LCOV - code coverage report
Current view: top level - colvar - GyrationShortcut.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 76 129 58.9 %
Date: 2025-03-25 09:33:27 Functions: 2 3 66.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2012-2020 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             :    See http://www.plumed.org for more information.
       5             :    This file is part of plumed, version 2.
       6             :    plumed is free software: you can redistribute it and/or modify
       7             :    it under the terms of the GNU Lesser General Public License as published by
       8             :    the Free Software Foundation, either version 3 of the License, or
       9             :    (at your option) any later version.
      10             :    plumed is distributed in the hope that it will be useful,
      11             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      12             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      13             :    GNU Lesser General Public License for more details.
      14             :    You should have received a copy of the GNU Lesser General Public License
      15             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      16             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      17             : #include "core/ActionRegister.h"
      18             : #include "core/PlumedMain.h"
      19             : #include "core/ActionSet.h"
      20             : #include "core/ActionWithValue.h"
      21             : #include "core/ActionShortcut.h"
      22             : 
      23             : namespace PLMD {
      24             : namespace colvar {
      25             : 
      26             : //+PLUMEDOC COLVAR GYRATION_FAST
      27             : /*
      28             : Calculate the radius of gyration, or other properties related to it.
      29             : 
      30             : \par Examples
      31             : 
      32             : */
      33             : //+ENDPLUMEDOC
      34             : 
      35             : //+PLUMEDOC MCOLVAR GYRATION_TENSOR
      36             : /*
      37             : Calculate the gyration tensor using a user specified vector of weights
      38             : 
      39             : The elements of the $3 \times 3$ gyration tensor are defined as:
      40             : 
      41             : $$
      42             : G_{\alpha\beta} = \frac{\sum_i^{n} w_i (\alpha_i-\alpha_{\rm COM})(\beta_i - \beta_{\rm COM})}{\sum_i^{n} w_i}
      43             : $$
      44             : 
      45             : where $\alpha_i$ and $\beta_i$ can be the $x$, $y$ or $z$ coordinates of atom $i$ and $\alpha_{\rm COM}$ and
      46             : $\beta_{\rm COM}$ can be the $x$, $y$ or $z$ components of the center, which is calculated using:
      47             : 
      48             : $$
      49             : {r}_{\rm COM}=\frac{\sum_i^{n} {r}_i\ w_i }{\sum_i^{n} w_i}
      50             : $$
      51             : 
      52             : The following example shows how you can calculate and print the gyration tensor from the positions of the fist 10 atoms using PLUMED
      53             : 
      54             : ```plumed
      55             : g: GYRATION_TENSOR ATOMS=1-10
      56             : PRINT ARG=g FILE=colvar
      57             : ```
      58             : 
      59             : The 9 elements of the gyration matrix will be output to the file `colvar` here.
      60             : 
      61             : Similar functionality to the functionality in the example above is used in the [GYRATION](GYRATION.md) shortcut.  There is, however,
      62             : no fast version of the GYRATION_TENSOR command in the way that there is a fast version of the [GYRATION](GYRATION.md) command that is
      63             : used when the weights are all one or when the masses are used as the weights.
      64             : 
      65             : */
      66             : //+ENDPLUMEDOC
      67             : 
      68             : class GyrationShortcut : public ActionShortcut {
      69             : public:
      70             :   static void registerKeywords( Keywords& keys );
      71             :   explicit GyrationShortcut(const ActionOptions&);
      72             : };
      73             : 
      74             : PLUMED_REGISTER_ACTION(GyrationShortcut,"GYRATION")
      75             : PLUMED_REGISTER_ACTION(GyrationShortcut,"GYRATION_TENSOR")
      76             : 
      77         122 : void GyrationShortcut::registerKeywords( Keywords& keys ) {
      78         122 :   ActionShortcut::registerKeywords( keys );
      79         122 :   keys.add("atoms","ATOMS","the group of atoms that you are calculating the Gyration Tensor for");
      80         122 :   keys.add("compulsory","TYPE","RADIUS","The type of calculation relative to the Gyration Tensor you want to perform");
      81         122 :   keys.addFlag("NOPBC",false,"ignore the periodic boundary conditions when calculating distances");
      82         122 :   keys.add("optional","WEIGHTS","what weights should be used when calculating the center.  If this keyword is not present the geometric center is computed. "
      83             :            "If WEIGHTS=@Masses is used the center of mass is computed.  If WEIGHTS=@charges the center of charge is computed.  If "
      84             :            "the label of an action is provided PLUMED assumes that that action calculates a list of symmetry functions that can be used "
      85             :            "as weights. Lastly, an explicit list of numbers to use as weights can be provided");
      86         122 :   keys.addFlag("PHASES",false,"use trigonometric phases when computing position of center of mass");
      87         122 :   keys.addFlag("MASS",false,"calculate the center of mass");
      88         122 :   keys.addFlag("MASS_WEIGHTED",false,"set the masses of all the atoms equal to one");
      89         122 :   keys.addFlag("UNORMALIZED",false,"do not divide by the sum of the weights");
      90         244 :   if( keys.getDisplayName()=="GYRATION" ) {
      91         232 :     keys.setValueDescription("scalar","the radius that was computed from the weights");
      92         232 :     keys.addActionNameSuffix("_FAST");
      93          12 :   } else if( keys.getDisplayName()=="GYRATION_TENSOR" ) {
      94          12 :     keys.setValueDescription("matrix","the gyration tensor that was computed from the weights");
      95             :   }
      96         122 :   keys.needsAction("CENTER");
      97         122 :   keys.needsAction("CONSTANT");
      98         122 :   keys.needsAction("ONES");
      99         122 :   keys.needsAction("MASS");
     100         122 :   keys.needsAction("DISTANCE");
     101         122 :   keys.needsAction("COVARIANCE_MATRIX");
     102         122 :   keys.needsAction("SELECT_COMPONENTS");
     103         122 :   keys.needsAction("SUM");
     104         122 :   keys.needsAction("CUSTOM");
     105         122 :   keys.needsAction("DIAGONALIZE");
     106         122 :   keys.addDOI("10.1021/jp2065612");
     107         122 : }
     108             : 
     109         116 : GyrationShortcut::GyrationShortcut(const ActionOptions& ao):
     110             :   Action(ao),
     111         116 :   ActionShortcut(ao) {
     112             :   bool usemass, phases;
     113         116 :   parseFlag("MASS",usemass);
     114         232 :   parseFlag("PHASES",phases);
     115             :   std::vector<std::string> str_weights;
     116         232 :   parseVector("WEIGHTS",str_weights);
     117             :   std::string wflab;
     118         230 :   if( !phases && getName()=="GYRATION" ) {
     119         112 :     if( usemass || str_weights.size()==0 || (str_weights.size()==1 && str_weights[0]=="@Masses") ) {
     120             :       std::string wt_str;
     121         112 :       if( str_weights.size()>0 ) {
     122           0 :         wt_str="WEIGHTS=" + str_weights[0];
     123           0 :         for(unsigned i=1; i<str_weights.size(); ++i) {
     124           0 :           wt_str += "," + str_weights[i];
     125             :         }
     126             :       }
     127         112 :       if( usemass || (str_weights.size()==1 && str_weights[0]=="@Masses") ) {
     128             :         wt_str = "MASS";
     129             :       }
     130         232 :       readInputLine( getShortcutLabel() + ": GYRATION_FAST " + wt_str + " " + convertInputLineToString() );
     131             :       return;
     132             :     }
     133             :   }
     134           4 :   if( usemass ) {
     135           0 :     str_weights.resize(1);
     136             :     str_weights[0]="@Masses";
     137             :   }
     138          10 :   log<<"  Bibliography "<<plumed.cite("Jirí Vymetal and Jirí Vondrasek, J. Phys. Chem. A 115, 11455 (2011)")<<"\n";
     139             :   // Read in the atoms involved
     140             :   std::vector<std::string> atoms;
     141           4 :   parseVector("ATOMS",atoms);
     142           4 :   Tools::interpretRanges(atoms);
     143           4 :   std::string gtype, atlist=atoms[0];
     144          12 :   for(unsigned i=1; i<atoms.size(); ++i) {
     145          16 :     atlist += "," + atoms[i];
     146             :   }
     147             :   bool nopbc;
     148           8 :   parseFlag("NOPBC",nopbc);
     149             :   std::string pbcstr;
     150           4 :   if(nopbc) {
     151             :     pbcstr = " NOPBC";
     152             :   }
     153             :   std::string phasestr;
     154           4 :   if(phases) {
     155             :     phasestr = " PHASES";
     156             :   }
     157             :   // Create the geometric center of the molecule
     158           4 :   std::string weights_str="";
     159           4 :   if( str_weights.size()>0 ) {
     160           4 :     weights_str=" WEIGHTS=" + str_weights[0];
     161           8 :     for(unsigned i=1; i<str_weights.size(); ++i) {
     162           8 :       weights_str += "," + str_weights[i];
     163             :     }
     164             :   }
     165           8 :   readInputLine( getShortcutLabel() + "_cent: CENTER ATOMS=" + atlist + pbcstr + phasestr + weights_str );
     166           4 :   if( str_weights.size()==0 ) {
     167           0 :     wflab = getShortcutLabel() + "_w";
     168             :     std::string str_natoms;
     169           0 :     Tools::convert( atoms.size(), str_natoms );
     170           0 :     readInputLine( getShortcutLabel() + "_w: ONES SIZE=" + str_natoms );
     171           6 :   } else if( str_weights.size()==1 && str_weights[0]=="@Masses" ) {
     172           0 :     wflab = getShortcutLabel() + "_m";
     173           0 :     readInputLine( getShortcutLabel() + "_m: MASS ATOMS=" + atlist );
     174           4 :   } else if( str_weights.size()>1 ) {
     175           2 :     std::string vals=str_weights[0];
     176           6 :     for(unsigned i=1; i<str_weights.size(); ++i) {
     177           8 :       vals += "," + str_weights[i];
     178             :     }
     179           4 :     readInputLine( getShortcutLabel() + "_w: CONSTANT VALUES=" + vals );
     180           4 :     wflab=getShortcutLabel() + "_w";
     181             :   } else {
     182           2 :     plumed_assert( str_weights.size()==1 );
     183           2 :     wflab = getShortcutLabel() + "_cent_w";
     184           2 :     ActionWithValue* av=plumed.getActionSet().selectWithLabel<ActionWithValue*>( wflab );
     185           2 :     if( !av ) {
     186             :       wflab = str_weights[0];
     187             :     }
     188             :   }
     189             :   // Check for normalisation
     190             :   bool unorm;
     191           8 :   parseFlag("UNORMALIZED",unorm);
     192             :   // Find out the type
     193           4 :   if( getName()!="GYRATION_TENSOR" ) {
     194           0 :     parse("TYPE",gtype);
     195           0 :     if( gtype!="RADIUS" && gtype!="TRACE" && gtype!="GTPC_1" && gtype!="GTPC_2" && gtype!="GTPC_3" && gtype!="ASPHERICITY" && gtype!="ACYLINDRICITY"
     196           0 :         && gtype!= "KAPPA2" && gtype!="RGYR_1" && gtype!="RGYR_2" && gtype!="RGYR_3" ) {
     197           0 :       error("type " + gtype + " is invalid");
     198             :     }
     199             :     // Check if we need to calculate the unormlised radius
     200           0 :     if( gtype=="TRACE" || gtype=="KAPPA2" ) {
     201           0 :       unorm=true;
     202             :     }
     203             :   }
     204             :   // Compute all the vectors separating all the positions from the center
     205           4 :   std::string distance_act = getShortcutLabel() + "_dists: DISTANCE COMPONENTS" + pbcstr;
     206          16 :   for(unsigned i=0; i<atoms.size(); ++i) {
     207             :     std::string num;
     208          12 :     Tools::convert( i+1, num );
     209          24 :     distance_act += " ATOMS" + num + "=" + getShortcutLabel() + "_cent," + atoms[i];
     210             :   }
     211           4 :   readInputLine( distance_act );
     212             :   // And calculate the covariance
     213             :   std::string norm_str;
     214           4 :   if( unorm ) {
     215             :     norm_str = " UNORMALIZED";
     216             :   }
     217           4 :   if( getName()=="GYRATION_TENSOR" ) {
     218           8 :     readInputLine( getShortcutLabel() + ": COVARIANCE_MATRIX ARG=" + getShortcutLabel() + "_dists.x," + getShortcutLabel() + "_dists.y," + getShortcutLabel() + "_dists.z WEIGHTS=" + wflab + norm_str );
     219             :     return;
     220             :   }
     221           0 :   readInputLine( getShortcutLabel() + "_tensor: COVARIANCE_MATRIX ARG=" + getShortcutLabel() + "_dists.x," + getShortcutLabel() + "_dists.y," + getShortcutLabel() + "_dists.z WEIGHTS=" + wflab + norm_str );
     222             :   // Pick out the diagonal elements
     223           0 :   readInputLine( getShortcutLabel() + "_diag_elements: SELECT_COMPONENTS ARG=" + getShortcutLabel() + "_tensor COMPONENTS=1.1,2.2,3.3");
     224           0 :   if( gtype=="RADIUS") {
     225             :     // And now we need the average trace for the gyration radius
     226           0 :     readInputLine( getShortcutLabel() + "_trace: SUM ARG=" + getShortcutLabel() + "_diag_elements PERIODIC=NO");
     227             :     // Square root the radius
     228           0 :     readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_trace FUNC=sqrt(x) PERIODIC=NO");
     229           0 :   } else if( gtype=="TRACE" ) {
     230             :     // Compte the trace of the gyration tensor
     231           0 :     readInputLine( getShortcutLabel() + "_trace: SUM ARG=" + getShortcutLabel() + "_diag_elements PERIODIC=NO");
     232             :     // And double it
     233           0 :     readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_trace FUNC=2*x PERIODIC=NO");
     234             :   } else {
     235             :     // Diagonalize the gyration tensor
     236           0 :     readInputLine( getShortcutLabel() + "_diag: DIAGONALIZE ARG=" + getShortcutLabel() + "_tensor VECTORS=all" );
     237           0 :     if( gtype.find("GTPC")!=std::string::npos ) {
     238           0 :       std::size_t und=gtype.find_first_of("_");
     239           0 :       if( und==std::string::npos ) {
     240           0 :         error( gtype + " is not a valid type for gyration radius");
     241             :       }
     242           0 :       std::string num = gtype.substr(und+1);
     243           0 :       if( num!="1" && num!="2" && num!="3" ) {
     244           0 :         error( gtype + " is not a valid type for gyration radius");
     245             :       }
     246             :       // Now get the appropriate eigenvalue
     247           0 :       readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-" + num + " FUNC=sqrt(x) PERIODIC=NO");
     248           0 :     } else if( gtype.find("RGYR")!=std::string::npos ) {
     249           0 :       std::size_t und=gtype.find_first_of("_");
     250           0 :       if( und==std::string::npos ) {
     251           0 :         error( gtype + " is not a valid type for gyration radius");
     252             :       }
     253             :       unsigned ind;
     254           0 :       Tools::convert( gtype.substr(und+1), ind );
     255             :       // Now get the appropriate quantity
     256           0 :       if( ind==3 ) {
     257           0 :         readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-1," + getShortcutLabel() + "_diag.vals-2 FUNC=sqrt(x+y) PERIODIC=NO");
     258           0 :       } else if( ind==2 ) {
     259           0 :         readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-1," + getShortcutLabel() + "_diag.vals-3 FUNC=sqrt(x+y) PERIODIC=NO");
     260           0 :       } else if( ind==1 ) {
     261           0 :         readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-2," + getShortcutLabel() + "_diag.vals-3 FUNC=sqrt(x+y) PERIODIC=NO");
     262             :       } else {
     263           0 :         error( gtype + " is not a valid type for gyration radius");
     264             :       }
     265           0 :     } else if( gtype=="ASPHERICITY" ) {
     266           0 :       readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-1," + getShortcutLabel() + "_diag.vals-2," + getShortcutLabel() + "_diag.vals-3 FUNC=sqrt(x-0.5*(y+z)) PERIODIC=NO" );
     267           0 :     } else if( gtype=="ACYLINDRICITY" ) {
     268           0 :       readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-2," + getShortcutLabel() + "_diag.vals-3 FUNC=sqrt(x-y) PERIODIC=NO" );
     269           0 :     } else if( gtype=="KAPPA2" ) {
     270           0 :       readInputLine( getShortcutLabel() + "_numer: CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-1," + getShortcutLabel() + "_diag.vals-2," + getShortcutLabel() + "_diag.vals-3 FUNC=x*y+x*z+y*z PERIODIC=NO" );
     271           0 :       readInputLine( getShortcutLabel() + "_denom: CUSTOM ARG=" + getShortcutLabel() + "_diag.vals-1," + getShortcutLabel() + "_diag.vals-2," + getShortcutLabel() + "_diag.vals-3 FUNC=x+y+z PERIODIC=NO" );
     272           0 :       readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_numer," + getShortcutLabel() + "_denom FUNC=1-3*(x/(y*y)) PERIODIC=NO");
     273             :     } else {
     274           0 :       error( gtype + " is not a valid type for gyration radius");
     275             :     }
     276             :   }
     277         124 : }
     278             : 
     279             : }
     280             : }

Generated by: LCOV version 1.16