[i]]; 160 2 : snbins[i]=getInputGridObject().getNbin(false)[gdirs[i]]; 161 : } 162 1 : gridcoords.setBounds( smin, smax, snbins, fspacing ); 163 2 : getPntrToComponent(0)->setShape( gridcoords.getNbin(true) ); 164 : 165 1 : std::vector<unsigned> find( gridcoords.getDimension() ); 166 1 : std::vector<unsigned> ind( gridcoords.getDimension() ); 167 197 : for(unsigned i=0; i<gridcoords.getNumberOfPoints(); ++i) { 168 196 : find.assign( find.size(), 0 ); gridcoords.getIndices( i, ind ); 169 588 : for(unsigned j=0; j<gdirs.size(); ++j) find[gdirs[j]]=ind[j]; 170 : } 171 : 172 : // Set the direction in which to look for the contour 173 1 : direction.resize( getInputGridObject().getDimension(), 0 ); 174 1 : direction[dir_n] = 0.999999999*getInputGridObject().getGridSpacing()[dir_n]; 175 2 : } 176 : 177 3 : unsigned FindContourSurface::getNumberOfDerivatives() { 178 3 : return gridcoords.getDimension(); 179 : } 180 : 181 3 : std::vector<std::string> FindContourSurface::getGridCoordinateNames() const { 182 3 : return gnames; 183 : } 184 : 185 3 : const gridtools::GridCoordinatesObject& FindContourSurface::getGridCoordinatesObject() const { 186 3 : return gridcoords; 187 : } 188 : 189 588 : void FindContourSurface::performTask( const unsigned& current, MultiValue& myvals ) const { 190 : std::vector<unsigned> neighbours; unsigned num_neighbours; unsigned nfound=0; double minv=0, minp; 191 588 : std::vector<unsigned> bins_n( getInputGridObject().getNbin(false) ); unsigned shiftn=current; 192 588 : std::vector<unsigned> ind( getInputGridObject().getDimension() ); std::vector<double> point( getInputGridObject().getDimension() ); 193 : #ifndef DNDEBUG 194 588 : std::vector<unsigned> oind( gridcoords.getDimension() ); gridcoords.getIndices( current, oind ); 195 : #endif 196 16842 : for(unsigned i=0; i<bins_n[dir_n]; ++i) { 197 : #ifndef DNDEBUG 198 16842 : std::vector<unsigned> base_ind( getInputGridObject().getDimension() ); getInputGridObject().getIndices( shiftn, base_ind ); 199 50526 : for(unsigned j=0; j<gdirs.size(); ++j) plumed_dbg_assert( base_ind[gdirs[j]]==oind[j] ); 200 : #endif 201 : // Get the index of the current grid point 202 16842 : getInputGridObject().getIndices( shiftn, ind ); 203 : // Exit if we are at the edge of the grid 204 16842 : if( !getInputGridObject().isPeriodic(dir_n) && (ind[dir_n]+1)==bins_n[dir_n] ) { 205 0 : shiftn += getInputGridObject().getStride()[dir_n]; continue; 206 : } 207 : 208 : // Ensure points with inactive neighbours are ignored 209 16842 : getInputGridObject().getNeighbors( ind, ones, num_neighbours, neighbours ); 210 : 211 : // Now get the function value at two points 212 16842 : double val1=getPntrToArgument(0)->get( shiftn ) - contour; double val2; 213 16842 : if( (ind[dir_n]+1)==bins_n[dir_n] ) val2 = getPntrToArgument(0)->get( current ) - contour; 214 16842 : else val2=getPntrToArgument(0)->get( shiftn + getInputGridObject().getStride()[dir_n] ) - contour; 215 : 216 : // Check if the minimum is bracketed 217 16842 : if( val1*val2<0 ) { 218 588 : getInputGridObject().getGridPointCoordinates( shiftn, point ); findContour( direction, point ); 219 588 : minp=point[dir_n]; nfound++; break; 220 : } 221 : 222 : // This moves us on to the next point 223 16254 : shiftn += getInputGridObject().getStride()[dir_n]; 224 : } 225 : if( nfound==0 ) { 226 0 : std::string num; Tools::convert( getStep(), num ); 227 0 : error("On step " + num + " failed to find required grid point"); 228 : } 229 588 : myvals.setValue( getConstPntrToComponent(0)->getPositionInStream(), minp ); 230 588 : } 231 : 232 588 : void FindContourSurface::gatherStoredValue( const unsigned& valindex, const unsigned& code, const MultiValue& myvals, 233 : const unsigned& bufstart, std::vector<double>& buffer ) const { 234 588 : plumed_dbg_assert( valindex==0 ); unsigned istart = bufstart + (1+gridcoords.getDimension())*code; 235 588 : unsigned valout = getConstPntrToComponent(0)->getPositionInStream(); buffer[istart] += myvals.get( valout ); 236 588 : } 237 : 238 : } 239 : }