Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2012-2023 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "Colvar.h" 23 : #include "core/ActionRegister.h" 24 : #include "core/PlumedMain.h" 25 : 26 : namespace PLMD { 27 : namespace colvar { 28 : 29 : //+PLUMEDOC COLVAR GYRATION_FAST 30 : /* 31 : Calculate the radius of gyration, or other properties related to it. 32 : 33 : The different properties can be calculated and selected by the TYPE keyword: 34 : the Radius of Gyration (RADIUS); the Trace of the Gyration Tensor (TRACE); 35 : the Largest Principal Moment of the Gyration Tensor (GTPC_1); the middle Principal Moment of the Gyration Tensor (GTPC_2); 36 : the Smallest Principal Moment of the Gyration Tensor (GTPC_3); the Asphericiry (ASPHERICITY); the Acylindricity (ACYLINDRICITY); 37 : the Relative Shape Anisotropy (KAPPA2); the Smallest Principal Radius Of Gyration (GYRATION_3); 38 : the Middle Principal Radius of Gyration (GYRATION_2); the Largest Principal Radius of Gyration (GYRATION_1). 39 : A derivation of all these different variants can be found in \cite Vymetal:2011gv 40 : 41 : The radius of gyration is calculated using: 42 : 43 : \f[ 44 : s_{\rm Gyr}=\Big ( \frac{\sum_i^{n} 45 : m_i \vert {r}_i -{r}_{\rm COM} \vert ^2 }{\sum_i^{n} m_i} \Big)^{1/2} 46 : \f] 47 : 48 : with the position of the center of mass \f${r}_{\rm COM}\f$ given by: 49 : 50 : \f[ 51 : {r}_{\rm COM}=\frac{\sum_i^{n} {r}_i\ m_i }{\sum_i^{n} m_i} 52 : \f] 53 : 54 : The radius of gyration usually makes sense when atoms used for the calculation 55 : are all part of the same molecule. 56 : When running with periodic boundary conditions, the atoms should be 57 : in the proper periodic image. This is done automatically since PLUMED 2.2, 58 : by considering the ordered list of atoms and rebuilding the broken entities using a procedure 59 : that is equivalent to that done in \ref WHOLEMOLECULES . Notice that 60 : rebuilding is local to this action. This is different from \ref WHOLEMOLECULES 61 : which actually modifies the coordinates stored in PLUMED. 62 : 63 : In case you want to recover the old behavior you should use the NOPBC flag. 64 : In that case you need to take care that atoms are in the correct 65 : periodic image. 66 : 67 : 68 : \par Examples 69 : 70 : The following input tells plumed to print the radius of gyration of the 71 : chain containing atoms 10 to 20. 72 : \plumedfile 73 : GYRATION TYPE=RADIUS ATOMS=10-20 LABEL=rg 74 : PRINT ARG=rg STRIDE=1 FILE=colvar 75 : \endplumedfile 76 : 77 : */ 78 : //+ENDPLUMEDOC 79 : 80 : class Gyration : public Colvar { 81 : private: 82 : enum CV_TYPE {RADIUS, TRACE, GTPC_1, GTPC_2, GTPC_3, ASPHERICITY, ACYLINDRICITY, KAPPA2, GYRATION_3, GYRATION_2, GYRATION_1, TOT}; 83 : int rg_type; 84 : bool use_masses; 85 : bool nopbc; 86 : std::vector<Vector> derivatives; 87 : public: 88 : static void registerKeywords(Keywords& keys); 89 : explicit Gyration(const ActionOptions&); 90 : void calculate() override; 91 : }; 92 : 93 : PLUMED_REGISTER_ACTION(Gyration,"GYRATION_FAST") 94 : 95 224 : void Gyration::registerKeywords(Keywords& keys) { 96 224 : Colvar::registerKeywords(keys); keys.setDisplayName("GYRATION"); 97 448 : keys.add("atoms","ATOMS","the group of atoms that you are calculating the Gyration Tensor for"); 98 448 : keys.add("compulsory","TYPE","RADIUS","The type of calculation relative to the Gyration Tensor you want to perform"); 99 448 : keys.addFlag("MASS_WEIGHTED",false,"set the masses of all the atoms equal to one"); 100 448 : keys.setValueDescription("scalar","the radius of gyration"); 101 224 : } 102 : 103 112 : Gyration::Gyration(const ActionOptions&ao): 104 : PLUMED_COLVAR_INIT(ao), 105 112 : use_masses(false), 106 112 : nopbc(false) 107 : { 108 : std::vector<AtomNumber> atoms; 109 223 : parseAtomList("ATOMS",atoms); 110 111 : if(atoms.size()==0) error("no atoms specified"); 111 224 : parseFlag("MASS_WEIGHTED",use_masses); 112 : std::string Type; 113 111 : parse("TYPE",Type); 114 111 : parseFlag("NOPBC",nopbc); 115 111 : checkRead(); 116 : 117 111 : if(Type=="RADIUS") rg_type=RADIUS; 118 21 : else if(Type=="TRACE") rg_type=TRACE; 119 19 : else if(Type=="GTPC_1") rg_type=GTPC_1; 120 17 : else if(Type=="GTPC_2") rg_type=GTPC_2; 121 15 : else if(Type=="GTPC_3") rg_type=GTPC_3; 122 13 : else if(Type=="ASPHERICITY") rg_type=ASPHERICITY; 123 11 : else if(Type=="ACYLINDRICITY") rg_type=ACYLINDRICITY; 124 9 : else if(Type=="KAPPA2") rg_type=KAPPA2; 125 7 : else if(Type=="RGYR_3") rg_type=GYRATION_3; 126 5 : else if(Type=="RGYR_2") rg_type=GYRATION_2; 127 3 : else if(Type=="RGYR_1") rg_type=GYRATION_1; 128 1 : else error("Unknown GYRATION type"); 129 : 130 110 : switch(rg_type) 131 : { 132 90 : case RADIUS: log.printf(" GYRATION RADIUS (Rg);"); break; 133 2 : case TRACE: log.printf(" TRACE OF THE GYRATION TENSOR;"); break; 134 2 : case GTPC_1: log.printf(" THE LARGEST PRINCIPAL MOMENT OF THE GYRATION TENSOR (S'_1);"); break; 135 2 : case GTPC_2: log.printf(" THE MIDDLE PRINCIPAL MOMENT OF THE GYRATION TENSOR (S'_2);"); break; 136 2 : case GTPC_3: log.printf(" THE SMALLEST PRINCIPAL MOMENT OF THE GYRATION TENSOR (S'_3);"); break; 137 2 : case ASPHERICITY: log.printf(" THE ASPHERICITY (b');"); break; 138 2 : case ACYLINDRICITY: log.printf(" THE ACYLINDRICITY (c');"); break; 139 2 : case KAPPA2: log.printf(" THE RELATIVE SHAPE ANISOTROPY (kappa^2);"); break; 140 2 : case GYRATION_3: log.printf(" THE SMALLEST PRINCIPAL RADIUS OF GYRATION (r_g3);"); break; 141 2 : case GYRATION_2: log.printf(" THE MIDDLE PRINCIPAL RADIUS OF GYRATION (r_g2);"); break; 142 2 : case GYRATION_1: log.printf(" THE LARGEST PRINCIPAL RADIUS OF GYRATION (r_g1);"); break; 143 : } 144 128 : if(rg_type>TRACE) log<<" Bibliography "<<plumed.cite("Jirí Vymetal and Jirí Vondrasek, J. Phys. Chem. A 115, 11455 (2011)"); 145 110 : log<<"\n"; 146 : 147 110 : log.printf(" atoms involved : "); 148 1023 : for(unsigned i=0; i<atoms.size(); ++i) log.printf("%d ",atoms[i].serial()); 149 110 : log.printf("\n"); 150 : 151 110 : if(nopbc) { 152 4 : log<<" PBC will be ignored\n"; 153 : } else { 154 106 : log<<" broken molecules will be rebuilt assuming atoms are in the proper order\n"; 155 : } 156 : 157 221 : addValueWithDerivatives(); setNotPeriodic(); 158 110 : requestAtoms(atoms); 159 114 : } 160 : 161 1238 : void Gyration::calculate() { 162 : 163 1238 : if(!nopbc) makeWhole(); 164 : 165 1238 : Vector com; 166 : double totmass = 0.; 167 1238 : if( use_masses ) { 168 0 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 169 0 : totmass+=getMass(i); 170 0 : com+=getMass(i)*getPosition(i); 171 : } 172 : } else { 173 1238 : totmass = static_cast<double>(getNumberOfAtoms()); 174 10803 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 175 9565 : com+=getPosition(i); 176 : } 177 : } 178 1238 : com /= totmass; 179 : 180 1238 : double rgyr=0.; 181 1238 : derivatives.resize(getNumberOfAtoms()); 182 : 183 1238 : if(rg_type==RADIUS||rg_type==TRACE) { 184 838 : if( use_masses ) { 185 0 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 186 0 : const Vector diff = delta( com, getPosition(i) ); 187 0 : rgyr += getMass(i)*diff.modulo2(); 188 0 : derivatives[i] = diff*getMass(i); 189 : } 190 : } else { 191 8403 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 192 7565 : const Vector diff = delta( com, getPosition(i) ); 193 7565 : rgyr += diff.modulo2(); 194 7565 : derivatives[i] = diff; 195 : } 196 : } 197 : double fact; 198 838 : if(rg_type==RADIUS) { 199 708 : rgyr = std::sqrt(rgyr/totmass); 200 708 : fact = 1./(rgyr*totmass); 201 : } else { 202 130 : rgyr = 2.*rgyr; 203 : fact = 4; 204 : } 205 838 : setValue(rgyr); 206 8403 : for(unsigned i=0; i<getNumberOfAtoms(); i++) setAtomsDerivatives(i,fact*derivatives[i]); 207 838 : setBoxDerivativesNoPbc(); 208 838 : return; 209 : } 210 : 211 : 212 400 : Tensor3d gyr_tens; 213 : //calculate gyration tensor 214 400 : if( use_masses ) { 215 0 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 216 0 : const Vector diff=delta( com, getPosition(i) ); 217 0 : gyr_tens[0][0]+=getMass(i)*diff[0]*diff[0]; 218 0 : gyr_tens[1][1]+=getMass(i)*diff[1]*diff[1]; 219 0 : gyr_tens[2][2]+=getMass(i)*diff[2]*diff[2]; 220 0 : gyr_tens[0][1]+=getMass(i)*diff[0]*diff[1]; 221 0 : gyr_tens[0][2]+=getMass(i)*diff[0]*diff[2]; 222 0 : gyr_tens[1][2]+=getMass(i)*diff[1]*diff[2]; 223 : } 224 : } else { 225 2400 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 226 2000 : const Vector diff=delta( com, getPosition(i) ); 227 2000 : gyr_tens[0][0]+=diff[0]*diff[0]; 228 2000 : gyr_tens[1][1]+=diff[1]*diff[1]; 229 2000 : gyr_tens[2][2]+=diff[2]*diff[2]; 230 2000 : gyr_tens[0][1]+=diff[0]*diff[1]; 231 2000 : gyr_tens[0][2]+=diff[0]*diff[2]; 232 2000 : gyr_tens[1][2]+=diff[1]*diff[2]; 233 : } 234 : } 235 : 236 : // first make the matrix symmetric 237 400 : gyr_tens[1][0] = gyr_tens[0][1]; 238 400 : gyr_tens[2][0] = gyr_tens[0][2]; 239 400 : gyr_tens[2][1] = gyr_tens[1][2]; 240 400 : Tensor3d ttransf,transf; 241 400 : Vector princ_comp,prefactor; 242 : //diagonalize gyration tensor 243 400 : diagMatSym(gyr_tens, princ_comp, ttransf); 244 400 : transf=transpose(ttransf); 245 : //sort eigenvalues and eigenvectors 246 400 : if (princ_comp[0]<princ_comp[1]) { 247 400 : double tmp=princ_comp[0]; princ_comp[0]=princ_comp[1]; princ_comp[1]=tmp; 248 1600 : for (unsigned i=0; i<3; i++) {tmp=transf[i][0]; transf[i][0]=transf[i][1]; transf[i][1]=tmp;} 249 : } 250 400 : if (princ_comp[1]<princ_comp[2]) { 251 400 : double tmp=princ_comp[1]; princ_comp[1]=princ_comp[2]; princ_comp[2]=tmp; 252 1600 : for (unsigned i=0; i<3; i++) {tmp=transf[i][1]; transf[i][1]=transf[i][2]; transf[i][2]=tmp;} 253 : } 254 400 : if (princ_comp[0]<princ_comp[1]) { 255 400 : double tmp=princ_comp[0]; princ_comp[0]=princ_comp[1]; princ_comp[1]=tmp; 256 1600 : for (unsigned i=0; i<3; i++) {tmp=transf[i][0]; transf[i][0]=transf[i][1]; transf[i][1]=tmp;} 257 : } 258 : //calculate determinant of transformation matrix 259 : double det = determinant(transf); 260 : // transformation matrix for rotation must have positive determinant, otherwise multiply one column by (-1) 261 400 : if(det<0) { 262 1600 : for(unsigned j=0; j<3; j++) transf[j][2]=-transf[j][2]; 263 400 : det = -det; 264 : } 265 400 : if(std::abs(det-1.)>0.0001) error("Plumed Error: Cannot diagonalize gyration tensor\n"); 266 400 : switch(rg_type) { 267 135 : case GTPC_1: 268 : case GTPC_2: 269 : case GTPC_3: 270 : { 271 135 : int pc_index = rg_type-2; //index of principal component 272 135 : rgyr=std::sqrt(princ_comp[pc_index]/totmass); 273 135 : double rm = rgyr*totmass; 274 135 : if(rm>1e-6) prefactor[pc_index]=1.0/rm; //some parts of derivate 275 : break; 276 : } 277 0 : case GYRATION_3: //the smallest principal radius of gyration 278 : { 279 0 : rgyr=std::sqrt((princ_comp[1]+princ_comp[2])/totmass); 280 0 : double rm = rgyr*totmass; 281 0 : if (rm>1e-6) { 282 0 : prefactor[1]=1.0/rm; 283 0 : prefactor[2]=1.0/rm; 284 : } 285 : break; 286 : } 287 130 : case GYRATION_2: //the midle principal radius of gyration 288 : { 289 130 : rgyr=std::sqrt((princ_comp[0]+princ_comp[2])/totmass); 290 130 : double rm = rgyr*totmass; 291 130 : if (rm>1e-6) { 292 130 : prefactor[0]=1.0/rm; 293 130 : prefactor[2]=1.0/rm; 294 : } 295 : break; 296 : } 297 0 : case GYRATION_1: //the largest principal radius of gyration 298 : { 299 0 : rgyr=std::sqrt((princ_comp[0]+princ_comp[1])/totmass); 300 0 : double rm = rgyr*totmass; 301 0 : if (rm>1e-6) { 302 0 : prefactor[0]=1.0/rm; 303 0 : prefactor[1]=1.0/rm; 304 : } 305 : break; 306 : } 307 5 : case ASPHERICITY: 308 : { 309 5 : rgyr=std::sqrt((princ_comp[0]-0.5*(princ_comp[1]+princ_comp[2]))/totmass); 310 5 : double rm = rgyr*totmass; 311 5 : if (rm>1e-6) { 312 5 : prefactor[0]= 1.0/rm; 313 5 : prefactor[1]=-0.5/rm; 314 5 : prefactor[2]=-0.5/rm; 315 : } 316 : break; 317 : } 318 0 : case ACYLINDRICITY: 319 : { 320 0 : rgyr=std::sqrt((princ_comp[1]-princ_comp[2])/totmass); 321 0 : double rm = rgyr*totmass; 322 0 : if (rm>1e-6) { //avoid division by zero 323 0 : prefactor[1]= 1.0/rm; 324 0 : prefactor[2]=-1.0/rm; 325 : } 326 : break; 327 : } 328 130 : case KAPPA2: // relative shape anisotropy 329 : { 330 130 : double trace = princ_comp[0]+princ_comp[1]+princ_comp[2]; 331 130 : double tmp=princ_comp[0]*princ_comp[1]+ princ_comp[1]*princ_comp[2]+ princ_comp[0]*princ_comp[2]; 332 130 : rgyr=1.0-3*(tmp/(trace*trace)); 333 130 : if (rgyr>1e-6) { 334 130 : prefactor[0]= -3*((princ_comp[1]+princ_comp[2])-2*tmp/trace)/(trace*trace) *2; 335 130 : prefactor[1]= -3*((princ_comp[0]+princ_comp[2])-2*tmp/trace)/(trace*trace) *2; 336 130 : prefactor[2]= -3*((princ_comp[0]+princ_comp[1])-2*tmp/trace)/(trace*trace) *2; 337 : } 338 : break; 339 : } 340 : } 341 : 342 400 : if(use_masses) { 343 0 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 344 0 : Vector tX; 345 0 : const Vector diff=delta( com,getPosition(i) ); 346 : //project atomic postional vectors to diagonalized frame 347 0 : for(unsigned j=0; j<3; j++) tX[j]=transf[0][j]*diff[0]+transf[1][j]*diff[1]+transf[2][j]*diff[2]; 348 0 : for(unsigned j=0; j<3; j++) derivatives[i][j]=getMass(i)*(prefactor[0]*transf[j][0]*tX[0]+ 349 0 : prefactor[1]*transf[j][1]*tX[1]+ 350 0 : prefactor[2]*transf[j][2]*tX[2]); 351 0 : setAtomsDerivatives(i,derivatives[i]); 352 : } 353 : } else { 354 2400 : for(unsigned i=0; i<getNumberOfAtoms(); i++) { 355 2000 : Vector tX; 356 2000 : const Vector diff=delta( com,getPosition(i) ); 357 : //project atomic postional vectors to diagonalized frame 358 8000 : for(unsigned j=0; j<3; j++) tX[j]=transf[0][j]*diff[0]+transf[1][j]*diff[1]+transf[2][j]*diff[2]; 359 8000 : for(unsigned j=0; j<3; j++) derivatives[i][j]=prefactor[0]*transf[j][0]*tX[0]+ 360 6000 : prefactor[1]*transf[j][1]*tX[1]+ 361 6000 : prefactor[2]*transf[j][2]*tX[2]; 362 2000 : setAtomsDerivatives(i,derivatives[i]); 363 : } 364 : } 365 : 366 400 : setValue(rgyr); 367 400 : setBoxDerivativesNoPbc(); 368 : } 369 : 370 : } 371 : }